INVOLUTIONS FIXING THE DISJOINT UNION OF ODD-DIMENSIONAL PROJECTIVE SPACES

DUO HOU AND BRUCE TORRENCE

ABSTRACT. We show that any differentiable involution on a closed manifold whose fixed point set is a disjoint union of odd-dimensional real projective spaces must be a bounding involution.

1. Introduction. Suppose M^r is a closed manifold and $T: M \longrightarrow M$ is a differentiable involution on M. We let (M, T) denote the unoriented bordism class of this involution (see, for example, [2]). Let F denote the set of points fixed by T. In this paper we will prove the following:

THEOREM . If F is any disjoint union of odd-dimensional real projective spaces, then (M, T) is a bounding involution.

The issue of classifying (up to bordism) involutions fixing a single real projective space has been settled by Stong [5] in even dimensions and by Capobianco [1] in odd dimensions. Royster [4] gave a partial classification of involutions fixing two projective spaces; in particular, he showed that if the fixed set consists of the disjoint union of two odd-dimensional projective spaces then the involution bounds. In [6] it was shown that an involution will bound if F consists of an arbitrary disjoint union of real projective spaces of constant odd dimension. This paper generalizes these last two results.

2. A word on Pascal's triangle. In order to prove the theorem we will need to develop a few ideas about Pascal's triangle reduced modulo two. Let n > 0 be odd, and let A_n denote the $(\frac{n+1}{2}) \times (\frac{n+1}{2})$ matrix over \mathbb{Z}_2 formed from the upper corner of Pascal's triangle, as follows:

	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\binom{2}{2}$	• • •	$\binom{(n-1)/2}{(n-1)/2}$
	$\begin{pmatrix} 1\\0 \end{pmatrix}$	$\binom{2}{1}$			
$A_n =$	$\binom{2}{0}$		·.		
	:				:
	$\left(\binom{(n-1)/2}{0}\right)$		••••		$\binom{n-1}{(n-1)/2}$

We adopt the unusual convention of labeling the rows and columns of A_n by the *odd* integers 1, 3, 5, ..., n. The reason for this will be made apparent in the next section

Received by the editors March 23, 1992; revised April 15, 1992.

AMS subject classification: 55N22, 57R90.

Key words and phrases: involution, cobordism.

[©] Canadian Mathematical Society, 1994.

INVOLUTIONS

(essentially, column *j* of A_n represents a copy of \mathbb{RP}^n in the fixed set *F* whose normal bundle has stable bordism class ($\mathbb{RP}^n, j\lambda$), and we know [6] that *j* may take any odd value between 1 and *n*). Since $\binom{a}{b} = \binom{2a}{2b} \mod 2$, the entry in row *i* and column *j* of A_n is then

$$A(i,j) = \binom{i+j-2}{j-1}.$$

Let $[\mathbf{RP}^n] \in H_n(\mathbf{RP}^n; \mathbf{Z}_2)$ denote the fundamental homology class, and let $\alpha \in H^1(\mathbf{RP}^n; \mathbf{Z}_2)$ denote the nonzero element.

LEMMA 1. Let $2^N > n$. Then $A(i,j) = \binom{2^N - j}{i-1} = \binom{2^N - j}{i} = \frac{\alpha^{n-i}}{(1+\alpha)^j} [\mathbb{RP}^n].$

PROOF. Since 2^N is even and *i* and *j* are odd, $\binom{2^N-j}{i-1} = \binom{2^N-j}{i}$. Now,

$$\frac{\alpha^{n-i}}{(1+\alpha)^{j}}[\mathbf{R}\mathbf{P}^{n}] = \frac{\alpha^{n-i}(1+\alpha)^{2^{N}-j}}{(1+\alpha)^{2^{N}}}[\mathbf{R}\mathbf{P}^{n}] = \alpha^{n-i}(1+\alpha)^{2^{N}-j}[\mathbf{R}\mathbf{P}^{n}] = \binom{2^{N}-j}{i}.$$

On the other hand, $\frac{\alpha^{n-i}}{(1+\alpha)^{i}}[\mathbf{RP}^{n}]$ is equal to the coefficient of α^{i} in $\frac{1}{(1+\alpha)^{i}}$, which is

$$\binom{i+j-1}{i} = \binom{i+j-1}{j-1} = \binom{i+j-2}{j-1} = A(i,j)$$

since *i* and *j* are odd.

The next lemma illustrates the manner in which A_n contains copies of $A_{2^{\lambda}-1}$ and the zero matrix within itself:

	1	1	1	1	1	1	1	1	1	
	1	0	1	0	1	0	1	0	1	•••
	1	1	0	0	1	1	0	0	1	• • •
	1	0	0	0	1	0	0	0	1	• • •
	1	1	1	1	0	0	0	0	1	•••
$A_n =$	1	0	1	0	0	0	0	0	1	• • •
	1	1	0	0	0	0	0	0	1	• • •
	1	0	0	0	0	0	0	0	1	• • •
	1	1	1	1	1	1	1	1	0	• • •
	÷	:	:	÷	÷	÷	÷	÷	:	·.

LEMMA 2. Let $\lambda > 0$. If $\binom{i}{2^{\lambda}} = 1$ then

$$A(i,j) = \begin{cases} A(i-2^{\lambda},j) & if \binom{j}{2^{\lambda}} = 0\\ 0 & if \binom{j}{2^{\lambda}} = 1. \end{cases}$$

PROOF.

$$A(i,j) = \binom{2^N - j}{i} = \begin{cases} \binom{2^N - j}{i-2^\lambda} & \text{if } \binom{2^N - j}{2^\lambda} = 1\\ 0 & \text{if } \binom{2^N - j}{2^\lambda} = 0 \end{cases}$$
$$= \begin{cases} A(i - 2^\lambda, j) & \text{if } \binom{j}{2^\lambda} = 0\\ 0 & \text{if } \binom{j}{2^\lambda} = 1. \end{cases}$$

The last equality follows from the fact that $\binom{2^N-j}{2^{\lambda}} = \binom{j}{2^{\lambda}} + 1 \mod 2$, which is easily derived by an argument similar to that used in Lemma 1.

LEMMA 3. A_n is nonsingular for all (odd) n.

PROOF.

$$A_{n} = \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 3 \end{pmatrix} & \cdots \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} \\ \vdots & \cdots \end{pmatrix}$$

Since $\binom{a}{b} + \binom{a}{b+1} = \binom{a+1}{b+1}$, if one replaces column 2 of A_n with (column 2 - column 1), column 3 with (column 3 - column 2), and so on, one obtains a matrix

/ 1	0	0	0	0	\cdots
1	$\begin{pmatrix} 1\\1 \end{pmatrix}$	$\binom{2}{2}$	$\binom{3}{3}$		
1	$\binom{2}{1}$	$\binom{3}{2}$			
1	$\binom{3}{1}$				
1					
$\langle \cdot \rangle$)

which has the same rank as A_n . One may continue in this manner (next time leaving the first two columns alone and replacing the third with the difference of the third and second), to obtain a lower triangular matrix with diagonal entries equal to one. Since this matrix has the same rank as A_n , A_n must be nonsingular.

Now let $Q \subseteq \{1, 3, 5, ..., n\}$ be any nonempty subset (think of Q as being a subset of the columns of A_n). We define the integer v(Q) to be the number labeling the first row of A_n such that the sum of the entries on that row from the columns labeled by the set Q is nonzero. That is

$$v(Q) = \min\left\{i \mid \sum_{j \in Q} A(i,j) \neq 0 \mod 2\right\}.$$

Since the columns of A_n are linearly independent, this definition makes sense. Clearly v(Q) is odd with $1 \le v(Q) \le n$.

68

INVOLUTIONS

LEMMA 4. Let λ be a nonnegative integer with $2^{\lambda} < n$, and let $\emptyset \neq X \subseteq \{1, 3, 5, ..., n\}$ be such that $\binom{j}{2^{\lambda}} = 1$ for each $j \in X$. Let $Y \subseteq \{1, 3, 5, ..., n\}$ be such that $\binom{j}{2^{\lambda}} = 0$ for each $j \in Y$ (Y may be empty). Then

$$v(X \cup Y) \le v(X) + 2^{\lambda}.$$

PROOF. If $\lambda = 0$, then $Y = \emptyset$, and the result holds. So assume $\lambda > 0$. If λ is so large that $v(X) + 2^{\lambda} \ge n$, the result is also trivial, so assume $v(X) + 2^{\lambda} < n$.

Suppose first that $\sum_{j \in Y} A(v(X), j) = 0$. Since we have by the definition of v(X) that $\sum_{j \in X} A(v(X), j) = 1$, and since $X \cap Y = \emptyset$, we have

$$\sum_{j \in X \cup Y} A(v(X), j) = \sum_{j \in X} A(v(X), j) + \sum_{j \in Y} A(v(X), j)$$
$$= 1 + 0$$
$$= 1.$$

Thus $v(X \cup Y) \le v(X) < v(X) + 2^{\lambda}$ and the result holds.

Suppose on the other hand that $\sum_{j \in Y} A(v(X), j) = 1$. By the definition of v(X) we have $\sum_{j \in X} A(v(X), j) = 1$, so by Lemma 2 we have $\binom{v(X)}{2^{\lambda}} = 0$, and hence $\binom{v(X)+2^{\lambda}}{2^{\lambda}} = 1$. Thus

$$A(v(X) + 2^{\lambda}, j) = \begin{cases} A(v(X), j) & \text{if } j \in Y \\ 0 & \text{if } j \in X \end{cases}$$

again by Lemma 2. Now since $X \cap Y = \emptyset$,

$$\sum_{j \in X \cup Y} A\left(v(X) + 2^{\lambda}, j\right) = \sum_{j \in X} A\left(v(X) + 2^{\lambda}, j\right) + \sum_{j \in Y} A\left(v(X) + 2^{\lambda}, j\right)$$
$$= 0 + \sum_{j \in Y} A\left(v(X), j\right)$$
$$= 0 + 1$$
$$= 1.$$

Thus $v(X \cup Y) \le v(X) + 2^{\lambda}$.

Now fix $\emptyset \neq Q \subseteq \{1, 3, 5, \dots, n\}$. Let $Q_{\lambda} = \{j \in Q \mid {j \choose 2^{\lambda}} = 1\}$.

LEMMA 5. If $\lambda_1, \lambda_2, \ldots, \lambda_t$ are distinct nonnegative integers, and $Q_{\lambda_1} \cap Q_{\lambda_2} \cap \cdots \cap Q_{\lambda_t} \neq \emptyset$, then

$$v(Q) \leq v(Q_{\lambda_1} \cap \cdots \cap Q_{\lambda_t}) + 2^{\lambda_1} + \cdots + 2^{\lambda_t}.$$

PROOF. Let $X_1 = Q_{\lambda_1}$ and $Y_1 = Q - Q_{\lambda_1}$, so $X_1 \cup Y_1 = Q$. For i > 1, let $X_i = Q_{\lambda_1} \cap \cdots \cap Q_{\lambda_i}$, and $Y_i = X_{i-1} - X_i$. Then $X_i \cup Y_i = X_{i-1}$. Now apply Lemma 4 to obtain

$$v(Q) \leq v(X_1) + 2^{\lambda_1}$$

$$\leq v(X_2) + 2^{\lambda_1} + 2^{\lambda_2}$$

$$\vdots$$

$$\leq v(X_t) + 2^{\lambda_1} + \dots + 2^{\lambda_t}$$

$$= v(Q_{\lambda_1} \cap \dots \cap Q_{\lambda_t}) + 2^{\lambda_1} + \dots + 2^{\lambda_t}.$$

Now let *p* be any nonnegative integer. If *p* is nonzero we write the dyadic expansion $p = 2^{\lambda_1} + 2^{\lambda_2} + \cdots + 2^{\lambda_t}$. The main result of this section is the following:

PROPOSITION 1. If u > n - v(Q) + p is any integer, then

$$\sum_{j \in Q} {j \choose p} \frac{\alpha^u}{(1+\alpha)^j} [\mathbf{R}\mathbf{P}^n] = 0.$$

PROOF. If u > n, then $\alpha^u = 0$ and we are done, so assume $u \le n$. If u is even, then since j and n are odd,

$$\frac{\alpha^{u}}{(1+\alpha)^{j}} [\mathbf{R}\mathbf{P}^{n}] = \frac{\alpha^{u+1}}{(1+\alpha)^{j}} [\mathbf{R}\mathbf{P}^{n}]$$

so we may assume that *u* is even.

Let $X = \{j \in Q \mid {j \choose p} = 1\}$. So if p = 0 then X = Q, and if $p \neq 0$ then $X = Q_{\lambda_1} \cap \cdots \cap Q_{\lambda_r}$. If $X = \emptyset$, then each summand is equal to zero (since each ${j \choose p} = 0$), and the result holds. If $X \neq \emptyset$ then

$$\sum_{j \in Q} {j \choose p} \frac{\alpha^u}{(1+\alpha)^j} [\mathbf{RP}^n] = \sum_{j \in X} \frac{\alpha^u}{(1+\alpha)^j} [\mathbf{RP}^n]$$
$$= \sum_{j \in X} A(n-u, j)$$

by Lemma 1. But Lemma 5 implies that $v(Q) \le v(X) + p$, so $n - u < v(Q) - p \le v(X)$, and hence

$$\sum_{j \in X} A(n-u,j) = 0$$

and the result holds.

3. **Proof of the Theorem.** Given any manifold N^n with vector bundle $\xi^c \longrightarrow N$, let $(N, \xi) \in \mathfrak{N}_n(\mathbf{BO})$ denote the stable bordism class determined by the map

$$N \longrightarrow \mathbf{BO}(c) \hookrightarrow \mathbf{BO}$$

classifying ξ . With *n* fixed, the classes (**RP**^{*n*}, ξ) as ξ ranges over all vector bundles form a **Z**₂-subspace of $\Re_n(\mathbf{BO})$, where the sum (**RP**^{*n*}, ξ) + (**RP**^{*n*}, η) represents the disjoint union. According to [6], if $\lambda \longrightarrow \mathbf{RP}^n$ denotes the canonical twisted line bundle, and if *n* is odd, a basis for this subspace is

$$\{(\mathbf{RP}^n, j\lambda) \mid j \text{ odd. } 1 \le j \le n\}.$$

.

INVOLUTIONS

Now suppose (M^r, T) is a smooth involution on a closed manifold M^r , with fixed point set *F* a disjoint union of odd-dimensional real projective spaces. In [2], Conner and Floyd showed that if $\Re_r^{\mathbf{Z}_2}$ denotes the group of unoriented bordism classes of involutions on *r*-manifolds, the composition

$$\mathfrak{R}_r^{\mathbf{Z}_2} \longrightarrow \sum_{j=0}^r \mathfrak{R}_j (\mathbf{BO}(r-j)) \longrightarrow \sum_{j=0}^r \mathfrak{R}_j (\mathbf{BO})$$

is monic, where the first map assigns to each involution its fixed point data, and the second is induced from the standard inclusion **BO**(*k*) \hookrightarrow **BO**. Thus if $\nu \rightarrow F$ denotes the normal bundle of *F* in *M*, then either (*F*, ν) = 0 $\in \Re_*(\mathbf{BO})$ and (*M*, *T*) is a bounding involution, or we may write

(1)
$$(F,\nu) = \sum_{i=1}^{l} \left(\sum_{j \in Q_i} (\mathbf{RP}^{n_i}, j\lambda) \right)$$

where $n_1 > n_2 > \cdots > n_t$ are all odd, and Q_i is a nonempty subset of $\{1, 3, 5, \ldots, n_i\}$. We will show that the latter is impossible.

For suppose that we have an involution (M^r, T) with fixed data as given in equation 1. Without loss of generality we may assume that $r > n_1$, since \mathbf{RP}^{n_1} is a boundary. Let $k_i = r - n_i$ be the codimension of \mathbf{RP}^{n_i} in M^r .

LEMMA 6. For each *i*, and each $j \in Q_i$, $j \leq k_i$.

PROOF. Let $\nu_{ij}^{k_i} \to \mathbf{RP}^{n_i}$ denote the normal bundle of the \mathbf{RP}^{n_i} with fixed data $(\mathbf{RP}^{n_i}, j\lambda)$. Then the Stiefel-Whitney class $w_j(\nu_{ij}^{k_i}) = w_j(j\lambda) = {j \choose j} \alpha^j \neq 0$ since $j \leq n_i$, and hence $k_i \geq j$.

Now for each *i* let m_i denote the largest $j \in Q_i$, and let $v_i = v(Q_i)$ as defined in Section 2 after Lemma 3.

LEMMA 7. For each $i, v_i \leq k_i$.

PROOF. Consider the matrix A_{n_i} . The upper left corner of A_{n_i} is a copy of A_{m_i} : the first $\frac{m_i+1}{2}$ rows intersected with the first $\frac{m_i+1}{2}$ columns. Since A_{m_i} is nonsingular, and since v_i denotes the smallest row number of A_{n_i} with $\sum_{j \in Q_i} A(v_i, j) \neq 0$, $v_i \leq m_i$. But $m_i \leq k_i$ by Lemma 6.

Now reindex the n_1, n_2, \ldots, n_t if necessary so that

(2)
$$n_1 - v_1 = n_2 - v_2 = \dots = n_s - v_s > n_{s+1} - v_{s+1} \ge \dots \ge n_t - v_t$$
 and $n_1 > \dots > n_s$.

We then have $k_1 < \cdots < k_s$.

LEMMA 8. $2k_i > k_s$ for $1 \le i \le s$.

D. HOU AND B. TORRENCE

Proof.

$$k_s - k_i = n_i - n_s = v_i - v_s < v_i \le k_i$$

by Lemma 7.

According to Kosniowski and Stong [3], if $f(x_1, x_2, ..., x_r)$ is any symmetric polynomial over \mathbb{Z}_2 in *r* variables of degree at most *r*, then

$$f(x_1,\ldots,x_r)[M^r] = \sum_{i=1}^r \sum_{j \in Q_i} \frac{f(1+y_1,1+y_2,\ldots,1+y_{k_i},z_1,z_2,\ldots,z_{n_i})}{(1+y_1)(1+y_2)\cdots(1+y_{k_i})} [\mathbf{RP}^{n_i}]$$

where the expressions are evaluated by replacing the elementary symmetric functions $\sigma_q(x)$, $\sigma_q(y)$, and $\sigma_q(z)$ by the Stiefel-Whitney classes $w_q(M)$, $w_q(j\lambda)$, and $w_q(\mathbf{RP}^{n_i})$ respectively, and evaluating the resulting cohomology class on the fundamental homology class [M] or $[\mathbf{RP}^{n_i}]$. In our case, since each $j \in Q_i$ satisfies $j \leq k_i$, we have

$$f(x_1,\ldots,x_r)[M^r] = \sum_{i=1}^l \sum_{j \in Q_i} \frac{f(1+y_1,\ldots,1+y_{k_i},z_1,\ldots,z_{n_i})}{(1+\alpha)^j} [\mathbf{R}\mathbf{P}^{n_i}].$$

Now let $g(x_1, \ldots, x_r) = \sigma_1(x_1, \ldots, x_r) + (r+1)$. Then for each $1 \le i \le t$ and $j \in Q_i$,

$$g(1 + y_1, \dots, 1 + y_{k_i}, z_1, \dots, z_{n_i}) = [k_i + w_1(j\lambda) + w_1(\mathbf{RP}^{n_i})] + (r+1)$$
$$= [k_i + \alpha + 0] + (n_i + k_i + 1)$$
$$= \alpha$$

since *j* and n_i are odd. Now for any *d* with $0 \le d < k_s/2$, let

$$f_d(x_1,\ldots,x_r) = \sigma_d(x_1,\ldots,x_r)^2 g(x_1,\ldots,x_r)^{n_s-v_s}$$

Then the degree of f is $2d + n_s - v_s < k_s + n_s - v_s < k_s + n_s = r$, so

$$f_d(x_1,\ldots,x_r)[M^r]=0.$$

On the other hand, Kosniowski and Stong [3] showed that for each $i, 1 \le i \le t$, and each $j \in Q_i$,

$$\sigma_d(1+y_1,\ldots,1+y_{k_i},z_1,\ldots,z_{n_i})=\sum_{p+q\leq d}\binom{k_i-p}{d-p-q}\binom{j}{p}\binom{n_i+1}{q}\alpha^{p+q},$$

so since $\binom{a}{b} = \binom{a}{b}^2 \mod 2$,

$$f_d(1+y,z) = \sum_{p+q \le d} \binom{k_i - p}{d-p-q} \binom{j}{p} \binom{n_i+1}{q} \alpha^{n_s - v_s + 2p+2q}.$$

We now use Proposition 1: If either i > s or p+q > 0, then $n_s - v_s + 2p + 2q > n_i - v_i + p$, so the hypothesis of Proposition 1 is satisfied, and

$$\sum_{j \in Q_i} {j \choose p} \frac{\alpha^{n_s - v_s + 2p + 2q}}{(1 + \alpha)^j} [\mathbf{RP}^{n_i}] = 0.$$

72

Thus for each d

(3)

$$0 = f_d(x_1, ..., x_r)[M]$$

= $\sum_{i=1}^{t} \sum_{j \in Q_i} \frac{f_d(1 + y, z)}{(1 + \alpha)^j} [\mathbf{RP}^{n_i}]$
= $\sum_{i=1}^{t} \sum_{p+q \le d} {\binom{k_i - p}{d - p - q} \binom{n_i + 1}{q}} [\sum_{j \in Q_i} {\binom{j}{p}} \frac{\alpha^{n_s - v_s + 2p + 2q}}{(1 + \alpha)^j} [\mathbf{RP}^{n_i}]]$
= $\sum_{i=1}^{s} {\binom{k_i}{d}} [\sum_{j \in Q_i} \frac{\alpha^{n_s - v_s}}{(1 + \alpha)^j} [\mathbf{RP}^{n_i}]]$
= $\sum_{i=1}^{s} {\binom{k_i}{d}} [\sum_{j \in Q_i} A_{n_i} (n_i - (n_s - v_s), j)]$
= $\sum_{i=1}^{s} {\binom{k_i}{d}} [\sum_{j \in Q_i} A_{n_i} (v_i, j)]$
= $\sum_{i=1}^{s} {\binom{k_i}{d}}$

by Lemma 1, equation 2, and the definition of v_i .

But this is impossible. Recall that $0 \le d < k_s/2$, and k_s may be odd. Let *c* be the largest integer which is strictly less than $k_s/2$. Since $k_1 < k_2 < \cdots < k_s$, and each $k_i > k_s/2$ (Lemma 8), and $c + 1 \ge k_s/2$, we have for each *i*

$$k_i + c + 1 > k_s \Longrightarrow k_i + c \ge k_s \Longrightarrow k_i \ge k_s - c.$$

Let *B* be the matrix of binomial coefficients reduced modulo 2 given as follows:

$$B = \begin{pmatrix} \binom{k_s - c}{0} & \binom{k_s - c + 1}{0} & \binom{k_s - c + 2}{0} & \cdots & \binom{k_s}{0} \\ \binom{k_s - c}{1} & \binom{k_s - c + 1}{1} & & \\ \binom{k_s - c}{2} & \ddots & \vdots \\ \vdots & & & \\ \binom{k_s - c}{c} & \cdots & \binom{k_s}{c} \end{pmatrix}$$

To show that equation 3 cannot hold for all *d* with $0 \le d < k_s/2$, it suffices to show that *B* is nonsingular. But this is clear: Obtain a matrix of the same rank as *B* by replacing column 2 of *B* with (column 2 – column 1), column 3 with (column 3 – column 2), *etc.* Since $\binom{a}{b} + \binom{a}{b+1} = \binom{a+1}{b+1}$, one obtains the matrix

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ * & \binom{k_s-c}{0} & \binom{k_s-c+1}{0} & \binom{k_s-c+2}{0} & \cdots & \binom{k_s-1}{0} \\ * & \binom{k_s-c}{1} & \binom{k_s-c+1}{1} & & \\ * & \binom{k_s-c}{2} & \ddots & \vdots \\ \vdots & & & \\ * & \binom{k_s-c}{c-1} & \cdots & \binom{k_s-1}{c-1} \end{pmatrix}$$

and *B* is nonsingular by induction.

Thus the assumption that $(F, \nu) \neq 0 \in \mathfrak{N}_*(\mathbf{BO})$ leads to a contradiction, and we conclude that (M, T) is a bounding involution.

References

1. F. L. Capobianco, *Stationary points of* $(\mathbb{Z}_2)^k$ -actions, Proceedings Amer. Math. Soc. **67**(1976), 377–380.

2. P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Springer Verlag, Berlin, 1964.

- 3. C. Kosniowski and R. E. Stong, Involutions and characteristic numbers, Topology 17(1978), 309-330.
- **4.** D. C. Royster, *Involutions fixing the disjoint union of two projective spaces*, Indiana Math. J. **29**(1980), 267–276.
- 5. R. E. Stong, Involutions fixing projective spaces, Michigan Math. J. 13(1966), 445–447.
- 6. B. F. Torrence, *Bordism classes of vector bundles over real projective spaces*, Proceedings Amer. Math. Soc. 118(1993), 963–969.

Department of Mathematics Hebei Teacher's University 050016 China

Department of Mathematics Georgetown University Washington, D.C. 20057 U.S.A.