INVOLUTIONS FIXING THE DISJOINT UNION OF ODD-DIMENSIONAL PROJECTIVE SPACES

DUO HOU AND BRUCE TORRENCE

Abstract

We show that any differentiable involution on a closed manifold whose fixed point set is a disjoint union of odd-dimensional real projective spaces must be a bounding involution.

1. Introduction. Suppose M^{r} is a closed manifold and $T: M \longrightarrow M$ is a differentiable involution on M. We let (M, T) denote the unoriented bordism class of this involution (see, for example, [2]). Let F denote the set of points fixed by T. In this paper we will prove the following:

THEOREM . If F is any disjoint union of odd-dimensional real projective spaces, then (M.T) is a bounding involution.

The issue of classifying (up to bordism) involutions fixing a single real projective space has been settled by Stong [5] in even dimensions and by Capobianco [1] in odd dimensions. Royster [4] gave a partial classification of involutions fixing two projective spaces; in particular, he showed that if the fixed set consists of the disjoint union of two odd-dimensional projective spaces then the involution bounds. In [6] it was shown that an involution will bound if F consists of an arbitrary disjoint union of real projective spaces of constant odd dimension. This paper generalizes these last two results.
2. A word on Pascal's triangle. In order to prove the theorem we will need to develop a few ideas about Pascal's triangle reduced modulo two. Let $n>0$ be odd, and let A_{n} denote the $\left(\frac{n+1}{2}\right) \times\left(\frac{n+1}{2}\right)$ matrix over \mathbf{Z}_{2} formed from the upper corner of Pascal's triangle, as follows:

$$
A_{n}=\left(\begin{array}{cccc}
\binom{0}{0} & \binom{1}{1} & \binom{2}{2} & \cdots
\end{array}\binom{(n-1) / 2}{(n-1) / 2}\right.
$$

We adopt the unusual convention of labeling the rows and columns of A_{n} by the odd integers $1.3,5, \ldots n$. The reason for this will be made apparent in the next section

[^0](essentially, column j of A_{n} represents a copy of $\mathbf{R P}^{n}$ in the fixed set F whose normal bundle has stable bordism class ($\mathbf{R P}^{n}, j \lambda$), and we know [6] that j may take any odd value between 1 and n). Since $\binom{a}{b}=\binom{2 a}{2 b} \bmod 2$, the entry in row i and column j of A_{n} is then
$$
A(i, j)=\binom{i+j-2}{j-1}
$$

Let $\left[\mathbf{R P}^{n}\right] \in H_{n}\left(\mathbf{R P}^{n} ; \mathbf{Z}_{2}\right)$ denote the fundamental homology class, and let $\alpha \in$ $H^{1}\left(\mathbf{R P}^{n} ; \mathbf{Z}_{2}\right)$ denote the nonzero element.

Lemma 1. Let $2^{N}>n$. Then $A(i, j)=\binom{2^{N}-j}{i-1}=\binom{2^{N}-j}{i}=\frac{\alpha^{n \prime-}}{(1+\alpha j)}\left[\mathbf{R} \mathbf{P}^{n}\right]$.
Proof. Since 2^{N} is even and i and j are odd, $\binom{2^{N}-j}{i-1}=\binom{2^{N}-j}{i}$. Now,

$$
\frac{\alpha^{n-i}}{(1+\alpha)^{j}}\left[\mathbf{R} \mathbf{P}^{n}\right]=\frac{\alpha^{n-i}(1+\alpha)^{2^{N}-j}}{(1+\alpha)^{2}}\left[\mathbf{R} \mathbf{P}^{n}\right]=\alpha^{n-i}(1+\alpha)^{2^{N}-j}\left[\mathbf{R} \mathbf{P}^{n}\right]=\binom{2^{N}-j}{i} .
$$

On the other hand, $\frac{\alpha^{n-i}}{(1+\alpha)}\left[\mathbf{R P}^{n}\right]$ is equal to the coefficient of α^{i} in $\frac{1}{(1+\alpha)}$, which is

$$
\binom{i+j-1}{i}=\binom{i+j-1}{j-1}=\binom{i+j-2}{j-1}=A(i, j)
$$

since i and j are odd.
The next lemma illustrates the manner in which A_{n} contains copies of $A_{2^{\lambda}-1}$ and the zero matrix within itself:

$A_{n}=$| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | \cdots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | \ldots |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | \ldots |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | \cdots |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | \cdots |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | \cdots |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | \cdots |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | \cdots |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | \cdots |
| \vdots | \ddots |

Lemma 2. Let $\lambda>0$. If $\binom{i}{2^{2}}=1$ then

$$
A(i, j)= \begin{cases}A\left(i-2^{\lambda}, j\right) & \text { if }\binom{j}{2^{\lambda}}=0 \\ 0 & \text { if }\binom{j}{2^{\lambda}}=1 .\end{cases}
$$

Proof.

$$
\begin{aligned}
A(i, j)=\binom{2^{N}-j}{i} & = \begin{cases}\binom{2^{N}-j}{i-2^{2}} & \text { if }\left(\begin{array}{c}
2^{N}-j \\
0
\end{array}\right. \\
\text { if }\binom{2^{2^{N}}-j}{2^{\lambda}}=0\end{cases} \\
& = \begin{cases}A\left(i-2^{\lambda} . j\right) & \text { if }\binom{j}{2^{2}}=0 \\
0 & \text { if }\binom{j}{2^{\lambda}}=1 .\end{cases}
\end{aligned}
$$

The last equality follows from the fact that $\binom{2^{N}-j}{2^{\lambda}}=\binom{j}{2^{\lambda}}+1 \bmod 2$, which is easily derived by an argument similar to that used in Lemma 1.

Lemma 3. A_{n} is nonsingular for all (odd) n.
Proof.

$$
A_{n}=\left(\begin{array}{ccccc}
\binom{0}{0} & \binom{1}{1} & \binom{2}{2} & \binom{3}{3} & \cdots \\
\binom{1}{0} & \binom{2}{1} & \binom{3}{2} & & \\
\binom{2}{0} & \binom{3}{1} & & & \\
\binom{3}{0} & & & & \\
\vdots & & &
\end{array}\right)
$$

Since $\binom{a}{b}+\binom{a}{b+1}=\binom{a+1}{b+1}$, if one replaces column 2 of A_{n} with (column $2-$ column 1), column 3 with (column 3 - column 2), and so on, one obtains a matrix

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdots \\
1 & \binom{1}{1} & \binom{2}{2} & \binom{3}{3} & & \\
1 & \binom{2}{1} & \binom{3}{2} & & & \\
1 & \binom{3}{1} & & & & \\
1 & & & & & \\
\vdots & & & & &
\end{array}\right)
$$

which has the same rank as A_{n}. One may continue in this manner (next time leaving the first two columns alone and replacing the third with the difference of the third and second), to obtain a lower triangular matrix with diagonal entries equal to one. Since this matrix has the same rank as A_{n}, A_{n} must be nonsingular.

Now let $Q \subseteq\{1,3,5, \ldots, n\}$ be any nonempty subset (think of Q as being a subset of the columns of A_{n}). We define the integer $v(Q)$ to be the number labeling the first row of A_{n} such that the sum of the entries on that row from the columns labeled by the set Q is nonzero. That is

$$
v(Q)=\min \left\{i \mid \sum_{j \in Q} A(i, j) \neq 0 \bmod 2\right\} .
$$

Since the columns of A_{n} are linearly independent, this definition makes sense. Clearly $v(Q)$ is odd with $1 \leq v(Q) \leq n$.

Lemma 4. Let λ be a nonnegative integer with $2^{\lambda}<n$, and let $\emptyset \neq X \subseteq$ $\{1,3,5, \ldots, n\}$ be such that $\binom{j}{2^{\lambda}}=1$ for each $j \in X$. Let $Y \subseteq\{1,3,5, \ldots, n\}$ be such that $\binom{j}{2^{\star}}=0$ for each $j \in Y(Y$ may be empty $)$. Then

$$
v(X \cup Y) \leq v(X)+2^{\lambda} .
$$

Proof. If $\lambda=0$, then $Y=\emptyset$, and the result holds. So assume $\lambda>0$. If λ is so large that $v(X)+2^{\lambda} \geq n$, the result is also trivial, so assume $v(X)+2^{\lambda}<n$.

Suppose first that $\sum_{j \in Y} A(v(X), j)=0$. Since we have by the definition of $v(X)$ that $\sum_{j \in X} A(v(X), j)=1$, and since $X \cap Y=\emptyset$, we have

$$
\begin{aligned}
\sum_{j \in X \cup Y} A(v(X), j) & =\sum_{j \in X} A(v(X), j)+\sum_{j \in Y} A(v(X), j) \\
& =1+0 \\
& =1 .
\end{aligned}
$$

Thus $v(X \cup Y) \leq v(X)<v(X)+2^{\lambda}$ and the result holds.
Suppose on the other hand that $\sum_{j \in Y} A(v(X), j)=1$. By the definition of $v(X)$ we have $\sum_{j \in X} A(v(X), j)=1$, so by Lemma 2 we have $\binom{v(X)}{2^{\lambda}}=0$, and hence $\binom{v(X)+2^{\lambda}}{2^{\lambda}}=1$. Thus

$$
A\left(v(X)+2^{\lambda}, j\right)= \begin{cases}A(v(X), j) & \text { if } j \in Y \\ 0 & \text { if } j \in X\end{cases}
$$

again by Lemma 2. Now since $X \cap Y=\emptyset$,

$$
\begin{aligned}
\sum_{j \in X \cup Y} A\left(v(X)+2^{\lambda}, j\right) & =\sum_{j \in X} A\left(v(X)+2^{\lambda}, j\right)+\sum_{j \in Y} A\left(v(X)+2^{\lambda}, j\right) \\
& =0+\sum_{j \in Y} A(v(X), j) \\
& =0+1 \\
& =1
\end{aligned}
$$

Thus $v(X \cup Y) \leq v(X)+2^{\lambda}$.
Now fix $\emptyset \neq Q \subseteq\{1,3,5, \ldots, n\}$. Let $Q_{\lambda}=\left\{j \in Q \left\lvert\,\binom{ j}{2^{\lambda}}=1\right.\right\}$.
LEMMA 5. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}$ are distinct nonnegative integers, and $Q_{\lambda_{1}} \cap Q_{\lambda_{2}} \cap \cdots \cap$ $Q_{\lambda,} \neq \emptyset$, then

$$
v(Q) \leq v\left(Q_{\lambda_{1}} \cap \cdots \cap Q_{\lambda_{t}}\right)+2^{\lambda_{1}}+\cdots+2^{\lambda_{1}} .
$$

Proof. Let $X_{1}=Q_{\lambda_{1}}$ and $Y_{1}=Q-Q_{\lambda_{1}}$, so $X_{1} \cup Y_{1}=Q$. For $i>1$, let $X_{i}=$ $Q_{\lambda_{1}} \cap \cdots \cap Q_{\lambda_{i}}$, and $Y_{i}=X_{i-1}-X_{i}$. Then $X_{i} \cup Y_{i}=X_{i-1}$. Now apply Lemma 4 to obtain

$$
\begin{aligned}
v(Q) & \leq v\left(X_{1}\right)+2^{\lambda_{1}} \\
& \leq v\left(X_{2}\right)+2^{\lambda_{1}}+2^{\lambda_{2}} \\
& \vdots \\
& \leq v\left(X_{t}\right)+2^{\lambda_{1}}+\cdots+2^{\lambda_{1}} \\
& =v\left(Q_{\lambda_{1}} \cap \cdots \cap Q_{\lambda_{1}}\right)+2^{\lambda_{1}}+\cdots+2^{\lambda_{1}} .
\end{aligned}
$$

Now let p be any nonnegative integer. If p is nonzero we write the dyadic expansion $p=2^{\lambda_{1}}+2^{\lambda_{2}}+\cdots+2^{\lambda_{1}}$. The main result of this section is the following:

Proposition 1. If $u>n-v(Q)+p$ is any integer, then

$$
\sum_{j \in Q}\binom{j}{p} \frac{\alpha^{u}}{(1+\alpha)^{j}}\left[\mathbf{R P}^{n}\right]=0
$$

Proof. If $u>n$, then $\alpha^{u}=0$ and we are done, so assume $u \leq n$. If u is even, then since j and n are odd,

$$
\frac{\alpha^{u}}{(1+\alpha)^{j}}\left[\mathbf{R} \mathbf{P}^{n}\right]=\frac{\alpha^{u+1}}{(1+\alpha)^{j}}\left[\mathbf{R} \mathbf{P}^{n}\right]
$$

so we may assume that u is even.
Let $X=\left\{j \in Q \left\lvert\,\binom{ j}{p}=1\right.\right\}$. So if $p=0$ then $X=Q$, and if $p \neq 0$ then $X=Q_{\lambda_{1}} \cap \cdots \cap Q_{\lambda_{1}}$. If $X=\emptyset$, then each summand is equal to zero (since each $\binom{j}{p}=0$), and the result holds. If $X \neq \emptyset$ then

$$
\begin{aligned}
\sum_{j \in Q}\binom{j}{p} \frac{\alpha^{u}}{(1+\alpha)^{j}}\left[\mathbf{R P}^{n}\right] & =\sum_{j \in X} \frac{\alpha^{u}}{(1+\alpha)^{j}}\left[\mathbf{R P}^{n}\right] \\
& =\sum_{j \in X} A(n-u, j)
\end{aligned}
$$

by Lemma 1. But Lemma 5 implies that $v(Q) \leq v(X)+p$, so $n-u<v(Q)-p \leq v(X)$, and hence

$$
\sum_{j \in X} A(n-u, j)=0
$$

and the result holds.
3. Proof of the Theorem. Given any manifold N^{n} with vector bundle $\xi^{c} \longrightarrow N$, let $(N, \xi) \in \Re_{n}(\mathbf{B O})$ denote the stable bordism class determined by the map

$$
N \longrightarrow \mathbf{B O}(c) \hookrightarrow \mathbf{B O}
$$

classifying ξ. With n fixed, the classes $\left(\mathbf{R P}^{n}, \xi\right)$ as ξ ranges over all vector bundles form a \mathbf{Z}_{2}-subspace of $\Re_{n}(\mathbf{B O})$, where the sum $\left(\mathbf{R P}^{n}, \xi\right)+\left(\mathbf{R P}^{n}, \eta\right)$ represents the disjoint union. According to [6], if $\lambda \longrightarrow \mathbf{R P}^{n}$ denotes the canonical twisted line bundle, and if n is odd, a basis for this subspace is

$$
\left\{\left(\mathbf{R P}^{n}, j \lambda\right) \mid j \text { odd. } 1 \leq j \leq n\right\} .
$$

Now suppose $\left(M^{r}, T\right)$ is a smooth involution on a closed manifold M^{r}, with fixed point set F a disjoint union of odd-dimensional real projective spaces. In [2], Conner and Floyd showed that if $\mathfrak{N}_{r}^{\mathbf{Z}_{2}}$ denotes the group of unoriented bordism classes of involutions on r-manifolds, the composition

$$
\mathfrak{\Re}_{r}^{\mathbf{Z}_{2}} \longrightarrow \sum_{j=0}^{r} \mathfrak{\Re}_{j}(\mathbf{B O}(r-j)) \longrightarrow \sum_{j=0}^{r} \Re_{j}(\mathbf{B O})
$$

is monic, where the first map assigns to each involution its fixed point data, and the second is induced from the standard inclusion $\mathbf{B O}(k) \hookrightarrow \mathbf{B O}$. Thus if $\nu \rightarrow F$ denotes the normal bundle of F in M, then either $(F, \nu)=0 \in \mathfrak{N}_{*}(\mathbf{B O})$ and (M, T) is a bounding involution, or we may write

$$
\begin{equation*}
(F, \nu)=\sum_{i=1}^{t}\left(\sum_{j \in Q_{i}}\left(\mathbf{R P}^{n_{i}}, j \lambda\right)\right) \tag{1}
\end{equation*}
$$

where $n_{1}>n_{2}>\cdots>n_{t}$ are all odd, and Q_{i} is a nonempty subset of $\left\{1,3,5, \ldots, n_{i}\right\}$. We will show that the latter is impossible.

For suppose that we have an involution $\left(M^{r}, T\right)$ with fixed data as given in equation 1 . Without loss of generality we may assume that $r>n_{1}$, since $\mathbf{R P}^{n_{1}}$ is a boundary. Let $k_{i}=r-n_{i}$ be the codimension of $\mathbf{R} \mathbf{P}^{n_{i}}$ in M^{r}.

Lemma 6. For each i, and each $j \in Q_{i}, j \leq k_{i}$.
Proof. Let $\nu_{i j}^{k_{i}} \rightarrow \mathbf{R P}^{n_{i}}$ denote the normal bundle of the $\mathbf{R P}^{n_{i}}$ with fixed data $\left(\mathbf{R P}^{n_{i}}, j \lambda\right)$. Then the Stiefel-Whitney class $w_{j}\left(\nu_{i j}^{k_{i}}\right)=w_{j}(j \lambda)=\binom{j}{j} \alpha^{j} \neq 0$ since $j \leq n_{i}$, and hence $k_{i} \geq j$.

Now for each i let m_{i} denote the largest $j \in Q_{i}$, and let $v_{i}=v\left(Q_{i}\right)$ as defined in Section 2 after Lemma 3.

Lemma 7. For each $i, v_{i} \leq k_{i}$.
Proof. Consider the matrix $A_{n_{i}}$. The upper left corner of $A_{n_{i}}$ is a copy of $A_{m_{i}}$: the first $\frac{m_{i}+1}{2}$ rows intersected with the first $\frac{m_{i}+1}{2}$ columns. Since $A_{m_{i}}$ is nonsingular, and since v_{i} denotes the smallest row number of $A_{n_{i}}$ with $\sum_{j \in Q_{i}} A\left(v_{i}, j\right) \neq 0, v_{i} \leq m_{i}$. But $m_{i} \leq k_{i}$ by Lemma 6.

Now reindex the $n_{1}, n_{2}, \ldots, n_{t}$ if necessary so that

$$
\begin{align*}
n_{1}-v_{1}=n_{2}-v_{2}=\cdots= & n_{s}-v_{s}>n_{s+1}-v_{s+1} \geq \cdots \geq n_{t}-v_{t} \text { and } \tag{2}\\
& n_{1}>\cdots>n_{s} .
\end{align*}
$$

We then have $k_{1}<\cdots<k_{s}$.
Lemma 8. $2 k_{i}>k_{s}$ for $1 \leq i \leq s$.

Proof.

$$
k_{s}-k_{i}=n_{i}-n_{s}=v_{i}-v_{s}<v_{i} \leq k_{i}
$$

by Lemma 7 .
According to Kosniowski and Stong [3], if $f\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ is any symmetric polynomial over \mathbf{Z}_{2} in r variables of degree at most r, then

$$
f\left(x_{1}, \ldots, x_{r}\right)\left[M^{r}\right]=\sum_{i=1}^{t} \sum_{j \in Q_{i}} \frac{f\left(1+y_{1}, 1+y_{2}, \ldots, 1+y_{k_{i}}, z_{1}, z_{2}, \ldots, z_{n_{i}}\right)}{\left(1+y_{1}\right)\left(1+y_{2}\right) \cdots\left(1+y_{k_{i}}\right)}\left[\mathbf{R P}^{n_{i}}\right]
$$

where the expressions are evaluated by replacing the elementary symmetric functions $\sigma_{q}(x), \sigma_{q}(y)$, and $\sigma_{q}(z)$ by the Stiefel-Whitney classes $w_{q}(M), w_{q}(j \lambda)$, and $w_{q}\left(\mathbf{R P}^{n_{i}}\right)$ respectively, and evaluating the resulting cohomology class on the fundamental homology class $[M]$ or $\left[\mathbf{R P}^{n_{i}}\right]$. In our case, since each $j \in Q_{i}$ satisfies $j \leq k_{i}$, we have

$$
f\left(x_{1}, \ldots, x_{r}\right)\left[M^{\prime}\right]=\sum_{i=1}^{t} \sum_{j \in Q_{i}} \frac{f\left(1+y_{1}, \ldots, 1+y_{k_{i}}, z_{1} \ldots, z_{n_{i}}\right)}{(1+\alpha)^{j}}\left[\mathbf{R P}^{n_{i}}\right] .
$$

Now let $g\left(x_{1}, \ldots, x_{r}\right)=\sigma_{1}\left(x_{1}, \ldots, x_{r}\right)+(r+1)$. Then for each $1 \leq i \leq t$ and $j \in Q_{i}$,

$$
\begin{aligned}
g\left(1+y_{1} \ldots, 1+y_{k_{i}}, z_{1}, \ldots . z_{n_{i}}\right) & =\left[k_{i}+w_{1}(j \lambda)+w_{1}\left(\mathbf{R P}^{n_{i}}\right)\right]+(r+1) \\
& =\left[k_{i}+\alpha+0\right]+\left(n_{i}+k_{i}+1\right) \\
& =\alpha
\end{aligned}
$$

since j and n_{i} are odd. Now for any d with $0 \leq d<k_{s} / 2$, let

$$
f_{d}\left(x_{1}, \ldots, x_{r}\right)=\sigma_{d}\left(x_{1}, \ldots, x_{r}\right)^{2} g\left(x_{1}, \ldots, x_{r}\right)^{n_{r}-v_{s}} .
$$

Then the degree of f is $2 d+n_{s}-v_{s}<k_{s}+n_{s}-v_{s}<k_{s}+n_{s}=r$, so

$$
f_{d}\left(x_{1}, \ldots, x_{r}\right)\left[M^{\prime}\right]=0
$$

On the other hand, Kosniowski and Stong [3] showed that for each $i, 1 \leq i \leq t$, and each $j \in Q_{i}$,

$$
\sigma_{d}\left(1+y_{1}, \ldots, 1+y_{k_{i}}, z_{1}, \ldots, z_{n_{i}}\right)=\sum_{p+q \leq d}\binom{k_{i}-p}{d-p-q}\binom{j}{p}\binom{n_{i}+1}{q} \alpha^{p+q}
$$

so since $\binom{a}{b}=\binom{a}{b}^{2} \bmod 2$,

$$
f_{d}(1+y, z)=\sum_{p+q \leq d}\binom{k_{i}-p}{d-p-q}\binom{j}{p}\binom{n_{i}+1}{q} \alpha^{n_{i}-v_{s}+2 p+2 q} .
$$

We now use Proposition 1: If either $i>s$ or $p+q>0$, then $n_{s}-v_{s}+2 p+2 q>n_{i}-v_{i}+p$, so the hypothesis of Proposition 1 is satisfied, and

$$
\sum_{j \in Q_{i}}\binom{j}{p} \frac{\alpha^{n_{\mathrm{s}}-v_{\mathrm{s}}+2 p+2 q}}{(1+\alpha)^{j}}\left[\mathbf{R P}^{n_{i}}\right]=0 .
$$

Thus for each d

$$
\begin{align*}
0 & =f_{d}\left(x_{1}, \ldots, x_{r}\right)[M] \\
& =\sum_{i=1}^{t} \sum_{j \in Q_{i}} \frac{f_{d}(1+y, z)}{(1+\alpha)^{j}}\left[\mathbf{R P}^{n_{i}}\right] \\
& =\sum_{i=1}^{t} \sum_{p+q \leq d}\binom{k_{i}-p}{d-p-q}\binom{n_{i}+1}{q}\left[\sum_{j \in Q_{i}}\binom{j}{p} \frac{\alpha^{n_{s}-v_{i}+2 p+2 q}}{(1+\alpha)^{j}}\left[\mathbf{R P}^{n_{i}}\right]\right] \\
& =\sum_{i=1}^{s}\binom{k_{i}}{d}\left[\sum_{j \in Q_{i}} \frac{\alpha^{n_{s}-v_{s}}}{(1+\alpha)^{j}}\left[\mathbf{R P}^{n_{i}}\right]\right] \\
& =\sum_{i=1}^{s}\binom{k_{i}}{d}\left[\sum_{j \in Q_{i}} A_{n_{i}}\left(n_{i}-\left(n_{s}-v_{s}\right), j\right)\right] \\
& =\sum_{i=1}^{s}\binom{k_{i}}{d}\left[\sum_{j \in Q_{i}} A_{n_{i}}\left(v_{i}, j\right)\right] \\
& =\sum_{i=1}^{s}\binom{k_{i}}{d} \tag{3}
\end{align*}
$$

by Lemma 1, equation 2, and the definition of v_{i}.
But this is impossible. Recall that $0 \leq d<k_{s} / 2$, and k_{s} may be odd. Let c be the largest integer which is strictly less than $k_{s} / 2$. Since $k_{1}<k_{2}<\cdots<k_{s}$, and each $k_{i}>k_{s} / 2$ (Lemma 8), and $c+1 \geq k_{s} / 2$, we have for each i

$$
k_{i}+c+1>k_{s} \Rightarrow k_{i}+c \geq k_{s} \Rightarrow k_{i} \geq k_{s}-c .
$$

Let B be the matrix of binomial coefficients reduced modulo 2 given as follows:

$$
B=\left(\begin{array}{ccccc}
\binom{k_{s}-c}{0} & \binom{k_{1}-c+1}{0} & \binom{k_{5}-c+2}{5} & \cdots & \binom{k_{k}}{0} \\
\binom{k_{1}-c}{1} & \binom{k_{s}-c+1}{1} & & & \\
\binom{k_{5}-c}{2} & & \ddots & & \vdots \\
\vdots & & & & \\
\binom{k_{s}-c}{c} & & \cdots & & \binom{k_{s}}{c}
\end{array}\right)
$$

To show that equation 3 cannot hold for all d with $0 \leq d<k_{s} / 2$, it suffices to show that B is nonsingular. But this is clear: Obtain a matrix of the same rank as B by replacing column 2 of B with (column 2 - column 1), column 3 with (column 3 - column 2), etc. Since $\binom{a}{b}+\binom{a}{b+1}=\binom{a+1}{b+1}$, one obtains the matrix

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
* & \binom{k_{s}-c}{0} & \binom{k_{s}-c+1}{0} & \binom{k_{s}-c+2}{0} & \cdots & \binom{k_{s}-1}{0} \\
* & \binom{k_{5}-c}{1} & \binom{k_{s}-c+1}{1} & & & \\
* & \binom{k_{s}-c}{2} & & \ddots & & \vdots \\
\vdots & & & & & \\
* & \binom{k_{s}-c}{c-1} & & \cdots & & \binom{k_{s}-1}{c-1}
\end{array}\right)
$$

and B is nonsingular by induction.
Thus the assumption that $(F, \nu) \neq 0 \in \mathcal{N}_{*}(\mathbf{B O})$ leads to a contradiction, and we conclude that (M, T) is a bounding involution.

References

1. F. L. Capobianco, Stationary points of $\left(\mathbf{Z}_{2}\right)^{k}$-actions, Proceedings Amer. Math. Soc. 67(1976), 377-380.
2. P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Springer Verlag, Berlin, 1964.
3. C. Kosniowski and R. E. Stong, Involutions and characteristic numbers, Topology 17(1978), 309-330.
4. D. C. Royster, Involutions fixing the disjoint union of two projective spaces, Indiana Math. J. 29(1980), 267-276.
5. R. E. Stong, Involutions fixing projective spaces, Michigan Math. J. 13(1966), 445-447.
6. B. F. Torrence, Bordism classes of vector bundles over real projective spaces, Proceedings Amer. Math. Soc. 118(1993), 963-969.

Department of Mathematics
Hebei Teacher's University
050016
China

Department of Mathematics
Georgetown University
Washington, D.C. 20057
U.S.A.

[^0]: Received by the editors March 23, 1992; revised April 15, 1992.
 AMS subject classification: $55 \mathrm{~N} 22,57 \mathrm{R} 90$.
 Key words and phrases: involution, cobordism.
 (c) Canadian Mathematical Society, 1994.

