Langlands-Shahidi Method and Poles of Automorphic L-Functions: Application to Exterior Square L-Functions

Henry H. Kim

Abstract

In this paper we use Langlands-Shahidi method and the result of Langlands which says that non selfconjugate maximal parabolic subgroups do not contribute to the residual spectrum, to prove the holomorphy of several completed automorphic L-functions on the whole complex plane which appear in constant terms of the Eisenstein series. They include the exterior square L-functions of GL_{n}, n odd, the Rankin-Selberg L functions of $\mathrm{GL}_{n} \times \mathrm{GL}_{m}, n \neq m$, and L-functions $L(s, \sigma, r)$, where σ is a generic cuspidal representation of SO_{10} and r is the half-spin representation of $\operatorname{GSpin}(10, \mathbb{C})$. The main part is proving the holomorphy and non-vanishing of the local normalized intertwining operators by reducing them to natural conjectures in harmonic analysis, such as standard module conjecture.

Introduction

Langlands' theory of Eisenstein series [La2] has been found very useful in the theory of automorphic L-functions. Langlands had the idea of studying automorphic L-functions using Eisenstein series [La1]. This was further developed and refined by Shahidi [Sh1-5]. This is known as Langlands-Shahidi method of studying automorphic L-functions (see [Ge-Sh] or [Sh6] for an excellent survey). This theory has been found very powerful in establishing functional equations and finiteness of poles of automorphic L-functions in the great generality which appear in the constant terms of Eisenstein series. On the other hand, it has been thought that the precise location of poles of L-functions is very hard to get by this method. Of course, the result of Moeglin-Waldspurger [M-W2] is the first instance, where they proved, using Eisenstein series, that the completed Rankin-Selberg L-function for $\mathrm{GL}_{n} \times \mathrm{GL}_{m}$ is holomorphic for $0<\operatorname{Re} s<1$.

In this paper we use Langlands-Shahidi method [Sh4] and the following simple result of Langlands [La] to prove the holomorphy of several completed automorphic L-functions which appear in constant terms of the Eisenstein series. Because of the functional equation $L(s, \sigma, r)=\epsilon(s, \sigma, r) L(1-s, \tilde{\sigma}, r)$, it is enough to establish the holomorphy for $\operatorname{Re} s \geq \frac{1}{2}$.

Let G be a quasi-split reductive connected algebraic groups over a number field F and A is the ring of adeles of F. Let Z_{d} be the maximal F-split torus of the center of G. Fix a unitary character ξ of $Z_{d}(F) \backslash Z_{d}(A)$. Let

$$
\begin{gathered}
L^{2}(G(F) \backslash G(\mathbb{A}), \xi)=\left\{f \in L^{2}\left(G(F) Z_{d}(\mathbb{A}) \backslash G(\mathbb{A})\right) \mid f(z g)=\xi(z) f(g),\right. \\
\text { for all } \left.z \in Z_{d}(\mathbb{A}), g \in G(\mathbb{A})\right\}
\end{gathered}
$$

Received by the editors July 16, 1998.
Partially supported by NSF grant DMS9610387
AMS subject classification: 11F, 22E.
(C)Canadian Mathematical Society 1999.

If G is semi-simple, we do not have to consider the central characters. It is of great importance to decompose $L^{2}(G(F) \backslash G(\mathbb{A}), \xi)$. Langlands' theory tells us that it has an orthogonal decomposition according to the conjugacy classes of (M, σ), where M is a Levi subgroup of G and σ is a cuspidal representation of M. Its discrete part attached to (M, σ) is called the residual spectrum, denoted by $L_{\text {dis }}^{2}(G(F) \backslash G(\mathbb{A}), \xi)_{(M, \sigma)}$. It is spanned by residues of Eisenstein series associated to (M, σ). Suppose P is a maximal parabolic subgroup generated by $\theta=\Delta-\{\alpha\}$, where Δ is a set of simple roots. Then there exists a unique Weyl group element w_{0} such that $w_{0} \theta \subset \Delta$ and $w_{0} \alpha<0$. If $w_{0} \theta=\theta, P$ is called self-conjugate.

Proposition 0.1 (Langlands [La2, Lemma 7.5]) Unless $P=\mathrm{MN}$ is self-conjugate and σ is a cuspidal representation which satisfies $w_{0} \sigma=\sigma, L_{\mathrm{dis}}^{2}(G(F) \backslash G(\mathbb{A}), \xi)_{(M, \sigma)}$ is zero.

We apply the above result to the following situation: We follow [Sh4] and use the same notation. Let $P=\mathrm{MN} \subset G$ be a maximal parabolic subgroup and σ be a cuspidal representation of $M(\mathbb{A})$. We may and will assume that the poles of Eisenstein series may be on the real axis by normalizing σ so that the action of the maximal split torus in the center of M at the archimedean places is trivial (see Section 2). The poles of the Eisenstein series attached to (M, σ) coincide with those of its constant term which consists of automorphic L-functions and local normalized intertwining operators and the residue of the Eisenstein series for $s>0$ belongs to the residual spectrum. If P is not self-conjugate or $w_{0} \sigma \neq \sigma$, then the Eisenstein series does not have poles for $s>0$. If we can show that the local normalized intertwining operators are holomorphic and non-zero for $\operatorname{Re} s \geq \frac{1}{2}$, then the automorphic L-functions do not have a pole for $s \geq \frac{1}{2}$.

Up to isogeny or more generally central surjections, there are four non self-conjugate maximal parabolic subgroups in split groups whose derived groups are almost simple: (1) $G=\mathrm{GL}_{m+n}$ and $P=\mathrm{MN}, M=\mathrm{GL}_{m} \times \mathrm{GL}_{n}$ for $m \neq n$, (2) $G=\mathrm{SO}_{2 n}$ and $P=\mathrm{MN}$, $M=\mathrm{GL}_{n}$ for n odd, (3) G is a simply-connected split group of type E_{6} and $P=\mathrm{MN}$, the derived group of M is $\mathrm{SL}_{2} \times \mathrm{SL}_{5}$ and (4) G is a simply-connected split group of type E_{6} and $P=\mathrm{MN}, M=\mathrm{GL}_{1} \cdot D_{5}$ (almost direct product), which is GSpin(10).

By using the classification of unitary representations of GL_{n} due to Tadic [Ta], we prove the result on local normalized intertwining operators in cases (1), (2) and (3). We have the following theorems. In the case of (1), it is a special case of [M-W2, Appendix] and [J-S1].

Theorem 0.2

1. Let $\sigma_{1}\left(\right.$ resp. $\left.\sigma_{2}\right)$ be a cuspidal representation of $\mathrm{GL}_{m}\left(\right.$ resp. $\left.\mathrm{GL}_{n}\right), m \neq n$. Then the completed Rankin-Selberg L-function $L\left(s, \sigma_{1} \times \tilde{\sigma}_{2}\right)$ is entire.
2. Let σ be a cuspidal representation of GL_{n}, n odd. Then the completed exterior square L function $L\left(s, \sigma, \wedge^{2}\right)$ is entire.
3. Let σ_{1}, σ_{2} be cuspidal representations of $\mathrm{PGL}_{2}, \mathrm{PGL}_{5}$, resp. Suppose Conjecture 7.1 of [Sh1] holds for the exceptional group of type E_{6}. Then the completed L-function $L\left(s, \sigma_{1} \otimes \tilde{\sigma}_{2}, \rho_{2} \otimes\right.$ $\left.\wedge^{2} \rho_{5}\right)$ is entire, where ρ_{n} is a standard representation of $\mathrm{GL}_{n}(\mathbb{C})$.

Recall the definition of the above L-functions: Let S be a finite set of places, including all the archimedean places, such that for every $v \notin S, \sigma_{1 v}, \sigma_{2 v}$, are all unramified. For $v \notin S$, let $A\left(\sigma_{1 v}\right)=\left\{\operatorname{diag}\left(\alpha_{1 v}, \ldots, \alpha_{m v}\right)\right\}$ be the semisimple conjugacy classes attached to $\sigma_{1 v}$. Let $A\left(\sigma_{2 v}\right)=\left\{\operatorname{diag}\left(\beta_{1 v}, \ldots, \beta_{n v}\right)\right\}$ be the one attached to $\sigma_{2 v}$. Then the local L-functions are
given by

$$
\begin{gathered}
L\left(s, \sigma_{1 v} \times \tilde{\sigma}_{2 v}\right)=\prod_{1 \leq i \leq m, 1 \leq j \leq n}\left(1-\alpha_{i v} \beta_{j v}^{-1} q_{v}^{-s}\right)^{-1} \\
L\left(s, \sigma_{v}, \wedge^{2}\right)=\prod_{1 \leq i<j \leq n}\left(1-\alpha_{i v} \alpha_{j v} q_{v}^{-s}\right)^{-1} \\
L\left(s, \sigma_{1 v} \otimes \tilde{\sigma}_{2 v}, \rho_{2} \otimes \wedge^{2} \rho_{5}\right)=\prod_{1 \leq i \leq 2,1 \leq j<k \leq 5}\left(1-\alpha_{i v} \beta_{j v}^{-1} \beta_{k v}^{-1} q_{v}^{-s}\right)^{-1} .
\end{gathered}
$$

The local L-functions at ramified places $v \in S$ are defined in [Sh1] in such a way that they agree with the ones defined by parametrization.

Proposition 0.3

1. Let σ_{1}, σ_{2} be cuspidal representations of GL_{n}, where $\sigma_{1} \not \not \sigma_{2} \otimes|\operatorname{det}|^{t}$ for $t \in \mathbb{C}$. Then the Rankin-Selberg L-function $L\left(s, \sigma_{1} \times \sigma_{2}\right)$ is entire.
2. Let σ be a non self-dual cuspidal representation of GL_{n}, n even. Then the exterior square L-function $L\left(s, \sigma, \wedge^{2}\right)$ is entire.
F. Shahidi encouraged us to consider the case (4) after his work with Muić [Mu-Sh]: we get an automorphic L-function $L(s, \sigma, r)$ where σ is a generic cuspidal representation of $M(\mathbb{A})$ and r is a representation of ${ }^{L} M^{0}=\operatorname{GSpin}(10, \mathbb{C})$. Here r is one of the two 16dimensional irreducible half-spin representations of $\operatorname{GSpin}(10, \mathbb{C})$. However, we were not able to prove that the local normalized intertwining operators are holomorphic and nonzero for $\operatorname{Re} s \geq \frac{1}{2}$ at ramified places. One serious obstacle is that we do not have the standard module conjecture for $\mathrm{SO}(2 n)$. Nevertheless, we obtain the result that the partial L-function $L_{S}(s, \sigma, r)$ is holomorphic for $\operatorname{Re} s>0$. In the same way, we see that the partial L-function $L_{S}\left(s, \sigma_{1} \otimes \tilde{\sigma}_{2}, \rho_{2} \otimes \wedge^{2} \rho_{5}\right)$ in Theorem 0.2 is holomorphic for Res> $\frac{1}{2}$ without any assumption.

Acknowledgements We would like to thank Prof. F. Shahidi for his constant help in explaining his results and for many discussions and corrections on this work. He also encouraged us to consider the half-spin representations. Thanks are also due to the referee who gave many comments and corrections.

1 Preliminaries

In this section, let F be a local field of characteristic zero. We follow the conventions of [CSh] or [Sh4]. Let \mathbf{G} be a quasi-split connected reductive algebraic group over F. Fix a Borel subgroup \mathbf{B} and write $\mathbf{B}=\mathbf{T U}$, where \mathbf{T} is a maximal torus and \mathbf{U} denotes the unipotent radical of \mathbf{B}.

Fix a F-parabolic subgroup $\mathbf{P}=\mathbf{M N}$ with $\mathbf{N} \subset \mathbf{U}$ and $\mathbf{T} \subset \mathbf{M}$, a Levi decomposition. Let \mathbf{A}_{0} be the maximal F-split torus of \mathbf{T} and denote by $W=W\left(\mathbf{A}_{0}\right)$ the Weyl group of \mathbf{A}_{0} in \mathbf{G}. Let \tilde{w}_{0} be the longest element in $W\left(\mathbf{A}_{0}\right)$ modulo that of the Weyl group of \mathbf{A}_{0} in \mathbf{M} and w_{0} be a representative for \tilde{w}_{0}. If P is a maximal parabolic subgroup generated by $\theta=\Delta-\{\alpha\}$, then w_{0} is the unique element in W such that $w_{0}(\theta) \subset \Delta$ while $w_{0}(\alpha)<0$.

Set

$$
\mathfrak{a}=X(\mathbf{M})_{F} \otimes_{\mathbb{Z}} \mathbb{R}
$$

and

$$
\mathfrak{a}_{\mathbb{C}}^{*}=\mathfrak{a}^{*} \otimes_{\mathbb{R}} \mathbb{C}
$$

where $X(\mathbf{M})_{F}$ is the group of F-rational characters of \mathbf{M}. As usual, we let

$$
I(\nu, \sigma)=\operatorname{Ind}_{\mathrm{MN} \uparrow G} \sigma \otimes \exp ^{\left\langle\nu, H_{p}()\right\rangle} \otimes \mathbf{1}
$$

where $\nu \in \mathfrak{a}_{\mathbb{C}}^{*}$.
Suppose ν is in the positive Weyl chamber and σ is tempered. Then $I(\nu, \sigma)$ has a unique irreducible quotient, denoted by $J(\nu, \sigma)$. Let $A\left(\nu, \sigma, w_{0}\right)$ be the standard intertwining operator from $I(\nu, \sigma)$ into $I\left(w_{0} \nu, w_{0} \sigma\right)$. Then $J(\nu, \sigma)$ is the image of $A\left(\nu, \sigma, w_{0}\right)$.

Now assume \mathbf{P} is maximal and let α be the unique simple root in \mathbf{N}. As in [Sh1], let $\tilde{\alpha}=\langle\rho, \alpha\rangle^{-1} \cdot \rho$, where ρ is half the sum of roots in \mathbf{N}. We identify $s \in \mathbb{C}$ with $s \tilde{\alpha} \in \mathfrak{a}_{\mathbb{C}}^{*}$ and denote $I(s, \sigma)=I(s \tilde{\alpha}, \sigma)$.

Remark 1.1 We have to pay attention to the normalization of $\tilde{\alpha}$ because it is crucial for our purpose. For example, if $G=\mathrm{Sp}_{2 n}, P=\mathrm{MN}, M=\mathrm{GL}_{n}$, then $I(s, \sigma)=I(s \tilde{\alpha}, \sigma)=$ $\operatorname{Ind}_{P}^{G}\left(\sigma \otimes|\operatorname{det}|^{s}\right) \otimes 1$. But if $G=\mathrm{SO}_{2 n}$ or $\mathrm{SO}_{2 n+1}, P=\mathrm{MN}, M=\mathrm{GL}_{n}$, then $I(s, \sigma)=$ $I(s \tilde{\alpha}, \sigma)=\operatorname{Ind}_{P}^{G}\left(\sigma \otimes|\operatorname{det}|^{\frac{s}{2}}\right) \otimes 1$. On the other hand, if $G=\mathrm{SO}_{2 n}$ or $\mathrm{SO}_{2 n+1}, P=\mathrm{MN}$, $M=\mathrm{GL}_{k} \otimes G_{l}$, where $G_{l}=\mathrm{SO}_{2 l}$ or $\mathrm{SO}_{2 l+1}, k<n$, then $I(s, \sigma)=I(s \tilde{\alpha}, \sigma)=\operatorname{Ind}_{P}^{G}(\sigma \otimes$ $\left.|\operatorname{det}|{ }^{s} \otimes \tau\right) \otimes 1$ for $\sigma($ resp. $\tau)$ tempered representation of GL_{k} (resp. $\left.G_{l}\right)$.

Let $A\left(s \tilde{\alpha}, \sigma, w_{0}\right)$ be the standard intertwining operator from $I(s \tilde{\alpha}, \sigma)$ into $I\left(w_{0}(s \tilde{\alpha}), w_{0}(\sigma)\right)$. Denote by ${ }^{L} M$, the L-group of \mathbf{M} and let ${ }^{L_{\mathrm{N}}}$ be the Lie algebra of the L-group of \mathbf{N}. Let r be the adjoint action of ${ }^{L} M$ on ${ }^{L} \mathfrak{n}$ and decompose $r=\bigoplus_{i=1}^{m} r_{i}$, with ordering as in [Sh1]. For each $i, 1 \leq i \leq m$, let $L\left(s, \sigma, r_{i}\right)$ be the local L-function defined in [Sh1]. It is defined to agree completely with Langlands definition of L-functions whenever there is a parametrization. In particular the L-function for arbitrary σ is just the analytic continuation of the one attached to the tempered inducing data through the product formula (cf. part 3 of Theorem 3.5 and equation 7.10 of [Sh1]). (See also Theorem 5.2 of [Sh2].)

Recall Conjecture 7.1 of [Sh1].
Conjecture Assume σ is tempered and generic. Then each $L\left(s, \sigma, r_{i}\right)$ is holomorphic for Re $s>0$.

Proposition 1.1 [Sh1] If $m=1$ or (2) $m=2$ and $L\left(s, \sigma, r_{2}\right)=\prod_{j}\left(1-\alpha_{j} q^{-s}\right)^{-1}$ for σ tempered and generic, possibly an empty product where each $\alpha_{j} \in \mathbb{C}$ is of absolute value one (in particular if r_{2} is one-dimensional, this holds), then the conjecture holds.

Proposition 1.2 [C-Sh] If G is a classical group, then the conjecture holds.

2 Basic facts on Eisenstein series

From this section on, we work with a number field F. Let $\mathbf{P}=\mathbf{M N}$ be a maximal parabolic subgroup of \mathbf{G} generated by $\theta=\Delta-\{\alpha\}$. We follow the convention of [Sh4]. Let $\sigma=\otimes \sigma_{v}$ be a unitary cuspidal representation of $M(\mathbb{A})$. We may and will assume that the poles of Eisenstein series may be on the real axis by assuming that σ is trivial on A part of $P(\mathbb{R})$, where $P(\mathbb{R})=M^{0} A N$ is the Langlands decomposition. In the case of $M=\mathrm{GL}_{n}$, we can identify the A part of $P(\mathbb{R})$ with F_{∞}^{+}, where $\mathbb{A}_{F}^{*}=\mathbb{I}^{1} \cdot F_{\infty}^{+}$with \mathbb{I}^{1} ideles of norm 1 . So in this case the central character ω_{σ} of σ is trivial on F_{∞}^{+}. Given a K-finite function φ in the space of σ, we shall extend φ to a function $\tilde{\varphi}$ on $G(\mathbb{A})$ and set $\Phi_{s}(g)=\tilde{\varphi}(g) \exp \left\langle s+\rho_{P}, H_{P}(g)\right\rangle$, where H_{P} is the Harish-Chandra homomorphism. Define an Eisenstein series

$$
E(s, \tilde{\varphi}, g, P)=\sum_{\gamma \in P(F) \backslash G(F)} \Phi_{s}(\gamma g) .
$$

It is known [La2] that $E(s, \tilde{\varphi}, g, P)$ converges for Re $s \gg 0$ and extends to a meromorphic function of s in \mathbb{C}, with only a finite number of poles in the plane Re $s \geq 0$, all simple and on the real axis if we normalize σ as above.

We also know that the space of Φ_{s} is isomorphic to $I(s, \sigma)=\operatorname{Ind}_{P(A)}^{G(A)} \sigma \otimes$ $\exp \left(\left\langle s \tilde{\alpha}, H_{P}()\right\rangle\right)$, the global induced representation from $P(\mathbb{A})$ to $G(\mathbb{A})$. Let $f \in I(s, \sigma)$. If $E(s, f, g, P)$ is defined by analytic continuation, then it is an automorphic form on G. Recall that the residual spectrum attached to $(M, \sigma), L_{\text {dis }}^{2}(G(F) \backslash G(\mathbb{A}), \xi)_{(M, \sigma)}$ is spanned by the residues of the Eisenstein series $E(s, f, g, P)$ for $\operatorname{Re} s>0$ and $f \in I(s, \sigma)$.

We know that the poles of the Eisenstein series coincide with those of its constant terms. Let M^{\prime} be the subgroup of G generated by $w_{0}(\theta)$ and P^{\prime} be a maximal parabolic subgroup which has M^{\prime} as its Levi factor and $N^{\prime} \subset U$ as its unipotent radical. Recall the definition of self-conjugate maximal parabolic subgroups [Sh3]: P is called self-conjugate if and only if $w_{0}(\theta)=\theta$. Given a parabolic subgroup $Q=M_{Q} N_{Q}$, the constant term of $E(s, f, g, P)$ along N_{Q} is zero if $Q \neq P$ and $Q \neq P^{\prime}$. If P is not self-conjugate, then

$$
\begin{gathered}
E_{N}(s, f, g, P)=f(g) \\
E_{N^{\prime}}(s, f, g, P)=M\left(s, \sigma, w_{0}\right) f(g)
\end{gathered}
$$

If P is self-conjugate, then $E_{N}(s, f, g, P)$ is a sum of the above two terms. Here $M\left(s, \sigma, w_{0}\right)$ is the standard intertwining operator from the global induced representation $I(s, \sigma)$ to $I\left(w_{0} s, w_{0} \sigma\right)$. Let $M\left(s, \sigma, w_{0}\right)=\otimes_{\nu} A\left(s, \sigma_{v}, w_{0}\right)$. We normalize the intertwining operator $A\left(s, \sigma_{v}, w_{0}\right)$ as follows:

$$
\begin{gather*}
A\left(s, \sigma_{v}, w_{0}\right)=r\left(s, \sigma_{v}, w_{0}\right) N\left(s, \sigma_{v}, w_{0}\right), \\
r\left(s, \sigma_{v}, w_{0}\right)=\prod_{i=1}^{m} \frac{L\left(i s, \sigma_{v}, r_{i}\right)}{L\left(1+i s, \sigma_{v}, r_{i}\right) \epsilon\left(s, \sigma_{v}, r_{i}, \psi_{v}\right)} \tag{2.1}
\end{gather*}
$$

where $L\left(i s, \sigma_{v}, r_{i}\right)$ and $\epsilon\left(s, \sigma_{v}, r_{i}, \psi_{v}\right)$ are defined in [Sh1]. Let $N\left(s, \sigma, w_{0}\right)=\otimes_{v} N\left(s, \sigma_{v}, w_{0}\right)$, $r\left(s, \sigma, w_{0}\right)=\prod_{v} r\left(s, \sigma_{v}, w_{0}\right)$ and $\epsilon\left(s, \sigma, r_{i}\right)=\prod_{v} \epsilon\left(s, \sigma_{v}, r_{i}, \psi_{v}\right)$. Then we have, for $f \in$
$I(s, \sigma)$,

$$
\begin{equation*}
M\left(s, \sigma, w_{0}\right) f=r\left(s, \sigma, w_{0}\right) N\left(s, \sigma, w_{0}\right) f, \quad r\left(s, \sigma, w_{0}\right)=\prod_{i=1}^{m} \frac{L\left(i s, \sigma, r_{i}\right)}{L\left(1+i s, \sigma, r_{i}\right) \epsilon\left(s, \sigma, r_{i}\right)} \tag{2.2}
\end{equation*}
$$

Recall Langlands' theory in this case: Let $\phi_{f}=\frac{1}{2 \pi i} \int_{\operatorname{Re} s=s_{0}} E(s, f, g, P) d s$. Then ϕ_{f} spans a dense subspace of $L^{2}(G(F) \backslash G(\mathbb{A}), \xi)_{(M, \sigma)}$. The L^{2}-norm of ϕ_{f} is given by

$$
\begin{aligned}
\left\langle\phi_{f}, \phi_{f}\right\rangle_{L^{2}(G(F) \backslash G(\mathbb{A}), \xi)} & =\int_{Z_{d}(\mathbb{A}) G(F) \backslash G(\mathbb{A})}\left|\phi_{f}\right|^{2} d x \\
& =\frac{1}{2 \pi i} \int_{\operatorname{Re} s=s_{0}} \sum_{w \in \Omega(\theta, \theta)}(M(s, \sigma, w) f(s), f(-w \bar{s})) d s
\end{aligned}
$$

where $\Omega(\theta, \theta)=\{\mathrm{id}\}$ if P is not self-conjugate and $\Omega(\theta, \theta)=\left\{\mathrm{id}, w_{0}\right\}$ if P is self-conjugate. However, when P is self-conjugate and $w_{0} \sigma \neq \sigma,\left(M\left(s, \sigma, w_{0}\right) f(s), f\left(-w_{0} \bar{s}\right)\right)$ is identically zero since $M\left(s, \sigma, w_{0}\right) f(s) \in I\left(-s, w_{0}(\sigma)\right)$ and $f\left(-w_{0} \bar{s}\right) \in I(\bar{s}, \sigma)$. Therefore we have
Proposition 2.1 (Langlands) Unless $P=\mathrm{MN}$ is self-conjugate and $w_{0} \sigma=\sigma$, the residual spectrum attached to $(M, \sigma), L_{\text {dis }}^{2}(G(F) \backslash G(\mathbb{A}), \xi)_{(M, \sigma)}$, is zero.

Proof Under the assumption, in the L^{2}-norm formula, the integrand is holomorphic. Therefore, we can move the contour to $\operatorname{Re} s=0$, i.e., ϕ_{f} does not contribute to the discrete spectrum.

Since the poles of Eisenstein series are contained in the constant terms, we have
Corollary 2.2 If $P=\mathrm{MN}$ is not self-conjugate or $w_{0} \sigma \neq \sigma$, then the global intertwining operator $M\left(s, \sigma, w_{0}\right)$ is holomorphic for $\operatorname{Re} s>0$.

We know that $\epsilon\left(s, \sigma, r_{i}\right)$ is an exponential factor and so it has neither a zero nor a pole. So in (2.2), we need to know that $\prod_{i=1}^{m} L\left(1+i s, \sigma, r_{i}\right)$ has no zeros for $\operatorname{Re} s>0$. However this is an easy consequence of [Sh3]:
Lemma 2.3 If $P=\mathrm{MN}$ is not self-conjugate or $w_{0} \sigma \neq \sigma$, then $\prod_{i=1}^{m} L\left(1+i s, \sigma, r_{i}\right)$ has no zeros for $\operatorname{Re} s>0$.

Proof Consider χ-Fourier coefficient of $E(s, f, g, P)$ [Sh3]: it is given by

$$
E_{\chi}(s, f, e, P)=\prod_{v \notin S} W_{f_{v}}\left(s, e_{v}\right) \prod_{i=1}^{m} L_{S}\left(1+i s, \sigma, r_{i}\right)^{-1}
$$

where $W_{f_{v}}$ is the Whittaker model of $I\left(s, \sigma_{v}\right)$. Then $W_{f_{v}}$ is holomorphic for $\operatorname{Re} s>0$ and non-vanishing. If P is not self-conjugate or $w_{0} \sigma \neq \sigma$, then $E(s, f, g, P)$ is holomorphic for $\operatorname{Re} s>0$ and so $\prod_{i=1}^{m} L_{S}\left(1+i s, \sigma, r_{i}\right)$ has no zero for Re $s>0$.

From (2.2), we have to analyze the local intertwining operators $N\left(s, \sigma_{v}, w_{0}\right)$. Suppose we have the following:

Assumption (A) $N\left(s, \sigma_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re} s \geq \frac{1}{2}$ for any v.
Let $\sigma=\otimes \sigma_{v}$ be a globally generic unitary cuspidal representation of M. Then for all v, σ_{v} is generic and unitary. Suppose σ_{v} is non-tempered. The following standard module conjecture is proved for various cases including GL_{n} and also $\mathrm{Sp}_{2 n}, \mathrm{SO}_{2 n+1}$ [Mu2]. In [C-Sh], it is proved when G is an arbitrary quasi-split classical group and π_{0} is supercuspidal.

Standard module conjecture Given a non-tempered, generic σ_{v}, there is a tempered data π_{0} and a complex parameter Λ_{0} which is in the corresponding positive Weyl chamber so that $\sigma_{v}=I_{M_{0}}\left(\Lambda_{0}, \pi_{0}\right)=\operatorname{Ind}_{M_{0}}^{M}\left(\pi_{0} \otimes q^{\left\langle\Lambda_{0}, H_{P_{0}}^{M}()\right\rangle}\right)$.

Let σ_{v} be as above in the conjecture and let $P_{0}=M_{0} N_{0} \subset P$ be another parabolic subgroup with $M_{0} \subset M$. Then $I\left(s, \sigma_{v}\right)=I\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{0}\right)$. By inducing in stages and the factorization property of intertwining operators, we have

$$
A\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{0}, \tilde{w}\right)=A_{M_{0}}\left(\Lambda_{0}, \pi_{0}, w_{P_{0}}\right) A\left(s, \sigma_{v}, w_{0}\right)
$$

where $\tilde{w}=w_{P_{0}} w_{0}$ and w_{0} is the longest element of the Weyl group of the split component of M in G, \tilde{w} is that of M_{0} in G and $w_{P_{0}}$ is the longest element of the Weyl group of the split component of M_{0} in M. Here the operator $A_{M_{0}}\left(\Lambda_{0}, \pi_{0}, w_{P_{0}}\right): I_{M_{0}}\left(\Lambda_{0}, \pi_{0}\right) \mapsto$ $I_{M_{0}}\left(w_{0} \Lambda_{0}, w_{0} \pi_{0}\right)$ establishes an isomorphism since $I_{M_{0}}\left(\Lambda_{0}, \pi_{0}\right)$ is irreducible, and is identified with its induced map.

Lemma 2.4 Suppose $s \tilde{\alpha}+\Lambda_{0}$ is in the positive Weyl chamber for $\operatorname{Re} s \geq \frac{1}{2}$ together with standard module conjecture and Conjecture 7.1 of [Sh1], then Assumption (A) holds.

Proof By definition, the normalizing factor $r\left(s, \sigma_{v}, w_{0}\right)$ in (2.1) is the product of the normalizing factors given by the rank-one intertwining operators attached to the positive roots $\{\beta>0, \tilde{w} \beta<0\}$ [Sh3]. However, $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle>0$ since $s \tilde{\alpha}+\Lambda_{0}$ is in the positive Weyl chamber for Res $\geq \frac{1}{2}$. So by Proposition 1.2, the normalizing factor $r\left(s, \sigma_{v}, w_{0}\right)$ is holomorphic and non-zero. Since π_{0} is tempered, $A\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{0}, \tilde{w}\right)$ is holomorphic and so $N\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{0}, \tilde{w}\right)$ is holomorphic and non-zero. The image of $N\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{0}, \tilde{w}\right)$ is irreducible by Langlands' classification theorem. Therefore, $N\left(s, \sigma_{v}, w_{0}\right)$ is holomorphic and the image of $N\left(s, \sigma_{v}, w_{0}\right)$ is irreducible.

We classify all non self-conjugate maximal parabolic subgroups of split groups whose derived groups are almost simple. Let $\theta=\Delta-\{\alpha\}$. Note that $w_{0}=w_{l} w_{l, \theta}$ and $w_{l, \theta}(\theta)=$ $-\theta$. Therefore, P_{θ} is self-conjugate if and only if $w_{l}(\alpha)=-\alpha$. Note that $w_{0}=-1$ except in the case of type A_{n}, D_{n} (n odd), E_{6}. So in those cases all maximal parabolic subgroups are self-conjugate. By checking case by case in the case of type A_{n}, D_{n} (n odd), E_{6}, we see

Lemma 2.5 The only non self-conjugate maximal parabolic subgroups of split groups whose derived groups are almost simple, are the following:

1. Type A_{n} : n even, all maximal parabolic subgroups, or n odd, all except $\theta=\Delta-$ $\left\{e_{\frac{n-1}{2}}-e_{\frac{n+1}{2}}\right\}$. This is the case $\mathrm{GL}_{n} \times \mathrm{GL}_{m} \subset \mathrm{GL}_{n+m}$, where $n \neq m$.
2. Type D_{n} : n odd and $\theta=\Delta-\left\{\alpha_{n}\right\}$. This is the case $\mathrm{GL}_{n} \subset \mathrm{SO}_{2 n}$.
3. Type $E_{6}: \theta=\Delta-\left\{\alpha_{3}\right\}$. This is the case $P=\mathrm{MN}$, where the derived group of M is $\mathrm{SL}_{2} \times \mathrm{SL}_{5}$.
4. Type $E_{6}: \theta=\Delta-\left\{\alpha_{1}\right\}$. This is the case $\mathrm{GL}_{1} \cdot D_{5} \subset E_{6}$ (almost direct product).

3 Main Theorems

We look at four cases in Lemma 2.5 separately. Due to Langlands' result (Corollary 2.2) and (2.2) and Lemma 2.3, we only have to establish Assumption (A).
3.1 $G=\mathrm{SO}_{2 n}, P=\mathrm{MN}, M=\mathrm{GL}_{n}, n$ odd

Recall the following facts from [Sh4], [Sh5]. Let $\sigma=\otimes_{v} \sigma_{v}$ be a unitary cuspidal representation of GL_{n}. Then in (2.2), $r=r_{1}=\wedge^{2} \rho_{n}$, the irreducible $\frac{1}{2} n(n-1)$-dimensional representation of $\mathrm{GL}_{n}(\mathbb{C})$ on the space $\wedge^{2} \mathbb{C}^{n}$ of alternating tensors of rank 2. Suppose σ_{v} is unramified. Then there exists n unramified quasi-characters μ_{1}, \ldots, μ_{n} of F^{*} such that $\sigma_{v} \subset \operatorname{Ind}_{B}^{\mathrm{GL}_{n}} \mu_{1} \otimes \cdots \otimes \mu_{n}$ (actually it is an equality since σ_{v} is generic). Let $A_{\sigma_{v}}$ be the (semisimple) conjugacy class of the matrix $\operatorname{diag}\left(\mu_{1}(\varpi), \ldots, \mu_{n}(\varpi)\right)$ in $\mathrm{GL}_{n}(\mathbb{C})={ }^{L} M$. Then the local Langlands' L-function for the representations $\wedge^{2} \rho_{n}$ and σ_{v} is given by

$$
L\left(s, \sigma_{v}, \wedge^{2} \rho_{n}\right)=\operatorname{det}\left(I-\wedge^{2} \rho_{n}\left(A_{\sigma_{v}}\right) q_{v}^{-s}\right)^{-1}=\prod_{1 \leq i<j \leq n}\left(1-\mu_{i}(\varpi) \mu_{j}(\varpi) q_{v}^{-s}\right)^{-1}
$$

We recall the following well-known facts.

Proposition 3.1

1. [Sh1] For each v, the local Langlands' L-function $L\left(s, \sigma_{v}, \wedge^{2} \rho_{n}\right)$ can be defined. We use the one in [Sh1] given inductively; For tempered σ_{v}, the L-function is well-defined and both definitions in [Sh1] and [Sh4] agree. For a non-tempered σ_{v}, we find the Langlands' data and define the L-function inductively from the Langlands' data.
2. [Sh4] The completed L-function $L\left(s, \sigma, \wedge^{2} \rho_{n}\right)=\prod_{v} L\left(s, \sigma_{v}, \wedge^{2} \rho_{n}\right)$ can be continued meromorphically to all of \mathbb{C} and satisfies the standard functional equation

$$
L\left(s, \sigma, \wedge^{2} \rho_{n}\right)=\epsilon\left(s, \sigma, \wedge^{2} \rho_{n}\right) L\left(1-s, \tilde{\sigma}, \wedge^{2} \rho_{n}\right)
$$

3. [J-S2] Let S be a finite set of places including archimedean places such that σ_{v} is unramified for $v \notin S$. The partial L-function $L_{S}\left(s, \sigma, \wedge^{2} \rho_{n}\right)=\prod_{v \notin S} L\left(s, \sigma_{v}, \wedge^{2} \rho_{n}\right)$ is absolutely convergent for Re $s>1$ and hence has no zero there.
4. [J-S2], [Sh3] The completed L-function $L\left(s, \sigma, \wedge^{2} \rho_{n}\right)$ has no zeros and no poles on the line $\operatorname{Re} s=1$.

We note that in [J-S2], [Sh3], it is proved that only the partial L-function $L_{S}\left(s, \sigma, \wedge^{2} \rho_{n}\right)$ is holomorphic for $\operatorname{Re} s \geq 1$. We prove in Proposition 3.4 that each of the local L-function $L\left(s, \sigma_{v}, \wedge^{2} \rho_{n}\right)$ is holomorphic for $\operatorname{Re} s \geq 1$.

Recall that any cuspidal representation σ of GL_{n} is globally generic and therefore σ_{v} is generic for all v. Recall the classification of unitary representations of GL_{n} [Ta], [Vo]: Any generic non-tempered representation σ_{v} of GL_{n}, n odd, can be written as follows:

$$
\sigma_{v}=\operatorname{Ind}_{M_{0}}^{\mathrm{GL}_{n}}\left(\pi_{1}\left(x_{1}\right) \otimes \cdots \otimes \pi_{m}\left(x_{m}\right) \otimes \tau_{1} \otimes \cdots \otimes \tau_{k} \otimes \pi_{m}\left(-x_{m}\right) \otimes \cdots \otimes \pi_{1}\left(-x_{1}\right)\right)
$$

where $\frac{1}{2}>x_{1} \geq \cdots \geq x_{m}>0$ with $\pi_{1}, \ldots, \pi_{m}, \tau_{1}, \ldots, \tau_{k}$ discrete series representations. Here $\pi_{i}\left(x_{i}\right)=\pi_{i} \otimes|\operatorname{det}|{ }^{x_{i}}$.

Recall that we are identifying s with $s \tilde{\alpha}$, and $\tilde{\alpha}=\frac{1}{2}\left(e_{1}+\cdots+e_{n}\right)$, where $e_{1}-e_{2}, \ldots$, $e_{n-1}-e_{n}, e_{n-1}+e_{n}$ are positive simple roots. Therefore $I\left(s, \sigma_{v}\right)=\operatorname{Ind}_{\mathrm{GL}_{n}}^{G}\left(\sigma_{v} \otimes|\operatorname{det}()|^{\frac{s}{2}}\right) \otimes 1$. Notice $\frac{s}{2}$ instead of s. Then

$$
\begin{align*}
& I\left(s, \sigma_{v}\right)=\operatorname{Ind}_{M_{0}}^{G} \pi_{1} \otimes \cdots \otimes \pi_{m} \otimes \tau_{1} \otimes \cdots \\
& \quad \otimes \tau_{k} \otimes \pi_{m} \otimes \cdots \otimes \pi_{1} \exp \left(\left\langle s \tilde{\alpha}+\Lambda_{0}, H_{M_{0}}()\right\rangle\right) \tag{3.1}
\end{align*}
$$

where $\Lambda_{0}=\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0,-x_{m}, \ldots,-x_{1}\right)$ and $s \tilde{\alpha}=\left(\frac{s}{2}, \ldots, \frac{s}{2}\right)$.
Lemma 3.2 Let $\pi_{1 v}\left(\right.$ resp. $\left.\pi_{2 v}\right)$ be a supercuspidal representation of $\mathrm{GL}_{k}\left(\right.$ resp. $\left.\mathrm{GL}_{l}\right)$. Then the normalized rank-one intertwining operators $N\left(s, \pi_{1 v} \otimes \pi_{2 v}, w_{0}\right)$ of $\mathrm{GL}_{k+l}, N\left(s, \pi_{1 v}, w_{0}\right)$ of $\mathrm{SO}_{2 k}$ and $N\left(s, \pi_{1 v}, w_{0}\right)$ of $\mathrm{SO}_{2 k+1}$ are holomorphic and non-zero except possibly at $\operatorname{Re} s=-1$.

Proof By the general theory in [Sh1], for a supercuspidal representation π_{v}, in (2.1), $\prod_{i=1}^{m} L\left(i s, \pi_{v}, r_{i}\right)^{-1} A\left(s, \pi_{v}, w_{0}\right)$ is entire and non-zero. Therefore the poles of $N\left(s, \pi_{v}, w_{0}\right)$ come from zeros of $\prod_{i=1}^{m} L\left(1+i s, \pi_{v}, r_{i}\right)^{-1}$. However, by [Sh1, Proposition 7.3], each $L\left(s, \pi_{v}, r_{i}\right)^{-1}$ is a product (possibly empty) of $\left(1-\alpha_{i} q_{v}^{-s}\right)^{-1}$ with $\left|\alpha_{i}\right|=1$. From this, our assertion follows since $m=1$ in all of the above cases.

Lemma 3.3 Let v be any place, archimedean or non-archimedean.

1. For two discrete series representations π_{v} (resp. π_{v}^{\prime}) of GL_{k} (resp. GL_{l}), the normalized rank-one intertwining operator $N\left(s, \pi_{v} \otimes \pi_{v}^{\prime}, w_{0}\right)$ of GL_{k+l} is holomorphic and non-zero for Re $s>-\frac{1}{2}$.
2. For a discrete series representation π_{v} of GL_{k}, k odd or even, the normalized rank-one intertwining operator $N\left(s, \pi_{v}, w_{0}\right)$ of $\mathrm{SO}_{2 k}$ is holomorphic and non-zero for $\operatorname{Re} s>-1$.

Proof Assume first that v is a non-archimedean place.
(1) If Re $s>0$, then both $A\left(s, \pi_{v} \otimes \pi_{v}^{\prime}, w_{0}\right)$ and $L\left(s, \pi_{v} \times \pi_{v}^{\prime}\right)$ are holomorphic and non-zero. So $N\left(s, \pi_{v} \otimes \pi_{v}^{\prime}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re} s>0$. If $\operatorname{Re} s=0$, then this is well-known (see, for example, [Sh1]). Therefore we only need to consider for $-\frac{1}{2}<\operatorname{Re} s<0$.

Note that any discrete series representation π_{v} of GL_{k} is the unique subrepresentation of $I\left(\nu, \tau_{v}\right)=|\operatorname{det}|^{\left\lvert\, \frac{a-1}{2}\right.} \rho_{v} \otimes|\operatorname{det}|^{\left\lvert\, \frac{a-3}{2}\right.} \rho_{v} \otimes \cdots \otimes|\operatorname{det}|^{-\frac{a-1}{2}} \rho_{v}$ with $\tau_{v}=\rho_{v} \otimes \cdots \otimes \rho_{v}$ and $\nu=\left(\frac{a-1}{2}, \frac{a-3}{2}, \ldots,-\frac{a-1}{2}\right)$ and ρ_{v} a supercuspidal representation of GL_{b}. Another discrete series representation π_{v}^{\prime} of GL_{l} is the unique subrepresentation of $I\left(\nu^{\prime}, \tau_{v}^{\prime}\right)$ with $\tau_{v}^{\prime}=$ $\rho_{v}^{\prime} \otimes \cdots \otimes \rho_{v}^{\prime}$ and $\nu^{\prime}=\left(\frac{a^{\prime}-1}{2}, \frac{a^{\prime}-3}{2}, \ldots,-\frac{a^{\prime}-1}{2}\right)$. Then $I\left(s, \pi_{v} \otimes \pi_{v}^{\prime}\right)$ is a subrepresentation
of $I\left(\lambda, \tau_{v} \otimes \tau_{v}^{\prime}\right)$, where $\lambda=\left(\frac{s}{2}+\frac{a-1}{2}, \ldots, \frac{s}{2}-\frac{a-1}{2},-\frac{s}{2}+\frac{a^{\prime}-1}{2}, \ldots, \frac{s}{2}-\frac{a-1}{2}\right)$. Then by the inductive property of intertwining operators, we have

$$
N\left(s, \pi_{v} \otimes \pi_{v}^{\prime}, w_{0}\right)=\left.N\left(\lambda, \tau_{v} \otimes \tau_{v}^{\prime}, w_{0}\right)\right|_{I\left(s, \pi_{v} \otimes \pi_{v}^{\prime}\right)} .
$$

$N\left(\lambda, \tau_{v} \otimes \tau_{v}^{\prime}, w_{0}\right)$ is a product of the rank-one operators associated to supercuspidal representations (see [Sh3]) attached to the positive roots $\left\{\beta>0 \mid w_{0} \beta<0\right\}$. For those positive roots, $\left\langle\lambda, \beta^{\vee}\right\rangle=\left(\frac{s}{2}+\frac{a-1}{2}-i\right)-\left(-\frac{s}{2}+\frac{a^{\prime}-1}{2}-j\right), i=0, \ldots, a, j=0, \ldots, a^{\prime}$. But for $-\frac{1}{2}<\operatorname{Re} s<0, \operatorname{Re}\left(\left(\frac{s}{2}+\frac{a-1}{2}-i\right)-\left(-\frac{s}{2}+\frac{a^{\prime}-1}{2}-j\right)\right)$ cannot be -1 . So by Lemma 3.2, each rank-one intertwining operators associated to supercuspidal representations are holomorphic and thus $N\left(\lambda, \tau_{v} \otimes \tau_{v}^{\prime}, w_{0}\right)$ is holomorphic. Note that for $-\frac{1}{2}<\operatorname{Re} s<0, w_{0}(s \tilde{\alpha})$ is in the positive Weyl chamber and id $=N\left(w_{0}(s \tilde{\alpha}), w_{0}\left(\pi_{v} \otimes \pi_{v}^{\prime}\right), w_{0}\right) N\left(s, \pi_{v} \otimes \pi_{v}, w_{0}\right)$. We showed that $N\left(w_{0}(s \tilde{\alpha}), w_{0}\left(\pi_{v} \otimes \pi_{v}^{\prime}\right), w_{0}\right)$ and $N\left(s, \pi_{v} \otimes \pi_{v}, w_{0}\right)$ are holomorphic and therefore $N\left(s, \pi_{v} \otimes \pi_{v}, w_{0}\right)$ cannot be zero.
(2) As in the above, we only need to consider the interval $-1<\operatorname{Re} s<0$. A discrete series representation π_{v} of GL_{k} is the unique subrepresentation of $I\left(\nu, \sigma_{v}\right)$ with $\sigma_{v}=\rho_{v} \otimes$ $\cdots \otimes \rho_{v}$ and $\nu=\left(\frac{a-1}{2}, \frac{a-3}{2}, \ldots,-\frac{a-1}{2}\right)$. Then $I\left(s, \pi_{v}\right)$ is a subrepresentation of $I\left(\lambda, \sigma_{v}\right)$, where $\lambda=\left(\frac{s}{2}+\frac{a-1}{2}, \frac{s}{2}+\frac{a-3}{2}, \ldots, \frac{s}{2}-\frac{a-1}{2}\right)$. Then by the inductive property of intertwining operators, we have

$$
N\left(s, \pi_{v}, w_{0}\right)=\left.N\left(\lambda, \sigma_{v}, w_{0}\right)\right|_{I\left(s, \pi_{v}\right)} .
$$

$N\left(\lambda, \sigma_{v}, w_{0}\right)$ is a product of rank-one operators associated to supercuspidal representations attached to the positive roots $\left\{\beta>0 \mid w_{0} \beta<0\right\}$ (see [Sh3]). For those positive roots, $\left\langle\lambda, \beta^{\vee}\right\rangle=\frac{s}{2}+\frac{a-1}{2}-i, i=0, \ldots, a$ or $\left(\frac{s}{2}+\frac{a-1}{2}-i\right) \pm\left(\frac{s}{2}+\frac{a-1}{2}-j\right), 0 \leq i<j \leq a$. If $-1<\operatorname{Re} s<0, \operatorname{Re}\left(\frac{s}{2}+\frac{a-1}{2}-i\right), \operatorname{Re}\left(\left(\frac{s}{2}+\frac{a-1}{2}-i\right) \pm\left(\frac{s}{2}+\frac{a-1}{2}-j\right)\right)$ cannot be -1 . So the rankone operators are holomorphic and non-zero. Therefore, $N\left(\lambda, \sigma_{v}, w_{0}\right)$ is holomorphic and so $N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic and non-zero by the same argument as in (1).

Now let v be an archimedean place. Then the discrete series exist only for GL_{1} or GL_{2} over a real place. Note that the discrete series for GL_{2} over a real place is given by the subrepresentation $\sigma(\mu, \nu)$ of the principal series $\pi(\mu, \nu)$ when $\mu(x)=| |^{\frac{p+i t}{2}} \operatorname{sgn}(x)$ and $\nu(x)=\| \frac{-p+i t}{2}$, where p is a positive integer and t is a real number. We go exactly the same way as non-archimedean places as above.

Remark 3.1 Moeglin-Waldspurger [M-W2, Proposition I.10] proved much stronger result that the normalized rank-one intertwining operator $N\left(s, \pi_{v} \otimes \pi_{v}^{\prime}, w_{0}\right)$ of GL_{k+l} is holomorphic and non-zero for $\operatorname{Re} s>-1$ for two discrete series representations π_{v} (resp. $\left.\pi_{v}^{\prime}\right)$ of $\mathrm{GL}_{k}\left(\right.$ resp. $\left.\mathrm{GL}_{l}\right)$. It also follows from [C-Sh] by noting that $N\left(s, \pi_{v} \otimes \pi_{v}^{\prime}, w_{0}\right)=$ $\frac{L\left(s+1, \pi_{v} \times \pi_{v}^{\prime}\right)}{L\left(s, \pi_{v} \times \pi_{v}^{\prime}\right)} A\left(s, \pi_{v} \otimes \pi_{v}^{\prime}, w_{0}\right)$. By [C-Sh], $L\left(s+1, \pi_{v} \times \pi_{v}^{\prime}\right)$ is holomorphic for Re $s>-1$ and $\frac{A\left(s, \pi_{v} \otimes \pi_{v}^{\prime}, w_{0}\right)}{L\left(s, \pi_{v} \times \pi_{v}^{\prime}\right)}$ is entire.

From Lemma 3.3, we have

Proposition 3.4

1. Each local L-function $L\left(s, \sigma_{v}, \wedge^{2} \rho_{n}\right)$ is holomorphic for $\operatorname{Re} s \geq 1$.
2. Let $\operatorname{Re} s \geq \frac{1}{2}$. Assumption (A) holds in the case in consideration, i.e., $N\left(s, \sigma_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re} s \geq \frac{1}{2}$ for all v.

Proof In (3.1), we identify $N\left(s, \sigma_{v}, w_{0}\right)$ with $N\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{1} \otimes \cdots \otimes \pi_{m} \otimes \tau_{1} \otimes \cdots \otimes \tau_{k} \otimes\right.$ $\left.\pi_{m} \otimes \cdots \otimes \pi_{1}, w_{0}\right) . s \tilde{\alpha}+\Lambda_{0}=\left(\frac{s}{2}+x_{1}, \frac{s}{2}+x_{2}, \ldots, \frac{s}{2}+x_{m}, \frac{s}{2}, \ldots, \frac{s}{2}, \frac{s}{2}-x_{m}, \ldots, \frac{s}{2}-\right.$ x_{1}). Note that if $\operatorname{Re} s \geq 1, \operatorname{Re}\left(\frac{s}{2}-x_{i}\right)>0$. Therefore, $s \tilde{\alpha}+\Lambda_{0}$ is in the positive Weyl chamber. Therefore, as in the proof of Lemma 2.4, the normalized intertwining operator $N\left(s, \sigma_{v}, w_{0}\right)$ is holomorphic and non-zero for Re $s \geq 1$. The holomorphy of $L\left(s, \sigma_{v}, \wedge^{2} \rho_{n}\right)$ for $\operatorname{Re} s \geq 1$ follows from (2.2) by noting that $L\left(s, \sigma, \wedge^{2} \rho_{n}\right)$ has no zeros for $\operatorname{Re} s \geq 1$. (Since $L\left(s, \sigma_{v}, \wedge^{2} \rho_{n}\right)^{-1}$ is a polynomial in q_{v}^{-s}, if $L\left(s, \sigma_{v}, \wedge^{2} \rho_{n}\right)$ has a pole, it has infinitely many poles.) This proves (1).

Note that for $\frac{1}{2} \leq \operatorname{Re} s<1,-\frac{1}{4}<\operatorname{Re}\left(\frac{s}{2}-x_{i}\right)<\frac{1}{2}$. Therefore the rank-one normalized intertwining operators attached to permutations among $\left\{\frac{s}{2}-x_{1}, \ldots, \frac{s}{2}-x_{m}\right\}$ and the sign changes $\frac{s}{2}-x_{i} \mapsto-\frac{s}{2}+x_{i}$, are holomorphic and non-zero due to Lemma 3.3. Actually they are isomorphisms. So there is an isomorphism by a normalized intertwining operator which sends (3.1) to $I\left(\Lambda_{1}, \pi \otimes \cdots \otimes \pi_{m} \otimes \tau_{1} \otimes \cdots \otimes \tau_{k} \otimes \pi_{m} \otimes \cdots \otimes \pi_{1}\right)$, where Λ_{1} is in the positive Weyl chamber of the split component of a Levi subgroup. The normalized intertwining operator attached to the latter induced representation is holomorphic and non-zero by Proposition 1.2. So the same thing is true for $N\left(s, \sigma_{v}, w_{0}\right)$.

Therefore we obtain the following theorem.
Theorem 3.5 Let σ be a unitary cuspidal representation of GL_{n}, where n is odd. Then the exterior square L-function $L\left(s, \sigma, \wedge^{2} \rho_{n}\right)$ is entire.

Proof By (2.2), Corollary 2.2 and Proposition 3.4, $\frac{L\left(s, \sigma, \wedge^{2} \rho_{n}\right)}{L\left(s+1, \sigma, \wedge^{2} \rho_{n}\right)}$ is holomorphic for $s \geq \frac{1}{2}$. However, $L\left(s, \sigma, \wedge^{2} \rho_{n}\right)$ does not have zeros for Re $s \geq 1$ by Lemma 2.3. So $L\left(s, \sigma, \wedge^{2} \rho_{n}\right)$ is holomorphic for $s \geq \frac{1}{2}$. The functional equation of $L\left(s, \sigma, \wedge^{2} \rho_{n}\right)$ implies that it is entire.

In the same way, we have
Proposition 3.6 Let σ be a non self-dual cuspidal representation of GL_{n}, n even. Then the exterior square L-function $L\left(s, \sigma, \wedge^{2}\right)$ is entire.

Remark 3.2 According to Langlands' functoriality, the self-dual cuspidal representations of GL_{n}, n even, are supposed to come from SO_{n} (resp. SO_{n+1}) if $L\left(s, \sigma\right.$, Sym 2) (resp. $\left.L\left(s, \sigma, \wedge^{2}\right)\right)$ has a pole at $s=1$. See [Sh5].
3.2 $G=\mathrm{GL}_{n+m}, P=\mathrm{MN}, M=\mathrm{GL}_{n} \times \mathrm{GL}_{m}, n \neq m$

This is a special case of [M-W2, Appendix]. Let σ_{1} (resp. σ_{2}) be a unitary cuspidal representation of GL_{n} (resp. GL_{m}). Moeglin-Waldspurger [M-W2, Appendix] proved that the

Rankin-Selberg L-function $L\left(s, \sigma_{1} \times \tilde{\sigma}_{2}\right)$ is holomorphic for $0<\operatorname{Re} s \leq \frac{1}{2}$ using a remarkable method. The functional equation then implies that it is entire if $m \neq n$. Here we want to give a different proof based on the fact that P is not self-conjugate.

Let $\sigma=\sigma_{1} \otimes \sigma_{2}$ be a cuspidal representation of $\mathrm{GL}_{n} \times \mathrm{GL}_{m}$. Then in (2.2), $r=r_{1}=\rho_{n} \otimes$ $\tilde{\rho}_{m}$, where ρ_{n} and ρ_{m} are standard representations of $\mathrm{GL}_{n}(\mathbb{C})$ and $\mathrm{GL}_{m}(\mathbb{C})$, resp. Suppose σ_{v} is unramified. Then $\sigma_{1 v}=\operatorname{Ind}_{B}^{\mathrm{GL}_{n}} \mu_{1} \otimes \cdots \otimes \mu_{n}$ and $\sigma_{2 v}=\operatorname{Ind}_{B}^{\mathrm{GL}_{m}} \mu_{1}^{\prime} \otimes \cdots \otimes \mu_{m}^{\prime}$ for unramified quasi-characters $\mu_{1}, \ldots, \mu_{n}, \mu_{1}^{\prime}, \ldots, \mu_{m}^{\prime}$ of F^{*}. Then the local Langlands' L-function for the representations $\rho_{n} \otimes \tilde{\rho}_{m}$ and σ_{v} is given by

$$
L\left(s, \sigma_{v}, \rho_{n} \otimes \tilde{\rho}_{m}\right)=L\left(s, \sigma_{1 v} \times \tilde{\sigma}_{2 v}\right)=\prod_{1 \leq i \leq n, 1 \leq j \leq m}\left(1-\mu_{i}(\varpi) \mu_{j}^{\prime}(\varpi)^{-1} q_{v}^{-s}\right)^{-1}
$$

Recall the following well-known facts.

Proposition 3.7

1. [Sh1], [Sh4], [J-PS-S] For each v, the local Langlands' L-function $L\left(s, \sigma_{1 v} \times \sigma_{2 v}\right)$ can be defined and the completed L-function $L\left(s, \sigma_{1} \times \tilde{\sigma}_{2}\right)=\prod_{v} L\left(s, \sigma_{1 v} \times \tilde{\sigma}_{2 v}\right)$ can be continued meromorphically to all of \mathbb{C} and satisfies the standard functional equation

$$
L\left(s, \sigma_{1} \times \tilde{\sigma}_{2}\right)=\epsilon\left(s, \sigma_{1} \times \tilde{\sigma}_{2}\right) L\left(1-s, \tilde{\sigma}_{1} \times \sigma_{2}\right) .
$$

2. [J-S1] Let S be a finite set of places including archimedean places such that σ_{v} is unramified for $v \notin S$. The partial L-function $L_{S}\left(s, \sigma_{1} \times \tilde{\sigma}_{2}\right)=\prod_{v \notin S} L\left(s, \sigma_{1 v} \times \tilde{\sigma}_{2 v}\right)$ is absolutely convergent for Re $s>1$ and hence no zero there.
3. [J-S1], [Sh3] The completed L-function $L\left(s, \sigma_{1} \times \tilde{\sigma}_{2}\right)$ has no zeros and no poles on the line $\operatorname{Re} s=1$.

Lemma 3.8 For $\frac{1}{2} \leq \operatorname{Re} s<1, N\left(s, \sigma_{v}, w_{0}\right)$ is holomorphic and non-zero.

Proof Since $\sigma_{1 v}, \sigma_{2 v}$ are generic, they can be written as follows:

$$
\begin{aligned}
& \sigma_{1 v}=\operatorname{Ind}_{M_{1}}^{\mathrm{GL}}\left(\pi_{1}\left(x_{1}\right) \otimes \cdots \otimes \pi_{k}\left(x_{k}\right) \otimes \tau_{1} \otimes \cdots \otimes \tau_{q} \otimes \pi_{k}\left(-x_{k}\right) \otimes \cdots \otimes \pi_{1}\left(-x_{1}\right)\right), \\
& \sigma_{2 v}=\operatorname{Ind}_{M_{2}}^{\mathrm{GL}_{m}}\left(\pi_{1}^{\prime}\left(y_{1}\right) \otimes \cdots \otimes \pi_{l}^{\prime}\left(y_{l}\right) \otimes \tau_{1}^{\prime} \otimes \cdots \otimes \tau_{p}^{\prime} \otimes \pi_{l}^{\prime}\left(-y_{l}\right) \otimes \cdots \otimes \pi_{1}^{\prime}\left(-y_{1}\right)\right)
\end{aligned}
$$

where $\frac{1}{2}>x_{1} \geq \cdots \geq x_{k} \geq 0, \frac{1}{2}>y_{1} \geq \cdots \geq y_{l} \geq 0$ with $\pi_{1}, \ldots, \pi_{k}, \pi_{1}^{\prime}, \ldots, \pi_{l}^{\prime}$, $\tau_{1}, \ldots, \tau_{q}, \tau_{1}^{\prime}, \ldots, \tau_{p}^{\prime}$ discrete series representations. Therefore,

$$
\begin{gather*}
I\left(s, \sigma_{v}\right)=I\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{1} \otimes \cdots \otimes \pi_{k} \otimes \tau_{1} \otimes \cdots \otimes \tau_{q} \otimes \pi_{k} \otimes \cdots \otimes \pi_{1}\right. \\
\left.\otimes \pi_{1}^{\prime} \otimes \cdots \otimes \pi_{l}^{\prime} \otimes \tau_{1}^{\prime} \otimes \cdots \otimes \tau_{p}^{\prime} \otimes \pi_{l}^{\prime} \otimes \cdots \otimes \pi_{1}^{\prime}\right) \tag{3.2}
\end{gather*}
$$

where $s \tilde{\alpha}+\Lambda_{0}=\left(\frac{s}{2}+x_{1}, \ldots, \frac{s}{2}+x_{k}, \frac{s}{2}, \ldots, \frac{s}{2}, \frac{s}{2}-x_{k}, \ldots, \frac{s}{2}-x_{1},-\frac{s}{2}+y_{1}, \ldots\right.$, $\left.-\frac{s}{2}+y_{l},-\frac{s}{2}, \ldots,-\frac{s}{2},-\frac{s}{2}-y_{l}, \ldots,-\frac{s}{2}-y_{1}\right)$. We identify $N\left(s, \sigma_{v}, w_{0}\right)$ with $N\left(\Lambda, \Sigma_{v}, w_{0}\right)$, where $\Lambda=s \tilde{\alpha}+\Lambda_{0}, \Sigma_{v}=\pi_{1} \otimes \cdots \otimes \pi_{k} \otimes \tau_{1} \otimes \cdots \otimes \tau_{q} \otimes \pi_{k} \otimes \cdots \otimes \pi_{1} \otimes \pi_{1}^{\prime} \otimes \cdots \otimes \pi_{l}^{\prime} \otimes \tau_{1}^{\prime} \otimes$ $\cdots \otimes \tau_{p}^{\prime} \otimes \pi_{l}^{\prime} \otimes \cdots \otimes \pi_{1}^{\prime}$. We note that for $\frac{1}{2} \leq \operatorname{Re} s<1, \operatorname{Re}\left(\frac{s}{2}+x_{i}-\left(-\frac{s}{2}+y_{j}\right)\right)>0$ and $-\frac{1}{2}<$
$\operatorname{Re}\left(\frac{s}{2}-x_{i}-\left(-\frac{s}{2}+y_{j}\right)\right)<1$. Therefore by Lemma 3.3, the rank-one normalized intertwining operators attached to permutations among $\left\{\frac{s}{2}-x_{1}, \ldots, \frac{s}{2}-x_{k},-\frac{s}{2}+y_{1}, \ldots,-\frac{s}{2}+y_{l}\right\}$ are holomorphic. So $N\left(\Lambda, \Sigma_{v}, w_{0}\right)$ is holomorphic. If Λ is in the closure of the positive Weyl chamber, it is non-zero. We argue as in [Zh, Theorem 3]. Suppose Λ is not in the closure of the positive Weyl chamber. Choose $w_{1} \in W$ so that $w_{1} \Lambda$ is in the closure of the positive Weyl chamber. Then

$$
N\left(w_{1} \Lambda, w_{1}\left(\Sigma_{v}\right), w_{0} w_{1}^{-1}\right)=N\left(\Lambda, \Sigma_{v}, w_{0}\right) N\left(w_{1} \Lambda, w_{1}\left(\Sigma_{v}\right), w_{1}^{-1}\right) .
$$

By Proposition 1.2, $N\left(w_{1} \Lambda, w_{1}\left(\Sigma_{v}\right), w_{0} w_{1}^{-1}\right)$ and $N\left(w_{1} \Lambda, w_{1}\left(\Sigma_{v}\right), w_{1}^{-1}\right)$ are holomorphic and non-zero since $w_{1} \Lambda$ is in the closure of the positive Weyl chamber. Since $N\left(\Lambda, \Sigma_{v}, w_{0}\right)$ is holomorphic, it is non-zero.

Remark 3.3 Moeglin-Waldspurger [M-W2, Appendix] proved much stronger result that $N\left(s, \sigma_{v}, w_{0}\right)$ is holomorphic for $\operatorname{Re} s>-e\left(\sigma_{v}\right)$, where $e\left(\sigma_{v}\right)$ is some positive number. The argument in [Zh, Theorem 3] proves that, for a tempered and generic representation σ_{ν}, if $N\left(\nu, \sigma_{\nu}, w_{0}\right)$ is holomorphic at ν, then it is non-zero at ν under Conjecture 7.1 of [Sh1].

Therefore, we have
Theorem 3.9 [M-W2, Appendix] Let $\sigma_{1}\left(\sigma_{2}\right)$ be a unitary cuspidal representation of GL_{n} $\left(\mathrm{GL}_{m}\right), n \neq m$. Then the Rankin-Selberg L-function $L\left(s, \sigma_{1} \times \sigma_{2}\right)$ is entire.

Proposition 3.10 Let σ_{1}, σ_{2} be unitary cuspidal representations of GL_{n}, where $\sigma_{1} \not \not \sigma_{2} \otimes$ $|\operatorname{det}()|^{t}$ for all $t \in \mathbb{C}$. Then the Rankin-Selberg L-function $L\left(s, \sigma_{1} \times \sigma_{2}\right)$ is entire.
3.3 The case G is a simply-connected split group of type E_{6} and $P=\mathrm{MN}, M=$ $\mathrm{GL}_{1} \cdot\left(\mathrm{SL}_{2} \times \mathrm{SL}_{5}\right)$ (almost direct product)
This is the case $E_{6}-2$ in [Sh4]. There is a canonical surjection $M \mapsto \mathrm{PGL}_{2} \times \mathrm{PGL}_{5}$. Let σ_{1}, σ_{2} be cuspidal representations of $\mathrm{PGL}_{2}, \mathrm{PGL}_{5}$, resp. Then $\sigma_{1} \otimes \sigma_{2}$ can be considered as a cuspidal representation of M. Let S be a finite set of places, including all the archimedean places, such that for every $v \notin S, \sigma_{1 v}, \sigma_{2 v}$, are all unramified. For $v \notin S$, let $A\left(\sigma_{1 v}\right)=\left\{\operatorname{diag}\left(\alpha_{1 v}, \alpha_{2 v}\right)\right\}$ be the semisimple conjugacy classes attached to $\sigma_{1 v}$. Let $A\left(\sigma_{2 v}\right)=\left\{\operatorname{diag}\left(\beta_{1 v}, \ldots, \beta_{5 v}\right)\right\}$ be the one attached to $\sigma_{2 v}$. Then the direct computation shows that

$$
\begin{gathered}
L\left(s, \sigma_{1 v} \otimes \sigma_{2 v}, r_{1}\right)=L\left(s, \sigma_{1 v} \otimes \tilde{\sigma}_{2 v}, \rho_{2} \otimes \wedge^{2} \rho_{5}\right)=\prod_{1 \leq i \leq 2,1 \leq j<k \leq 5}\left(1-\alpha_{i v} \beta_{j v}^{-1} \beta_{k v}^{-1} q_{v}^{-s}\right)^{-1} \\
L\left(s, \sigma_{1 v} \otimes \sigma_{2 v}, r_{2}\right)=L\left(s, \sigma_{2 v}\right)=\prod_{i=1}^{5}\left(1-\beta_{i v} q_{v}^{-s}\right)^{-1}
\end{gathered}
$$

where ρ_{n} is the standard representation of $\mathrm{GL}_{n}(\mathbb{C})$. In the same way as in Proposition 3.4, we can see that the normalized local intertwining operators satisfy Assumption (A), provided that Conjecture 7.1 of [Sh1] holds in this case. Unfortunately, the result of [C-Sh]
does not apply to the exceptional group. Since the standard L-function $L\left(s, \sigma_{2}\right)$ has no zeros for $\operatorname{Re} s \geq 1$, we have, by Corollary 2.2,

Theorem 3.11 Let σ_{1}, σ_{2} be cuspidal representations of $\mathrm{PGL}_{2}, \mathrm{PGL}_{5}$, resp. Suppose Conjecture 7.1 of [Sh1] holds for the exceptional group of type E_{6}. Then the completed L-function

$$
L\left(s, \sigma_{1} \otimes \tilde{\sigma}_{2}, \rho_{2} \otimes \wedge^{2} \rho_{5}\right)
$$

is entire.
3.4 The case G is a simply-connected split group of type E_{6} and $P=\mathrm{MN}, M=\mathrm{GL}_{1} \cdot D_{5}$ (almost direct product)

This is the case (xxiv) in [La1]. This case was suggested by Shahidi from the work [Mu-Sh]. Recall some facts from [Mu-Sh]. Let $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{6}\right\}$ be the set of simple roots of T with respect to the Borel subgroup B, which are labeled on Dynkin diagram in the standard way. Denote by $P=\mathrm{MN}\left(P^{\prime}=M^{\prime} N^{\prime}\right.$, respectively $)$ the maximal parabolic subgroup of G which corresponds to the set of simple roots $\theta=\Delta-\left\{\alpha_{1}\right\}\left(\theta^{\prime}=\Delta-\left\{\alpha_{6}\right\}\right.$, respectively). Then M, M^{\prime} are groups of type D_{5}. Let w_{0} be the longest element of the Weyl group W modulo that of T in M. Then $w_{0}(\theta)=\theta^{\prime}$ and $M^{\prime}=w_{0} M w_{0}^{-1}$. The adjoint representation of ${ }^{L} M$ on ${ }^{L_{\mathfrak{N}}}$ is an irreducible representation of the lowest weight α_{1}^{\vee}. Denote this representation by r. This is one of the two 16 -dimensional irreducible half spin representations when restricted to the derived group of ${ }^{L} M$ or the half-spin representation of ${ }^{L} M=\operatorname{GSpin}(10, \mathrm{C})$ by abuse of terminology. Let σ be a generic cuspidal representation of $M(\mathbb{A})$. Then the completed L-function $L(s, \sigma, r)$ is defined.

Theorem 3.12 Let σ be a generic cuspidal representation of $\mathrm{SO}(10)$. Then the completed $L(s, \sigma, r)$ is entire if Assumption (A) is satisfied.

We can prove that Assumption (A) is satisfied for unramified places from Shahidi's result that $L\left(s, \sigma_{v}, r\right)$ is holomorphic for $\operatorname{Re} s \geq 1$ [Sh4, Lemma 5.8]. However, we were not able to prove that the local normalized intertwining operators are holomorphic and non-zero for $\operatorname{Re} s \geq \frac{1}{2}$ at ramified places. One serious obstacle is that we do not have the standard module conjecture for $\mathrm{SO}(2 n)$. Nevertheless, in view of (2.2) and Corollary 2.2, we obtain the result that the partial L-function $L_{S}(s, \sigma, r)$ is holomorphic for Res >0 : Let S be a finite set of places, including all the archimedean places, such that for every $v \notin S, \sigma_{v}$ is unramified. Take $f=\otimes_{v} f_{v}$ such that for each $v \notin S, f_{v}$ is the unique K_{v}-fixed function normalized by $f_{v}\left(e_{v}\right)=1$ and let \tilde{f}_{v} be the K_{v}-fixed function in the space of $I\left(-s, w_{0}\left(\sigma_{v}\right)\right)$, normalized the same way. Then (2.2) can be written as (see [Sh4, (2.7)])

$$
M\left(s, \sigma, w_{0}\right) f=\frac{L_{S}(s, \sigma, r)}{L_{S}(1+s, \sigma, r)} \otimes_{v \notin S} \tilde{f}_{v} \otimes \bigotimes_{v \in S} A\left(s, \sigma_{v}, w_{0}\right) f_{v}
$$

For each $v \in S, A\left(s, \sigma_{v}, w_{0}\right)$ is not a zero operator. By Corollary 2.2, $M\left(s, \sigma, w_{0}\right)$ is holomorphic for Re $s>0$. Suppose $L_{S}(s, \sigma, r)$ has a pole for Re $s>1$. Then for each $v \in S$, choose f_{v} such that $A\left(s, \sigma_{v}, w_{0}\right) f_{v}$ is not zero. From [Sh4, Theorem 5.1], $L_{S}(s, \sigma, r)$ has no
poles for $\operatorname{Re} s>2$. We obtain a contradiction. In the same way, we see that $L_{S}(s, \sigma, r)$ is holomorphic for Re $s>0$.

Again in the same way, we see that the partial L-function $L_{S}\left(s, \sigma_{1} \otimes \tilde{\sigma}_{2}, \rho_{2} \otimes \wedge^{2} \rho_{5}\right)$ in Theorem 3.11 is holomorphic for $\operatorname{Re} s>\frac{1}{2}$ without any assumption.

References

[$\mathrm{Bu}-\mathrm{Fr}$]	D. Bump and S. Friedberg, The exterior square automorphic L-functions on GL(n). Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc. 3, Weizmann, Jerusalem, 1990, 47-65.
[C-Sh]	W. Casselman and F. Shahidi, On irreducibility of standard modules for generic representations. Ann. Sci. École Norm. Sup. Sér. 4 31(1998), 561-589.
[Ge-Sh	S. Gelbart and F. Shahidi, Analytic Properties of Automorphic L-Functions. Academic Press, 1988.
[J-S1]	H. Jacquet and J. Shalika, On Euler products and the classification of automorphic forms II. Amer. J. Math. 103(1981), 777-815.
[J-S2]	\qquad , Exterior square L-functions. In: Automorphic forms, Shimura varieties, and L-functions, Vol. II (Ann Arbor, MI, 1988), Academic Press, 1990, 143-226.
[K1]	H. Kim, The residual spectrum of Sp_{4}. Compositio Math. 99(1995), 129-151.
[K2]	—. The residual spectrum of G_{2}. Canad. J. Math. (6) 48(1996), 1245-1272.
[Ki-Sh]	H. Kim and F. Shahidi, Symmetric cube L-functions of GL_{2} are entire. Ann. of Math., to appear.
[La1]	R. P. Langlands, Euler Products. Yale University Press, 1971.
[La2]	\qquad , On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Math. 544, Springer-Verlag, 1976.
[M-W1]	C. Moeglin and J. L. Waldspurger, Spectral Decomposition and Eisenstein series, une paraphrase de l'Ecriture. Cambridge Tracts in Math. 113, Cambridge University Press, 1995.
[M-W2]	_ Le spectre résiduel de GL(n). Ann. Sci. École Norm. Sup. (4) 22(1989), 605-674.
[Mu1]	G. Muić, The unitary dual of p-adic G2. Duke Math. J. 90(1997), 465-493.
[Mu2]	\qquad , Some results on square integrable representations; irreducibility of standard representations. Internat. Math. Res. Notices 14(1998), 705-726.
[Mu-Sh]	G. Muić and F. Shahidi, Irreducibility of standard representations for Iwahori-spherical representations. Preprint, 1997.
[Sh1]	F. Shahidi, A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups. Ann. of Math. 132(1990), 273-330.
[Sh2]	\qquad , On multiplicativity of local factors. In: Festschrift in honor of I. I. Piatetski-Shapiro, Part II, Israel Math. Conf. Proc. 3, Weizmann, Jerusalem, 1990, 279-289.
[Sh3]	\longrightarrow, On certain L-functions. Amer. J. Math. 103(1981), 297-355.
[Sh4]	\qquad , On the Ramanujan conjecture and finiteness of poles for certain L-functions. Ann. of Math. 127(1988), 547-584.
[Sh5]	\qquad , Twisted endoscopy and reducibility of induced representations for p-adic groups. Duke Math. J. (1) 66(1992), 1-41.
[Sh6]	\qquad , Automorphic L-functions: a survey. In: Automorphic forms, Shimura varieties, and L functions, Vol. II (Ann Arbor, MI, 1988), Academic Press, 1990, 415-437.
[Ta]	M. Tadic, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case). Ann. Sci. École Norm. Sup. (4) 19(1986), 335-382.
[Vo]	D. Vogan, The unitary dual of GL (n) over an archimedean field. Invent. Math. 83(1986), 449-505.
[Zh]	Y. Zhang, The holomorphy and nonvanishing of normalized local intertwining operators. Pacific. J. Math. 180(1997), 358-398.

[^0]
[^0]: Department of Mathematics
 Southern Illinois University
 Carbondale, IL 62901
 USA
 email: henrykim@math.siu.edu

