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A TRANSFORMATION WITH SIMPLE 
SPECTRUM WHICH IS NOT RANK ONE 

ANDRES DEL JUNCO 

Introduction. Following [10] an ergodic measure-preserving transformation 
is called rank one if it admits a sequence of approximating stacks. Rank one 
transformations have been studied in [1] and [2] where it was shown that any 
rank one transformation has simple spectrum. More generally it has been 
shown by Chacon [4] that a transformation of rank n has spectral multiplicity 
at most n. M. A. Akcoglu and J. R. Baxter have asked whether the converse 
is true. In particular: does simple spectrum imply rank one? In this paper we 
give a negative answer to this question. The counterexample used is a trans­
formation r constructed by Baxter in [2] using double stacks. It was already 
observed in [2] that r has simple spectrum. Our proof that r is not of rank one 
depends on a number of arguments of a combinatorial nature. At the core of 
these is a combinatorial lemma about the Morse minimal sequence which may 
be of independent interest. 

In passing, we establish that r is (measure theoretically) identical with the 
dynamical system a generated by the Morse minimal sequence, which has been 
studied in a number of papers, notably [8] and [9], where a fairly detailed 
spectral analysis of a may be found. However, the proof that r (or a) has 
simple spectrum does not appear explicitly in [2], [8] or [9], so we give it here. 
It seems that stacking constructions can be given for many other known 
examples of dynamical systems arising from uniquely ergodic sequences and 
this will be considered in a future paper. I am grateful to Professor Kakutani 
for several valuable conversations which brought to light the connection 
between his work, which was previously unknown to me, and Baxter's example. 

We conclude by giving a characterization of rank one transformations 
which implies that factors of rank one transformations have rank one. This 
result is easily generalized to rank n as well. (It has recently been drawn to 
my attention that the result on factors is stated without proof in [10]). It 
should be pointed out that a factor of a transformation with simple spectrum 
again has simple spectrum so that if the result on factors of rank one were not 
true one would automatically have a simple spectrum transformation which 
is not rank one. 

1. Definitions and notation. A transformation of a probability space 
(X, J^, pt) is a 1 — 1 bimeasurable mapping r : X —* X which preserves /x. 
(X,^~, M) is always assumed to be isomorphic to the unit interval with Borel 
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sets and Lebesgue measure. A semi-partition of X is a finite collection 
{Qy : 7 € T} of disjoint sets in X. We write IQI = U {& : 7 £ r } . If |Ç| = X, 
Q is called simply a partition. 

If Ç is a partition the Q-n-name of x Ç X is the w-tuple (£(0), . . . , £(w — 1)) 
G Tn defined by T*X £ Qa*)» 0 = ^ = w — 1. The pair (r, Q) induces a measure 
on each Tn denoted by P and defined by 

P(£) = M{# : Q-w-name of x is £}. 

P extends to a shift invariant measure on Yz so (r, Q) induces a stationary 
process {£(i)}, where £(i) is the ith coordinate function on Yz. We shall also 
refer to (r, Q) itself as a process. When we speak of the probability of a set of 
^-tuples in Tn this is understood to refer to P . 

We denote by Qm
n the partition VLm ?"'(?• Ç-oo denotes the o--field generated 

by the T1Q, i Ç Z. Note that Q-(n-i) is the partition of X according to Q-n-
names. 

If Q and P are two semi-partitions we write Q Q R iî \Q\ = \R\ and each 
atom of Q is a union of atoms of P . If Q and R are semi-partitions both indexed 
by r we write D(Q, R) = UT€r (QTAP7). For E G ^ , p*(Q, P) = /**(#) = 
li(E)-ln(P C\E). QC\E denotes the semi-partition {Ç7 H £ : 7 g r } . Note 
that p(Q H £ , P H JE) ^ p s(Q, P) as we do not condition M to find P(Q C\ E, 
RC\E). 

If r is any finite index set and £eTn we refer to £ as an n-string and denote its 
length n by |£|. I f O ^ i ^ j ^ w — 1, £[i, j] denotes the (j — i + 1)-string 
(£W> • • • » £0'))- If £ a n d ?? are ^-strings we set 

d&v) = n-i#{i:£(i) * 1(1)}. 

If d(£, 77) ^ e we say J equals (or agrees with or is) 77 within e. 
A r-stack 5 is a semi-partition {So, . . . , »Sn_i} of X such that T5Ï = 5 i + i for 

0 ^ i < n — 1. Sois called the base of S (written B(S), Sn-i the top and w the 
height. Following [10] we say r has rank at most n if for each partition Q and 
e > 0 there are semi-partitions Qr and P such that Q' C P , p(Q, Q') < e and 
<2' can be split into a disjoint union of w r-stacks. The rank of r is the least 
integer n (possibly infinite) such that r has rank at most n. It has been shown 
by Baxter [1] that if r has rank one then r can be constructed by the stacking 
method using single stacks (see [5]). Baxter's argument may be used to show 
that a transformation with rank n can be constructed by the stacking method 
with n stacks. Thus the class of finite rank transformations is completely 
concrete. Note that any rank one transformation is necessarily ergodic, but 
that is not so for rank n. 

2. Although we shall give an exact characterization of rank one in Section 3, 
in this section we will need the following necessary condition for rank one to 
show that our example does not have rank one. It would be interesting to know 
if this condition is sufficient as well. 
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PROPOSITION 2.1. / / (T, Q) is a process such that T has rank one and 5 > 0 
then for infinitely many n there is an n-string £0 of positive probability such that 

»P{f :dtto,£) < 0} > 1 — Ô. 

Proof. Choose a stack S of height n and a semi-partition Q' C S such that 
P((?> (?') < f a n d np(B(S)) > 1 —• e. The last condition can be ensured by 
requiring S to approximate some arbitrarily chosen fine partition as well as Q. 
Note that n can be chosen arbitrarily large, for the same reason. Let £(x) de­
note the Q w-name for x 6 X and £i the common Qf w-name of points in B(S). 
Observe that 

/ nd(l-(x), h)dvx = P(Q C\ \S\, Qf) < e. 
J B{S) 

Thus 

/7,/ONX I d(^(x)^1)dfi(x) < — — , 
/x(i>(o)) JB(5) 1 - e 

so that we must have d(£(x), £i) < <5 for x G 5 (5 ) except for a set of measure 
atmostô/*CB(S)), where 5 = (€ /( l - e))1/2. Thus 

P{£:<*(f,Éi) <ô\ > (1 -ô)nB(S). 

Now P(£i) may be 0, but if we replace £i by any string £0 such that P(£o) > 0 
and d(£0, £i) < à then we have 

P{{:d(f, *0) < 20} > (1 - «)/*(5(5)) > i l z i i K L n i ) . 

A more careful choice of e now completes the proof. 

2.2 Construction of r. We proceed by the stacking method, using double 
stacks, r will act on (X, JF~, ^) where X = [0, l),i^~ is the cr-field of Borel sets 
and n is Lebesgue measure. At the nth stage we will have two stacks Sn

Q 

and Sn1 whose levels are intervals of length 2"(n+1) and r will map each level 
in 5W\ except the top one, linearly to the level directly above, r will be un­
defined on the top of Sn\ 

We start by letting S0° = [0, §), 5V = [i , 1). Suppose Sn° and 5„,x have been 
defined and have height 2n. Cut B(Sn

i) into two intervals In
l and 7 / of equal 

length, and let r map r2"-1 7TO° linearly to Jn
l and r2 n _ 1(/n ' ) linearly to Jn°. This 

defines stacks Sw+i° and 5w+i1 of height 2n+1 over In° and i^1- In the limit r is 
defined everywhere and is a measure preserving transformation. This example, 
constructed in this way, is due to Baxter [2]. 

LEMMA 2.3. T is ergodic. 

This can be shown by a variation of the usual argument for ordinary stacking 
transformations [5, Theorem 6.2], noticing that for each n, half of Sn° moves 
to S^ and vice-versa. 
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PROPOSITION 2.4. r has simple spectrum. 

Proof. Let a be the transformation < T : X H X + ^(mod 1) of [0, 1). I t is 
immediate by induction t ha t aSn° = S„l for all n which implies t h a t a com­
mutes with r. Let Ua and UT be the uni tary operators on Jt? = L2(X, J^~, M) 
defined by C/,/ = / o a~* and UTf = / o r _ 1 . Then the subspaces 

.JTO = {/ : U,f = /} 

are invariant under Ur. Fur thermore it is clear t ha t UT\^0 has discrete spectrum 
and its eigenvalues are all the 2nth roots of uni ty, n G Z + . (Indeed r acting on 
the (7-field of sets E such tha t <r(E) = E is jus t the famous von-Neumann-
Kaku tan i transformation as described in [5, Ex. 6.4].) Since the eigenvalues 
are distinct, UT\ ffl0

 n a s simple spectrum. 

Let BJ = BiSJ) a n d / n = x*„o - XSni 6 ̂ i . For / 6 J f denote b y j f ( /) 
the closed linear span of { U^f ' i 6 Z}. Obviously fn —> 0 and it is easy to see 
t h a t J ^ ( / w ) f J ^ i . I t follows by [2, Lemma 14] t ha t UT\^fl has simple spectrum. 

We now show tha t UT\^fl has continuous spectrum (i.e. no eigenvectors). 
Suppose, then, t ha t there is a n / G ̂ f\ such tha t UTf = X/. Then f2 Ç J f 0 and 
UTp = X2/2. By our analysis of UT\^>0 it follows t ha t X2 is a dyadic root of 
uni ty and hence X is as well. T h u s UT has two orthogonal eigenfunctions with 
the same eigenvector, which contradicts the ergodicity of r. 

Now UT\#>O and UT\^>1 can be represented as multiplication by z on L 2 ( 5 , J r , 
Mo) and L2(S,<^~, MI) respectively where 5 denotes the uni t circle in the complex 
plane. Moreover MO and MI are mutual ly singular since UT\^0 has discrete spec­
t rum and UT\^1 has continuous spectrum so UT = UT\#>i © UT\^2 can be 
represented as multiplication by z on L2(S,Jr, Mo + Mi) and hence has simple 
spectrum. 

T H E O R E M 2.5. r has rank 2. 

Proof, T clearly has rank a t most 2, so we must show it does not have rank one. 
Let Ço = [0, i ) , <2i = [\, 1) and let Q = {Ço, Qi\. We are going to show (r, Q) 
violates the conclusion of Proposition 2.1. We begin by examining the s t ructure 
of Q-names. 

Let cr/, i G {0, 1}, denote the common Q — 2re-name of points in BiS^). 
We will call an° and an

l n-symbols. (The terms w-symbol and w-string should 
not be confused.) Clearly 

cr0° = 0, do1 = 1, an+1° = o^cr*1, an+l
l = <Jn

lan
Q. 

I t follows tha t an° is the initial segment of length 2n of the Morse minimal 
sequence (one-sided version). Note t ha t an° and a^ are obtained from each 
other by changing each 0 to a 1 and each 1 to a 0. Observe further t ha t <rn+i° 
can be obtained by inserting a 1 after each 0 and a 0 after each 1 in an°. More 
generally if we replace the 0's and l ' s in an

0 by am° and <im
l respectively we get 

<rm+n°. (This is easily seen by induction.) 
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We now come to a lemma which is crucial to the proof of Theorem 2.5. To 
state it we need some terminology. If £ is an ra-string and 77 is an r-string such 
that d(r], £[i, i + r — 1]) ^ e we say that 77 appears within e at i in £. If £ = 0 
we simply say 77 appears at i in £. 

LEMMA 2.6. Suppose OL\ and a2 are n-symbols and aia2 appears within 1/8 at i 
in aM° or aM

l. Then i is a multiple of 2n and- the appearance is necessarily exact. 

Proof. The proof is by induction on n. Note that the result is vacuous for 
n = 0. Now suppose a\ and a2 are (n + 1)-symbols so otj = fijjj where (3j and 
jj are opposite ^-symbols for j = 1, 2. Suppose that «ia2 appears within 1/8 
at i in crM° or vM

l. Then either «i appears within 1/8 at i or a2 appears within 1/8 
at i + 2n+l, so by the induction hypothesis we can conclude i = k2n\ Thus each 
of ]8i, 71, j82, 72 is matched within 1/2 with the appropriate ^-symbol in am° and 
hence each of them appears exactly, since the distance between ^-symbols is 
either 0 or 1. 

We now suppose that k is odd and derive a contradiction. Since k is odd, 
o V [ 0 + 1)2W, (k + 3)2W - 1] is an (n + l)-symbol, say an+1° for definiteness. 
Thus 71 = an° and /32 = vn

l and it follows that £1 = o-̂ 1 and 72 = o-n° since 
j3i7i and /3272 are (w + 1)-symbols. Thus 

vM«[k2\ (k + 4)2- - 1] = <rnVn°ernVno. 

Recalling our remark on how <7¥° is formed from aM-n° it follows that 
aM-n°[k, k + 3] = 1010. Since & is odd, aM-n°[k — 1, &] is a 1-symbol so 
<TM-N°(k — 1) = 0 and similarily aM-n°(k + 4) = 1. Thus we finally conclude 
that the string 000 appears in aM^n-.i° which is clearly impossible. This com­
pletes the proof of the lemma. 

Now for each k Ç Z+ , let Mk be the maximum probability of a single ^-string 
under the process (r, Q). The following lemma provides bounds on certain Mk, 
the point of which will become clear at the end of the proof of Theorem 2.5. 

LEMMA 2.7. For 7 ^ k ^ 14, (k + 2)Mk g 11/12. 

Proof. First we calculate the probabilities of certain strings. P(01) is just 
lim f(n)/2n+1 where f(n) is the number of appearances of 01 in an° and an

l. 
Now/n + i = 2fn unless a new 01 is formed in an+i° at the join between an° and 
<rn

l which happens precisely for n even. Since /1 = 1/4 it follows that 

'«»> = ,5 (!)" = !• 
We then fill in the remaining 2-string probabilities by symmetry: 

(i) P(01) = P(10) = 1/3, P(00) = P ( l l ) = 1/6. 

The 3-string probabilities can be obtained in a similar manner. They are: 

(ii) P(000) = P ( l l l ) = 0 P(£) = 1/6 for all other £'s. 
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Now suppose an° appears in aM° (or crM
l) at i. Then i = k2n~l by Lemma 2.6 

and we conclude that 01 appears at k in aM-n+i°. It follows that 

(iii) P(<rn°) = P f o i ) = 2 - V 3 . 

We now turn to Af*, 7 g fe ^ 14. If £ is a 7-string then there must appear in £ 
a string of the form af3y where a, /3 and y are 1-symbols. It follows by the 
argument used to show (iii) that 

P(S) S P(aPy) S \M*. 

Since Af3 = 1/6 by (ii) we have ikf7 ^ 1/12 and a fortiori M8, M9 Û 1/12. 
Now suppose J is a 10-string. Suppose that a string a(3, a and /3 2-symbols, 

appears in £. Then if £ appears in o-M
;, a/3 appears at 4& by Lemma 2.6. But 

then either aM
j[4:k — 4, 4& — 1] or aM

j[4:k + 8, 4& + 11] is determined since 
they are 2~symbols and £ extends into at least one of them. Thus we conclude 
tha tP(£) ^ \Mz = 1/24. 

Now suppose that only one full 2-symbol 0 appears in f. Then £ has the form 
afiy where a (respectively 7) is a 3-string ending (respectively beginning) a 
2-symbol. We claim that if £ appears at i in aM° then i + 3 is a multiple of 4. 
Indeed if this is not the case then i + 5 = 4& and we have the following pic­
ture, assuming 7 = 0110 for definiteness. 

P 7 

2-symbol 2-symbol 2-symbol 

46 

Thus we would have the string 111 occurring in <rM-2° which is impossible. 
Thus i + 3 is a multiple of 4. But then the 2-symbols aM°[i — 1, i + 2], 
(TM°[Î + 3, i + 6] and crM

0[i + 7, i + 10] are all determined by a, fi and 7 so 
we conclude that P(£) g M3/4 = 1/24. Thus we have M10 ^ 1/24 and this 
takes care of Mu through Mi4 also. 

Remark. The argument we gave for Mio can also be made to work for M9, 
showing that already M9 ^ 1/24. 

We are now ready to complete the proof of Theorem 2.5, using Proposition 
2.1. We suppose, then, that £ is an n-string, n g; 8, such that P{£) > 0 and 
we shall show that 

nPiv.d&v)^ 1/12} ^ 11/12. 

https://doi.org/10.4153/CJM-1977-067-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-067-7


TRANSFORMATIONS 661 

Denoting by / (£ , M) the number of 1/12-appearances of £ in aM° and <rM
l, 

what we have to show is t ha t 

- ^ H / ( ? , M) ^ — 

for all M. 
Let k and r be such tha t 

k2r ^ n < (k + l ) 2 r , 8 S k ^ 15. 

Since P(£) > 0, £ must appear in o-^0 for some L. Since (7L
0 is a concatenation 

of r-symbols it follows tha t there is a string of a t least k — 1 r-symbols, say 
«i . . . ak-i, appearing a t an i in £. If £ appears within 1/12 a t j in aM° (or o-^1) 
then «i . . . ak-i appears within (8/7) (1/12) a t j + h hence by Lemma 2.5, 
j + i is a multiple of 2 r and «i . . . ak-i appears exactly. T h u s by the usual 
a rgument 

^ F l / f t , M) g P ( a i . . . a t_i) ^ | F M*.!. 

B u t then we have 

2^Fr/(£, A0 è J Af*_i ^ (* + l)(Jlf*_i) ^ | | 

by Lemma 2.6. This completes the proof. 

We will now indicate why r is isomorphic to the transformation generated by 
the Morse minimal sequence, which we call T. T can be characterized abstract ly 
as the shift transformation on {0, 1} z restricted to the orbit closure Û of the 
two-sided Morse minimal sequence, the measure /x being the unique T-invariant 
and P-ergodic probabili ty measure on €. A proof t ha t T and r are isomorphic 
can be based on these facts alone. However we will use the explicit definition 
of jit, namely tha t its value on finite strings is the frequency of appearance of 
t ha t string in the Morse minimal sequence (one-sided or two-sided). Now the 
part i t ion Q sets up an isomorphism between r acting on VT=-ODTZ(2 and the 
shift on {0, l)z with the measure we have called P , and as we have already 
seen the value of P on finite strings is obtained by taking the limiting frequency 
of appearance in an° and <jn

l. But since an+i° = o-n°(rn
l it is easily seen tha t this 

is the same as the limiting frequency in an° or in other words, the actual fre­
quency in the one-sided Morse minimal sequence. T h u s r on VT=-œrz(2 is 
osomorphic to T. We'd like to know tha t V7=_œr*(2 is the full c-field of Borel 
sets on [0, 1). T o see this it suffices to show tha t for almost all x Ç [0, 1), the 
full two-sided Q-name of x determines x. This in turn follows quite easily from 
Lemma 2.6, in fact from a weaker version of Lemma 2.6 with 1/8-appearances 
replaced by exact appearances. 
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3. Charac ter i za t ion of rank o n e . Let £ be an r-string and <5 > 0. An 

n-string rj will be called a 5 — ^-string if it has the form 

where the et are strings subject only to the condition X)t=o \et\ < 5w. 

T H E O R E M 3.1. r /^as rawfe <me if and only if for each partition Q and 5 > 0 
there is an N and an r-string £ such that for n > N, with probability I — ô an 
n-string agrees with ad — ^-string within 5. 

Proof. Suppose r has rank one and Q is a par t i t ion. Then by the proof of 
Proposition 2.1 there is a stack 5 of height r, a set G C B(S) and an r-string 
£ such tha t n\S\ > 1 — e, M(G) > (1 — e)nB(S) and the Q-n-name of any 
point in G is within e of J. Now by the ergodic theorem, for n sufficiently large 
there is a set G such tha t for x G G 

1 ( î'~1 ) 
- # | i : 0 ^ ' < ^ , r l x É U rJG> > 1 - 3e. 

I t now follows easily t ha t the w-name of any x G G is a 5 — ^-string within ô 
for a suitable choice of e. 

Now suppose tha t r satisfies the string condition and Q is any part i t ion. 
Note t ha t r is necessarily ergodic. Choose an n, an r-string £ and a set G C. X, 
M (G) > 1 — e, such tha t for x G G the «-name of x is within e of an e — £ 
string. By a well-known var ian t of Rohlin 's lemma [6, p . 71 , Lemma 2] we may 
now find a set B C G such t ha t B} rB ,. . . , r7" -1^ are disjoint and 

7 1 - 1 

(i) fi\J T*B> 1 - 2e. 

For x G 5 let 77 (x) denote the Q-n-name of x and let fj(x) be an e — ^-string 
such tha t d(rj(x), rj(x)) < e. Now define a part i t ion Q of U t o rlB by de­
creeing t ha t the Q-^-name of each x G B is 77 (x). As in the proof of proposition 
2.1 we have 

Now we define a r s tack 5 as follows. Let B^ — {% G B : 77(x) =77}. Since 
77 is an e — ^-string there are integers i{\),..., i ( / ) such tha t /r ^ (1 — e)w, 
i ( j ) + r ^ i ( j + 1) and rj[i(j), i(j) + r - 1] = £. We let 

4 - = U r i ( ; X and 4 = U ^ . 

Then 4̂ is clearly the base for a r-stack S of height r such t h a t | 5 | C U"Io rlB 
and 

( i i i ) / i | 5 | > (1 - € ) / i U r ' S . 
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Furthermore the Q — n-name of any point in A is £ which means that 
Qr\\S\ C S. Since (i) (ii) and (iii) imply that p(Q, QC\ \S\) is small we 
have shown that the partition Q can be approximated by a subpartition of a 
stack so r is rank 1, as desired. 

COROLLARY 3.2. A factor of a rank one transformation is rank one. 

Remark. Theorem 3.1 may be extended in a fairly straightforward way to 
transformations of rank ^ n. Thus Corollary 3.2 holds also for rank ^ n. 
(Obviously rank may decrease on passing to a factor.) 
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