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1. Introduction.

The diffraction of a simple harmonic wave train by a straight-
edged semi-infinite screen was originally discussed by Sommerfeld in
1895. The analysis is of a recondite character, involving the use of
multivalued functions and Riemann surfaces (1). An alternative
formulation of the problem is as an inhomogeneous Wiener-Hop
integral equation, the solution of which also involves considerable
difficulties (2). I t is the purpose of this note to show that following
Friedlander (3) it is possible by the use of parabolic co-ordinates to
solve the problem by elementary methods. The method can be
applied either to the case of sound or that of electromagnetism, the
results being formally identical.

2. Preliminary Analysis.

We assume that the plane is defined by x = 0,y > 0, —<x < z < oo ,
the problem being two dimensional.

Let us now take parabolic co-ordinates.

where I is any convenient quantity of the dimensions of a length.
The ranges over which £, rt run are — oo < f < 3 o , 0 5 S ? ) < a o .
By restricting r\ to positive values, it is possible to avoid the

troubles of a two-valued function. The range of negative values of 17
corresponds to the second sheet of the Riemann surface corresponding
to the plane cut along the positive real axis.

Wewnte ^ g - £ + ± - -, g•
It can be shown that

fX = X (£> V) = f F (ct + l^ - -q1 cos a + sin a -

where P = {f2 + r? + £* - TJ* cos a + 2l$-q sin a}*
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is a solution of D* * = 0, as is x {£, — y) also. This may be done by
direct differentiation or by using the transformation

x' = — x sin a + y cos a, y' = x cos a + y sin a,

when x takes the form

where P' = £' + TJ', and then differentiating (3), • ^ being invariant
with respect to the rotation of axes in the xy plane.

3. Boundary Conditions.

Under the transformation used above, the half-plane y = 0, x > 0
goes into -q = 0.

Let T be the quantity that is under consideration. For an
electromagnetic case we have

•fy = E2 or y = Ez.
z.

In the first case the boundary condition on the half-plane is
= 0, and in the second case T = 0, the half-plane being a perfect

conductor in both cases. If we have a sound field and *F is the excess
pressure, then dW/dy = 0 corresponds to the case of a perfectly rigid
body occupying the half-plane and T = 0 would correspond to a free
surface in the half-plane (were it realisable).

The result of applying the transformation is to make the boundary
7] = 0 and the boundary conditions

— = 0 or ^ = 0 respectively.

The other boundary condition that applies is that when x -> — oo ,
i.e. r)-> oo , then XF~XFO, where To is the incident disturbance.

"4. Satisfaction of the Boundary Conditions.

For simplicity, we will only consider the case where T = 0 on rj = 0.
The'incident field is of some arbitrary form T,, travelling in the

direction a + n.
Let us consider the function

sin a ) - £ T 0 ( c < + Z £ 2 - rf cos a
— 2l£rt sin a)

CP

+ F (ct + Igz — «2 cos a + 2l£rj sin a — l&) dt,' 0

— rQ
f F (ct + l£* - ,« cos a - 2l£v sin a - It?)
o
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94 LL . G. CHAMBERS

P == {|2 + tf -f £2 — ^ cos a + 2£TJ sin a} * -» oo as rj -» oo ,

# = {£2 + 7j2 + £2 — TJ2 cos a — 2|TJ sin a} * -> — oo as rj -» cc .

I t is obvious by inspection that

Y satisfies • J f = 0, with ^ = 0 o n i , = 0.

In order to satisfy the condition ty ~ ^Po as 77 -» oo we must have
•vp0 (c< + l£* — 7]2 cos a + 2lgr] sin a)

sin a) — \ % (c< + lg2 — rj2 COS a
sin a)

F (ct +1 £2 — rj2 cos a + 2Z£TJ sin a - I?) dt,

— F (ct
Jo

+ Ẑ 2— TJ2 cos a — 2Z£TJ sin a -
o

for r; -» oo .
The functions ^ 0 and i'1 must therefore be related by

As explained in Friedlander's paper (3) the arbitrary constant
can be ignored, and the solution of the integral equation is given by

provided that F ( — oo ) = 0. (C)
It is clear by inspection of (A) that if we have a continuous wave

of circular frequency w = kc, ̂ 0 = exp (ikfi), then the solution is

F (u) = V2 exp (i7r/4) exp (ikfj.),

which in fact satisfies (B) even though (C) is not true.
If we take ^ 0 (ft) = exp (ikfx), our incident wave is

exp {ik (ct + 141 — TJS cos a + 2lt,i) sin a)},

which is a plane wave travelling in the direction a + TT,
M> = \ exp {ikp cos (<f> — a)} — | e x p {ikp cos (<f> + a)}

+ exp {ikp cos (<£ — a)}v'2~exp (tV/4) f exp (— iAẐ
J 0

r Q

— exp {ikp cos (<£ + a)}V2 exp (ITT/4) exp (— jAẐ
J 0

the time factor having been dropped.
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Up till now I has been an arbitrary length. I t will be convenient
to take it as the wavelength (kl = kX = 2n),

P = {£2 - rj* + | 2 — rf COS a + 2£? sin a} *

= (p + x cos a -f y sin a) * /X*

= (P/X) * [1 + cos (^ - a)] * = (2p/A )* cos \{<j>- a).

In a similar manner we find that

Q= (2p/A) * cos \ (j> + a).
By a little manipulation we get

^ = \ exp {tip cos (<£ — a)} — \ exp {ikp cos (<£ + a)}
1 p

+ exp {tip cos (<f> — a)}—r-exp (inl4) exp (— ty2) dy
V ^ Jo

1 r«
— exp {ikp cos (<£ + a)}—— oxp (inji) exp (— iy2) dy

V ^ Jo
where p = \Z2kp cos \{<j> — a), ^ = \/2yfcp cos £ (<£ + a).

By making use of the fact that
2 r°

1 = - — — - exp (— iy2) dy
V— (i") J -OS

we have immediately
p\p = exp {i^p cos (4> — a)} exp (— iy2) dy

rQ
—exp {ikp cos (<f> + a)} exp (— iy*) dy

J —00

where p1 = v/^ exp ( — ZTT/4).

I t is fairly obvious tha t for the boundary condition dy/d-q = 0
on r) = 0 we carry through an almost identical analysis beginning
with the quantity

(et + ^2 - »?* cos a + 21^ sin a) + \y 0 (ct + l£*- ^ cos a
— 2/̂ 77 sin a)

4- F (ct + I? - rj" cos a 4- ^ sin a - It?) d£

rQ
+ F(ct + l £2- 7)2 cos a — 2l£v sin a - It?) dt,.

Jo
We arrive at the result

rp
fj\jr = exp {ikp cos (<£ — a)} I exp (— iy2) dy

—00

r*
+ exp {tip cos (<£ + a)} exp (— iy2) rfy,

•P» Q< P> Q> j8 having the same meanings as before.

https://doi.org/10.1017/S0013091500021453 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021453


96 L L . G. CHAMBERS

5. Expressions for other field components.

The results of the foregoing analysis may be used to give formulae
for the field components which are not parallel to the edge of the half-
plane. The two cases of electric vector perpendicular and parallel to
the edge will be considered. In order to write down formulae for these
components, it is first necessary to write down the results of certain
differentiations. Since

dF ,8F . , 1 8F 8F . , 8F , . 1 8F
— = cos A —- —sin 0 - —- — =sin <*— +cos <h
dx Y 8p p 8<f>' 8y Ydp p 8<f> '

the values of — > ^ c a n be written down fairly easily, where

rm
G = exp {ikp cos (<£ + x)} e x P (— iy2) dy

^ —oo

and TO = V 2kp cos \{<f> + x)-

These values are given by

Ik dx~ = G C°S X + V l/2kp e x p { ~ * [kp + ^ ] } c o s i (^ -
and

~ * ^kp ~

We again write j8 = Vw~exP (— i-
We write also

G+ = exp {ikp cos (<f> + a)} I exp (— iy2)

J-«
G_ = exp {ikp cos (<£ — a)} J exp (— iy2) i

— oo

p = -y/2A;p c o s i> (<f> — a ) , q =

(A) Electric vector perpendicular to edge.

The components which are of interest in this case are related by

The incident field is defined by

Zo ffz = Eo exp {tA (a; cos a + y sin a)}

= Eo exp {i&p cos (<f> — a)}
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Ex = Eo exp {ikp cos (<j> ~ a)) a*n a

Ey~ — Eo exp {ikp cos (<f> — a)} cos a.

The diffracted field is defined by

pZ0Hz = Eo (O. + O+),

and performing the necessary differentiations we deduce that

PEJE0 = s i n a (G_ —

— V 2/kp sin \$ cos \a exp { — i (kp — %TT)

PEJE0 = - cos a ((?_ + Q+)

— V 2/kp exp { — i (kp + %TT)} COS |̂ > COS £a.

(B) Electric vector parallel to edge.

The components which are of interest in this case are related by

-i±dli. -i 1 dE'
Hx=-Zo ik dy ' Hv = Zo ik dx '

The incident field is defined by

E2 = Eo exp {ik (x cos a + y sin a)}

= JE70 exp {ikp cos (<j> — a)}

ZOHX= — Eo exp {ikp cos (<f> — a)} sin a

ZQ Hy = Eo exp {ik p cos (̂ 6 — a)} cos a.

The diffracted field is defined by

and performing the necessary differentiations we deduce that

pZ0HxIE0 = sin a (G_ + G+)

+ V 2/kp exp {— i (kp — ^TT)} COS \(f> sin | a

pZoHJE0 = cos a (G_-G+)

- V~2[kp exp {— i (kp + In)} sin %<j> sin £a.

(C) Fresnel approximation.

The Fresnel approximation, being scalar, is applicable to any of
the six components of the electromagnetic field.

If ^o = e ^p {ik (x cos a + y sin a)} defines any incident field
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component in the absence of a screen, then, to the first order, the field
in y < 0 is given by

where S = \/ 2icp\x ar*d x = "" — (<t> — a)> P being assumed large and
X being assumed small.

w if x is small

(w-x) = cos £(0 - a)
and so 8~ s/Wp cos £ (0 - a).
Thus the Fresnel approximation gives the approximate result that
/ 3 ^ = G_.

On examining the results obtained from the exact theory, we
observe that G_f3~x is common to all the expressions for the six
field components.

6. Discussion.

I t is clear from the form of the result that, provided the integral
equation (A) is soluble, the method of solution will hold for any shape
to the incident pulse, as has been indicated by Friedlander.

Furthermore, it is possible, formally at any rate, to obtain the
diffracted field from any incident field; for if we have an incident
field

(x> y) —— \ A (a) exp {ik (x cos a + y sin a)} da
Jc

then the resultant field will be obtained by taking the diffracted field
for a plane wave, multiplying by A (a) and integrating with respect
to a over the proper contour C in the complex a-plane.

The use of parabolic co-ordinates in this problem of the half-
plane obviates the use of the two-valued function of Sommerfeld, and
the line TJ = 0 corresponds to the slit in the Riemann surface at
which the two sheets coalesce, negative r) corresponding to the unused
sheet.

Another formulation involves the replacing of the plane (for an
electromagnetic field) by a sheet of magnetic or electric current and
writing down the condition that, for a certain component, the sum of
the incident field and the field due to the sheet vanishes along the
sheet, thereby giving an integral equation of the Wiener-Hopf type
for the current distribution (2). Such an integral equation is soluble
only with considerable difficulty.
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Examination of the conditions p < 0, q < 0 gives us further

insight into the physical conditions involved. I t is clear tha t

I f r 1 (T -> + « )
- I exp( - iy2) dy ->
P J -» 0 ( # - » — oo).

If we now consider as an example the case where ^ = 0 on rj = 0
(the other case is very similar), we have three separate cases:
(1) p > 0, q > 0. At large distances from the origin the field is

effectively

e x p {ikp cos (<f> — a)} — e x p {ikp cos {<f> + a)}

which is the same as that for reflection by a complete plane.

(2) p > 0, q < 0. At large distances from the origin the field is
. effectively

e x p {ikp cos (<f> — a)}

which is the same as the incident field.

(3) p < 0, q < 0. This is the geometrical shadow region and at large
distances from the origin the field is effectively zero, the region
being screened by the half plane.
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