AUTOMORPHY FACTORS FOR A HILBERT MODULAR GROUP

by SHIGEAKI TSUYUMINE

(Received 2 February, 1987)

Dedicated to Professor I. Satake on the occasion of his 60th birthday

Let K be a totally real algebraic number field of degree n > 1, and let O_K be the maximal order. We denote by Γ_K , the Hilbert modular group $SL_2(O_K)$ associated with K. On the extent of the weight of an automorphy factor for Γ_K , some restrictions are imposed, not as in the elliptic modular case. Maass [5] showed that the weight is integral for $K = \mathbb{Q}(\sqrt{5})$. It was shown by Christian [1] that for any Hilbert modular group it is a rational number with the bounded denominator depending on the group.

 $SL_2(K)$ acts on the product H^n of *n* copies of the upper half plane $H = \{z_1 \in \mathbb{C} | \text{Im } z_1 > 0\}$ by the usual modular substitution;

$$z = (z_1, \ldots, z_n) \to Mz = \left(\frac{\alpha^{(1)} z_1 + \beta^{(1)}}{\gamma^{(1)} z_1 + \delta^{(1)}}, \ldots, \frac{\alpha^{(n)} z_n + \beta^{(n)}}{\gamma^{(n)} z_n + \delta^{(n)}}\right)$$

for $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(K)$, $\alpha^{(1)}, \ldots, \alpha^{(n)}$ being the conjugates of $\alpha \in K$. We consider an automorphy factor J for Γ_K which is of the following general form;

$$J(M, z) = v(M) \prod_{i=1}^{n} (\gamma^{(i)} z_i + \delta^{(i)})^{k_i}, \quad M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma_K$$

where $(k_1, \ldots, k_n) \in \mathbb{Q}^n$, and v(M) is a complex number. (k_1, \ldots, k_n) is called the *weight* of J. v is called a *multiplier* and it has only roots of unity as the value. By Freitag [2], it is known that possible automorphy factors are of the above form, up to trivial automorphy factors, provided that $n \ge 3$. Gundlach has obtained the bound of the denominator of $\sum k_i \in \mathbb{Q}$ for a possible automorphy factor J in his paper [3] (see also Tsuyumine [8]), where $2 \sum k_i \in \mathbb{Z}$ is proved for n even. However his bound for n odd, is very large in general. The aim of the present paper is to give the proof valid regardless of n odd or even as well as a better bound in the case that an ideal (2) satisfies a ramification condition. Our result is as follows; $2 \sum k_i \in \mathbb{Z}$, and if the ideal (2) in O_K is unramified at any prime of degree one, then $\frac{1}{2} \sum k_i \in \mathbb{Z}$. This result will be applied to study the structure of a Hilbert modular variety in a later paper [9].

The author wishes to express heartfelt gratitude to Sonderforschungsbereich 170 "Geometrie und Analysis" and especially to Professor U. Christian for hospitality and support during stay.

1. Let α be a non-zero integral ideal of O_K . $\alpha \in O_K$ is said to be an α -unit if the

Glasgow Math. J. 30 (1988) 231-236.

SHIGEAKI TSUYUMINE

image of α in O_K/α is invertible. Let \mathfrak{q}_2 (resp. \mathfrak{q}'_2) denote the ideal which is the product with multiplicity one, of all primes of degree one at which the ideal (2) in O_K is unramified (resp. ramified), where it denotes O_K if there are no such primes. Similarly let \mathfrak{q}_3 denote the ideal which is the product with multiplicity one, of all primes of degree one in the ideal (3) of O_K .

LEMMA 1. Let α be any non-zero integral ideal. The integers $\alpha^2 - 1$, α running over the set of α -units, generate the ideal containing $q_2^3 q_2'^2 q_3$.

Proof. The set of α -units is not enlarged if α is replaced by $\alpha q_2 q'_2 q_3$. So we assume that $\alpha \subset q_2 q'_2 q_3$. Let \mathfrak{p} be a prime ideal. The reduction map mod \mathfrak{p} gives rise to a surjective map of the set of α -units onto O_K/\mathfrak{p} or $O_K/\mathfrak{p} - \{0\}$ according as $\alpha \notin \mathfrak{p}$ or $\alpha \subset \mathfrak{p}$, by the Chinese remainder theorem. If \mathfrak{p} contains none of q_2 , q'_2 , q_3 , then there is obviously an α -unit α for which the image of $\alpha^2 - 1$ in O_K/\mathfrak{p} is not zero, so \mathfrak{p} is not a factor of the ideal generated by $\alpha^2 - 1$. As easily verified, if \mathfrak{p} is a factor of q_2 (resp. q'_2 , resp. q_3), then $\alpha^2 - 1 \in \mathfrak{p}^3$ (resp. \mathfrak{p}^2 , resp. \mathfrak{p}) for any \mathfrak{p} -unit α , and moreover $\alpha^2 - 1 \notin \mathfrak{p}^4$ (resp. \mathfrak{p}^3 , resp. \mathfrak{p}^2) for some \mathfrak{p} -unit α . We are done. q.e.d.

Following the standard notation, we define two subgroups of Γ_{κ} associated with an ideal α as follows;

$$\Gamma_0(\alpha) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma_K \mid \gamma \equiv 0 \mod \alpha \right\},$$

$$\Gamma(\alpha) = \left\{ M \in \Gamma_K \mid M \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod \alpha \right\},$$

where the latter one is called the *principal congruence subgroup* associated with a.

PROPOSITION 1. Let α be a non-zero integral ideal. Then the commutator subgroup of $\Gamma_0(\alpha)$ contains matrices $\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$ for any $\beta \in q_2^3 q_2'^2 q_3$.

Proof. We invoke Serre [7] in which the congruence subgroup problem was solved affirmatively, particularly for a totally real algebraic number field of degree n > 1. The commutator subgroup $\Gamma_0(\alpha)'$ of $\Gamma_0(\alpha)$ is a finite index in Γ_K (*loc. cit.* Cor. to Theorem 3), and hence $\Gamma_0(\alpha)'$ contains some principal congruence subgroup, say $\Gamma(b)$, b being a non-zero ideal contained in α (*loc. cit.* Cor. 3 to Theorem 2). Let α be any b-unit. Then there are $\beta, \gamma \in b$ and a b-unit δ such that $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma_K$. Then for $\zeta \in O_K$

$$\Gamma_0(\alpha)' \ni M \begin{pmatrix} 1 & \zeta \\ 0 & 1 \end{pmatrix} M^{-1} \begin{pmatrix} 1 & \zeta \\ 0 & 1 \end{pmatrix}^{-1} \equiv \begin{pmatrix} 1 & (\alpha^2 - 1)\zeta \\ 0 & 1 \end{pmatrix} \mod \mathfrak{b}.$$

Since $\Gamma(\mathfrak{b}) \subset \Gamma_0(\mathfrak{a})'$, $\begin{pmatrix} 1 & (\alpha^2 - 1)\zeta \\ 0 & 1 \end{pmatrix}$ is contained in $\Gamma_0(\mathfrak{a})'$, for any \mathfrak{b} -unit α and any $\zeta \in O_K$. The assertion follows from Lemma 1. q.e.d.

In the case of Γ_{κ} , a further argument shows that the commutator subgroup contains $\Gamma(q_2^2q_2'^2q_3)$. Then the commutator factor group of Γ_{κ} is easily calculated, which is, however, not necessary in the present paper. The commutator factor group is determined by Kirchheimer [4] in more general context.

For a group Γ in SL₂(K), we denote by $U(\Gamma)$, the set $\{\beta \in K \mid \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \in \Gamma\}$, which is an additive group. Let χ be any complex valued function on Γ . Then χ_U denotes a function on $U(\Gamma)$ defined by $\chi_U(\beta) = \chi \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$. If χ is a character of Γ , then χ_U is a character of the additive group $U(\Gamma)$.

COROLLARY. Let χ be a character of $\Gamma_0(\mathfrak{a})$. Then χ_U is a character of O_K with values in the set of 24th roots of unity. If the ideal (2) in O_K is unramified at any prime of degree one, then χ_U is valued in the set of sixth roots of unity.

Proof. χ_U can be regarded as a character of $O_K/\mathfrak{q}_2^3\mathfrak{q}_2'^2\mathfrak{q}_3$. O_K/\mathfrak{p}^3 (resp. O_K/\mathfrak{p}^2 , resp. O_K/\mathfrak{p}) is isomorphic to a cyclic group of order eight (resp. an abelian group of type (2, 2), resp. a cyclic group of order three) if a prime $\mathfrak{p} \supset \mathfrak{q}_2$ (resp. \mathfrak{q}_2' , resp. \mathfrak{q}_3). Our assertion is immediate from this. q.e.d.

2. Let Γ be a subgroup of $SL_2(K)$ commensurable with Γ_K . An automorphy factor J of Γ is the function on $\Gamma \times H^n$ with values in $\mathbb{C} - \{0\}$ such that (i) J(M, z) is holomorphic in z for any $M \in \Gamma$, and (ii) J(LM, z) = J(L, Mz)J(M, z) for $L, M \in \Gamma$, and (iii) J(-M, z) = J(M, z) if $\pm M \in \Gamma$. J is said to be a *trivial* automorphy factor if J(M, z) = u(Mz)/u(z) for some invertible holomorphic function u on H^n , n > 1. In the following we consider exclusively the automorphy factor of the form

$$J(M, z) = v(M) \prod_{i=1}^{n} (\gamma^{(i)} z_i + \delta^{(i)})^{k_i}, \quad M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma,$$

where the weight (k_1, \ldots, k_n) is a vector in \mathbb{Q}^n , and v(M) is a complex number. Here $(\gamma^{(i)}z_i + \delta^{(i)})^{k_i}$ is defined to be $\exp(k_i \log(\gamma^{(i)}z_i + \delta^{(i)}))$, where

$$\log(\gamma^{(i)}z_{i} + \delta^{(i)}) = \log |\gamma^{(i)}z_{i} + \delta^{(i)}| + \sqrt{-1} \arg(\gamma^{(i)}z_{i} + \delta^{(i)})$$

with

$$-\pi < \arg(\gamma^{(i)}z_i + \delta^{(i)}) \leq \pi.$$

By definition, v_U is a character of $U(\Gamma)$. Let *m* be the non-zero rational integer for which mk_i $(1 \le i \le n)$ are integral. Then v^m is a character of Γ , and hence some power of it is trivial since the commutator factor group of Γ is finite (Serre [7]). This implies that v_U is a finite character. So there is a non-zero integer v in O_K for which v_U is trivial on $vO_k \cap U(\Gamma)$.

LEMMA 2. Let J, J' be two automorphy factors for Γ with the same weight. Then $J = \chi J'$ for some character χ of Γ .

SHIGEAKI TSUYUMINE

Proof. J/J' is independent of $z \in H^n$ by the assumption. Then the definition (*ii*) of an automorphy factor implies that it is a character. q.e.d.

Now let us consider an automorphy factor J for $\Gamma_0(\alpha)$, α being a non-zero integral ideal. Let ν be a totally positive integer in O_K . Then we make from J, automorphy factors for $\Gamma_0(\nu\alpha)$ of two kinds. One is given simply by restricting to $\Gamma_0(\nu\alpha)$, the group applied to J, which we denote again by J. Let m_{ν} be the automorphism of H^n given by

$$z = (z_1, \ldots, z_n) \rightarrow vz = (v^{(1)}z_1, \ldots, v^{(n)}z_n).$$

Let $M_{\nu} = \begin{pmatrix} \sqrt{\nu}^{-1} & 0 \\ 0 & \sqrt{\nu} \end{pmatrix}$. Since $m_{\nu}(Mz) = (M_{\nu}^{-1}MM_{\nu})m_{\nu}(z)$ for any $M \in SL_2(K)$, the action of $\Gamma_0(\alpha)$ is translated to that of $M_{\nu}^{-1}\Gamma_0(\alpha)M_{\nu}$ by m_{ν} . Noting that $M_{\nu}^{-1}\Gamma_0(\nu\alpha)M_{\nu} \subset \Gamma_0(\alpha)$, let us put

$$J'(M, z) = J(M_v^{-1}MM_v, m_v(z)) \quad \text{for} \quad M \in \Gamma_0(va),$$

which is the pull back of an automorphy factor J via m_{γ} . Then J' is an automorphy factor for $\Gamma_0(\nu \alpha)$. If $\gamma^{(i)}z_i + \delta^{(i)}$ satisfies the condition that $-\pi < \arg(\gamma^{(i)}z_i + \delta^{(i)}) \leq \pi$, then $\gamma^{(i)}\nu^{(i)}z_i + \delta^{(i)}$ does. A simple calculation shows that $J'(M, z) = \nu'(M) \prod_{i=1}^{n} (\gamma^{(i)}z_i + \delta^{(i)})^{k_i}$ with

$$v'\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = v\begin{pmatrix} \alpha & \nu\beta' \\ \nu^{-1}\gamma & \delta \end{pmatrix}$$

PROPOSITION 2. Let v be as above, the multiplier of an automorphy factor J for $\Gamma_0(\alpha)$. Then v_U is valued in the set of 24th roots of unity. If the ideal (2) in O_K is unramified at any prime ideal of degree one, then v_U is valued in the set of sixth roots of unity.

Proof. For a totally real integer v of O_K , we have two automorphy factors J, J' as above. By Lemma 2, there is a character χ of $\Gamma_0(v\alpha)$ for which the equality $J = \chi J'$ holds. Let us take as v, a sufficiently divisible integer so that v_U is trivial on vO_K . Then for the multiplier v' of J', v'_U is trivial on $O_K = U(\Gamma_0(v\alpha))$. So v_U equals χ_U on $U(\Gamma_0(v\alpha)) = U(\Gamma_0(\alpha))$, and our assertion follows from Corollary to Proposition 1. q.e.d.

In a final step, we reduce the argument to the elliptic modular case, and so we make preparations for it. We refer to Rankin [6] for the detail. Let $\Delta(\tau)$, $\tau \in H$, be the cusp form of weight twelve for $\Gamma_{\Omega} = SL_2(\mathbb{Z})$ with a trivial multiplier. Since $\Delta(\tau)$ vanishes at no points of H, $\Delta(\tau)^k$ is a well-defined modular form for any complex number k. Let

$$w(M)(c\tau+d)^{12k}, \qquad M=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in\Gamma_{Q_1}$$

be its automorphy factor, where the branch of $(c\tau + d)^{12k}$ is determined in the above manner. Then the identity

$$w_U(b) = \exp(2\sqrt{-1}\pi kb/6), \qquad b \in \mathbb{Z},$$

holds, which implies that the multiplier determines the weight mod 12. Since the commutator factor group of $\Gamma_{\Omega} / \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is of order six, by Lemma 2 and by the definition (*iii*) of an automorphy factor there are just six automorphy factors if the weight k is fixed. At any rate if J_1 is an automorphy factor for Γ_{Ω} with a multiplier w', then the weight of $J^{\prime 6}$ is determined by $(w^{\prime 6})_U \mod 12$. In particular the weight of $J^{\prime 6}$ is the integer divisible by 12 if and only if $(w^{\prime 6})_U$ is trivial.

THEOREM. Let Γ_K be the Hilbert modular group associated with a totally real algebraic number field K of degree >1. Let $(k_1, \ldots, k_n) \in \mathbb{Q}^n$ be the weight of an automorphy factor. Then $2\sum_{i=1}^n k_i$ is integral. If the ideal (2) in the maximal order of K is unramified at any prime of degree one, then $\frac{1}{2}\sum_{i=1}^n k_i$ is integral.

Proof. Let us identify the upper half plane H with the image embedded diagonally into H^n ;

$$\tau \to (\tau, \ldots, \tau) \in H^n.$$

The stabilizer subgroup at H equals $\Gamma_{\Omega} \subset \Gamma_{K}$. If J_{1} denotes the restriction of J to H, then J_{1} is an automorphy factor for Γ_{Ω} of weight $\sum k_{i}$. Proposition 2 shows that $(v^{24}|_{\Gamma_{\Omega}})_{U}$ is trivial, and that $(v^{6}|_{\Gamma_{\Omega}})_{U}$ is trivial if the ramification condition on the ideal (2) is satisfied. Then $24\sum k_{i}$ is divisible by 12, and $6\sum k_{i}$ is if the ramification condition is satisfied. q.e.d.

Let us suppose that K is a real quadratic field. If d_k denotes the discriminant of K, then the ideal (2) is unramified at any prime of degree one if and only if $d_K \neq 1 \mod 8$. We have the following corollary (compare with Gundlach [3, Theorem 4.1]);

COROLLARY. Let K be a real quadratic field. Then $2\sum_{i=1}^{2} k_i$ is integral. If the discriminant d_k of K satisfies $d_k \neq 1 \mod 8$, then $\frac{1}{2}\sum_{i=1}^{2} k_i$ is integral.

REFERENCES

1. U. Christian, Über Hilbert-Siegelsche Modulformen und Poincarésche Reihen, Math. Ann. 148 (1962), 257–307.

2. E. Freitag, Automorphy factors of Hilbert's modular group, In: Discrete subgroups of Lie groups and applications to moduli, (Tata Institute, 1975).

3. K.-B. Gundlach, Multiplier systems for Hilbert's and Siegel's modular groups, Glasgow Math. J. 17 (1985), 57-80

4. F. Kirchheimer, Zur Bestimmung der linearen Charaktere symplektischer Hauptkongruenzuntergruppen, Math. Z. 150 (1976), 135-148.

5. H. Maass, Modulformen und quadratische Formen über den quadratischen Zahlkörper $R(\sqrt{5})$, Math. Ann. 118 (1941), 65-84.

SHIGEAKI TSUYUMINE

6. R. A. Rankin, Modular forms and functions, (Cambridge University Press, 1977).

7. J.-P. Serre, Le probleme des groupes de congruence pour SL₂, Ann. Math. 92 (1970), 489-527.

8. S. Tsuyumine, Multi-tensors of differential forms on the Hilbert modular variety and on its subvarieties, Math. Ann. 274 (1986), 659-670.

9. S. Tsuyumine, Multi-tensors of differential forms on the Hilbert modular variety and on its subvarieties, II. In preparation.

Sonderforschungsbereich 170, Mathematisches Institut, Bunsenstraße 3–5, 3400 Göttingen, West Germany.

Current address: Department of Mathematics Mie University Tsu, 514 Japan

236