AUTOMORPHY FACTORS FOR A HILBERT MODULAR GROUP
 by SHIGEAKI TSUYUMINE

(Received 2 February, 1987)
Dedicated to Professor I. Satake on the occasion of his 60th birthday

Let K be a totally real algebraic number field of degree $n>1$, and let O_{K} be the maximal order. We denote by Γ_{K}, the Hilbert modular group $\mathrm{SL}_{2}\left(O_{K}\right)$ associated with K. On the extent of the weight of an automorphy factor for Γ_{K}, some restrictions are imposed, not as in the elliptic modular case. Maass [5] showed that the weight is integral for $K=\mathbb{Q}(\sqrt{5})$. It was shown by Christian [1] that for any Hilbert modular group it is a rational number with the bounded denominator depending on the group.
$\mathrm{SL}_{2}(K)$ acts on the product H^{n} of n copies of the upper half plane $H=\left\{z_{1} \in\right.$ $\left.\mathbb{C} \mid \operatorname{Im} z_{1}>0\right\}$ by the usual modular substitution;

$$
z=\left(z_{1}, \ldots, z_{n}\right) \rightarrow M z=\left(\frac{\alpha^{(1)} z_{1}+\beta^{(1)}}{\gamma^{(1)} z_{1}+\delta^{(1)}}, \ldots, \frac{\alpha^{(n)} z_{n}+\beta^{(n)}}{\gamma^{(n)} z_{n}+\delta^{(n)}}\right)
$$

for $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{SL}_{2}(K), \alpha^{(1)}, \ldots, \alpha^{(n)}$ being the conjugates of $\alpha \in K$. We consider an automorphy factor J for Γ_{K} which is of the following general form;

$$
J(M, z)=v(M) \prod_{i=1}^{n}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{k_{i}}, \quad M=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \Gamma_{K}
$$

where $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Q}^{n}$, and $v(M)$ is a complex number. $\left(k_{1}, \ldots, k_{n}\right)$ is called the weight of $J . v$ is called a multiplier and it has only roots of unity as the value. By Freitag [2], it is known that possible automorphy factors are of the above form, up to trivial automorphy factors, provided that $n \geqq 3$. Gundlach has obtained the bound of the denominator of $\sum k_{i} \in \mathbb{Q}$ for a possible automorphy factor J in his paper [3] (see also Tsuyumine [8]), where $2 \sum k_{i} \in \mathbb{Z}$ is proved for n even. However his bound for n odd, is very large in general. The aim of the present paper is to give the proof valid regardless of n odd or even as well as a better bound in the case that an ideal (2) satisfies a ramification condition. Our result is as follows; $2 \sum k_{i} \in \mathbb{Z}$, and if the ideal (2) in O_{K} is unramified at any prime of degree one, then $\frac{1}{2} \sum k_{i} \in \mathbb{Z}$. This result will be applied to study the structure of a Hilbert modular variety in a later paper [9].

The author wishes to express heartfelt gratitude to Sonderforschungsbereich 170 "Geometrie und Analysis" and especially to Professor U. Christian for hospitality and support during stay.

1. Let \mathfrak{a} be a non-zero integral ideal of $O_{K} . \alpha \in O_{K}$ is said to be an \mathfrak{a}-unit if the

Glasgow Math. J. 30 (1988) 231-236.
image of α in O_{K} / \mathfrak{a} is invertible. Let \mathfrak{q}_{2} (resp. $\mathfrak{q}_{2}^{\prime}$) denote the ideal which is the product with multiplicity one, of all primes of degree one at which the ideal (2) in O_{K} is unramified (resp. ramified), where it denotes O_{K} if there are no such primes. Similarly let \mathfrak{q}_{3} denote the ideal which is the product with multiplicity one, of all primes of degree one in the ideal (3) of O_{K}.

Lemma 1. Let a be any non-zero integral ideal. The integers $\alpha^{2}-1, \alpha$ running over the set of \mathfrak{a}-units, generate the ideal containing $\mathfrak{q}_{2}^{3} \mathfrak{q}_{2}^{\prime 2} \mathfrak{q}_{3}$.

Proof. The set of \mathfrak{a}-units is not enlarged if a is replaced by $a q_{2} q_{2}^{\prime} q_{3}$. So we assume that $\mathfrak{a} \subset \mathfrak{q}_{2} \mathfrak{q}_{2}^{\prime} \mathfrak{q}_{3}$. Let \mathfrak{p} be a prime ideal. The reduction map mod \mathfrak{p} gives rise to a surjective map of the set of \mathfrak{a}-units onto O_{K} / \mathfrak{p} or $O_{K} / \mathfrak{p}-\{0\}$ according as $\mathfrak{a} \notin \mathfrak{p}$ or $\mathfrak{a} \subset \mathfrak{p}$, by the Chinese remainder theorem. If \mathfrak{p} contains none of $\mathfrak{q}_{2}, \mathfrak{q}_{2}^{\prime}, \mathfrak{q}_{3}$, then there is obviously an \mathfrak{a}-unit α for which the image of $\alpha^{2}-1$ in O_{K} / \mathfrak{p} is not zero, so \mathfrak{p} is not a factor of the ideal generated by $\alpha^{2}-1$. As easily verified, if \mathfrak{p} is a factor of \mathfrak{q}_{2} (resp. $\mathfrak{q}_{2}^{\prime}$, resp. \mathfrak{q}_{3}), then $\alpha^{2}-1 \in \mathfrak{p}^{3}$ (resp. \mathfrak{p}^{2}, resp. \mathfrak{p}) for any \mathfrak{p}-unit α, and moreover $\alpha^{2}-1 \notin \mathfrak{p}^{4}$ (resp. \mathfrak{p}^{3}, resp. \mathfrak{p}^{2}) for some \mathfrak{p}-unit α. We are done. q.e.d.

Following the standard notation, we define two subgroups of Γ_{K} associated with an ideal \mathfrak{a} as follows;

$$
\begin{aligned}
\Gamma_{0}(\mathfrak{a}) & =\left\{\left.\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \Gamma_{K} \right\rvert\, \gamma \equiv 0 \bmod \mathfrak{a}\right\} \\
\Gamma(\mathfrak{a}) & =\left\{M \in \Gamma_{K} \left\lvert\, M \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod \mathfrak{a}\right.\right\}
\end{aligned}
$$

where the latter one is called the principal congruence subgroup associated with \mathfrak{a}.
Proposition 1. Let a be a non-zero integral ideal. Then the commutator subgroup of $\Gamma_{0}(\mathfrak{a})$ contains matrices $\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right)$ for any $\beta \in \mathfrak{q}_{2}^{3} q_{2}^{\prime 2} \mathfrak{q}_{3}$.

Proof. We invoke Serre [7] in which the congruence subgroup problem was solved affirmatively, particularly for a totally real algebraic number field of degree $n>1$. The commutator subgroup $\Gamma_{0}(\mathfrak{a})^{\prime}$ of $\Gamma_{0}(\mathfrak{a})$ is a finite index in Γ_{K} (loc. cit. Cor. to Theorem 3), and hence $\Gamma_{0}(\mathfrak{a})^{\prime}$ contains some principal congruence subgroup, say $\Gamma(\mathfrak{b})$, \mathfrak{b} being a non-zero ideal contained in \mathfrak{a} (loc. cit. Cor. 3 to Theorem 2). Let α be any \mathfrak{b}-unit. Then there are $\beta, \gamma \in \mathfrak{b}$ and a \mathfrak{b}-unit δ such that $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \Gamma_{K}$. Then for $\zeta \in O_{K}$

$$
\Gamma_{0}(\mathfrak{a})^{\prime} \ni M\left(\begin{array}{ll}
1 & \zeta \\
0 & 1
\end{array}\right) M^{-1}\left(\begin{array}{ll}
1 & \zeta \\
0 & 1
\end{array}\right)^{-1} \equiv\left(\begin{array}{cc}
1 & \left(\alpha^{2}-1\right) \zeta \\
0 & 1
\end{array}\right) \bmod \mathfrak{b}
$$

Since $\Gamma(\mathfrak{b}) \subset \Gamma_{0}(\mathfrak{a})^{\prime},\left(\begin{array}{cc}1 & \left(\alpha^{2}-1\right) \zeta \\ 0 & 1\end{array}\right)$ is contained in $\Gamma_{0}(\mathfrak{a})^{\prime}$, for any \mathfrak{b}-unit α and any $\zeta \in O_{K}$. The assertion follows from Lemma 1. q.e.d.

In the case of Γ_{K}, a further argument shows that the commutator subgroup contains $\Gamma\left(q_{2}^{2} q_{2}^{\prime 2} q_{3}\right)$. Then the commutator factor group of Γ_{K} is easily calculated, which is, however, not necessary in the present paper. The commutator factor group is determined by Kirchheimer [4] in more general context.

For a group Γ in $\mathrm{SL}_{2}(K)$, we denote by $U(\Gamma)$, the set $\left\{\beta \in K \left\lvert\,\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right) \in \Gamma\right.\right\}$, which is an additive group. Let χ be any complex valued function on Γ. Then χ_{U} denotes a function on $U(\Gamma)$ defined by $\chi_{U}(\beta)=\chi\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right)$. If χ is a character of Γ, then χ_{U} is a character of the additive group $U(\Gamma)$.

Corollary. Let χ be a character of $\Gamma_{0}(\mathfrak{a})$. Then χ_{U} is a character of O_{K} with values in the set of 24 th roots of unity. If the ideal (2) in O_{K} is unramified at any prime of degree one, then χ_{U} is valued in the set of sixth roots of unity.

Proof. χ_{U} can be regarded as a character of $O_{K} / \mathfrak{q}_{2}^{3} \mathfrak{q}_{2}^{\prime 2} \mathfrak{q}_{3} . O_{K} / \mathfrak{p}^{3}$ (resp. O_{K} / \mathfrak{p}^{2}, resp. O_{K} / \mathfrak{p}) is isomorphic to a cyclic group of order eight (resp. an abelian group of type (2,2), resp. a cyclic group of order three) if a prime $\mathfrak{p} \supset \mathfrak{q}_{2}$ (resp. $\mathfrak{q}_{2}^{\prime}$, resp. \mathfrak{q}_{3}). Our assertion is immediate from this. q.e.d.
2. Let Γ be a subgroup of $\mathrm{SL}_{2}(K)$ commensurable with Γ_{K}. An automorphy factor J of Γ is the function on $\Gamma \times H^{n}$ with values in $\mathbb{C}-\{0\}$ such that $(i) J(M, z)$ is holomorphic in z for any $M \in \Gamma$, and (ii) $J(L M, z)=J(L, M z) J(M, z)$ for $L, M \in \Gamma$, and (iii) $J(-M, z)=J(M, z)$ if $\pm M \in \Gamma . J$ is said to be a trivial automorphy factor if $J(M, z)=$ $u(M z) / u(z)$ for some invertible holomorphic function u on $H^{n}, n>1$. In the following we consider exclusively the automorphy factor of the form

$$
J(M, z)=v(M) \prod_{i=1}^{n}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{k_{i}}, \quad M=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \Gamma
$$

where the weight $\left(k_{1}, \ldots, k_{n}\right)$ is a vector in \mathbb{Q}^{n}, and $v(M)$ is a complex number. Here $\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{k_{i}}$ is defined to be $\exp \left(k_{i} \log \left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)\right)$, where

$$
\log \left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)=\log \left|\gamma^{(i)} z_{i}+\delta^{(i)}\right|+\sqrt{-1} \arg \left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)
$$

with

$$
-\pi<\arg \left(\gamma^{(i)} z_{i}+\delta^{(i)}\right) \leqq \pi
$$

By definition, v_{U} is a character of $U(\Gamma)$. Let m be the non-zero rational integer for which $m k_{i}(1 \leqq i \leqq n)$ are integral. Then v^{m} is a character of Γ, and hence some power of it is trivial since the commutator factor group of Γ is finite (Serre [7]). This implies that v_{U} is a finite character. So there is a non-zero integer v in O_{K} for which v_{U} is trivial on $v O_{k} \cap U(\Gamma)$.

Lemma 2. Let J, J' be two automorphy factors for Γ with the same weight. Then $J=\chi J^{\prime}$ for some character χ of Γ.

Proof. J / J^{\prime} is independent of $z \in H^{n}$ by the assumption. Then the definition (ii) of an automorphy factor implies that it is a character. q.e.d.

Now let us consider an automorphy factor J for $\Gamma_{0}(\mathfrak{a})$, a being a non-zero integral ideal. Let v be a totally positive integer in O_{K}. Then we make from J, automorphy factors for $\Gamma_{0}(v a)$ of two kinds. One is given simply by restricting to $\Gamma_{0}(v a)$, the group applied to J, which we denote again by J. Let m_{v} be the automorphism of H^{n} given by

$$
z=\left(z_{1}, \ldots, z_{n}\right) \rightarrow v z=\left(v^{(1)} z_{1}, \ldots, v^{(n)} z_{n}\right) .
$$

Let $M_{v}=\left(\begin{array}{cc}\sqrt{v}^{-1} & 0 \\ 0 & \sqrt{v}\end{array}\right)$. Since $m_{v}(M z)=\left(M_{v}^{-1} M M_{v}\right) m_{v}(z)$ for any $M \in \mathrm{SL}_{2}(K)$, the action of $\Gamma_{0}(\mathfrak{a})$ is translated to that of $M_{v}^{-1} \Gamma_{0}(\mathfrak{a}) M_{v}$ by m_{v}. Noting that $M_{v}^{-1} \Gamma_{0}(v \mathfrak{a}) M_{v} \subset$ $\Gamma_{0}(\mathfrak{a})$, let us put

$$
J^{\prime}(M, z)=J\left(M_{v}^{-1} M M_{v}, m_{v}(z)\right) \quad \text { for } \quad M \in \Gamma_{0}(v a)
$$

which is the pull back of an automorphy factor J via m_{v}. Then J^{\prime} is an automorphy factor for $\Gamma_{0}(v a)$. If $\gamma^{(i)} z_{i}+\delta^{(i)}$ satisfies the condition that $-\pi<\arg \left(\gamma^{(i)} z_{i}+\delta^{(i)}\right) \leqq \pi$, then $\gamma^{(i)} v^{(i)} z_{i}+\delta^{(i)}$ does. A simple calculation shows that $J^{\prime}(M, z)=v^{\prime}(M) \prod_{i=1}^{n}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)^{k_{i}}$ with

$$
v^{\prime}\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=v\left(\begin{array}{cc}
\alpha & v \beta \\
v^{-1} \gamma & \delta
\end{array}\right)
$$

Proposition 2. Let v be as above, the multiplier of an automorphy factor J for $\Gamma_{0}(\mathfrak{a})$. Then v_{U} is valued in the set of 24 th roots of unity. If the ideal (2) in O_{K} is unramified at any prime ideal of degree one, then v_{U} is valued in the set of sixth roots of unity.

Proof. For a totally real integer v of O_{K}, we have two automorphy factors J, J^{\prime} as above. By Lemma 2, there is a character χ of $\Gamma_{0}(v a)$ for which the equality $J=\chi J^{\prime}$ holds. Let us take as v, a sufficiently divisible integer so that v_{U} is trivial on $v O_{K}$. Then for the multiplier v^{\prime} of $J^{\prime}, v_{U}^{\prime}$ is trivial on $O_{K}=U\left(\Gamma_{0}(v a)\right)$. So v_{U} equals χ_{U} on $U\left(\Gamma_{0}(v a)\right)=$ $U\left(\Gamma_{0}(\mathfrak{a})\right)$, and our assertion follows from Corollary to Proposition 1. q.e.d.

In a final step, we reduce the argument to the elliptic modular case, and so we make preparations for it. We refer to Rankin [6] for the detail. Let $\Delta(\tau), \tau \in H$, be the cusp form of weight twelve for $\Gamma_{\mathbb{Q}}=\mathrm{SL}_{2}(\mathbb{Z})$ with a trivial multiplier. Since $\Delta(\tau)$ vanishes at no points of $H, \Delta(\tau)^{k}$ is a well-defined modular form for any complex number k. Let

$$
w(M)(c \tau+d)^{12 k}, \quad M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{\mathbb{Q}}
$$

be its automorphy factor, where the branch of $(c \tau+d)^{12 k}$ is determined in the above manner. Then the identity

$$
w_{U}(b)=\exp (2 \sqrt{-1} \pi k b / 6), \quad b \in \mathbb{Z}
$$

holds, which implies that the multiplier determines the weight mod 12 . Since the commutator factor group of $\Gamma_{Q} /\left\{ \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$ is of order six, by Lemma 2 and by the definition (iii) of an automorphy factor there are just six automorphy factors if the weight k is fixed. At any rate if J_{1} is an automorphy factor for Γ_{Q} with a multiplier w^{\prime}, then the weight of $J^{\prime 6}$ is determined by $\left(w^{\prime 6}\right)_{U}$ mod 12 . In particular the weight of $J^{\prime 6}$ is the integer divisible by 12 if and only if $\left(w^{\prime 6}\right)_{U}$ is trivial.

Theorem. Let Γ_{K} be the Hilbert modular group associated with a totally real algebraic number field K of degree >1. Let $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Q}^{n}$ be the weight of an automorphy factor. Then $2 \sum_{i=1}^{n} k_{i}$ is integral. If the ideal (2) in the maximal order of K is unramified at any prime of degree one, then $\frac{1}{2} \sum_{i=1}^{n} k_{i}$ is integral.

Proof. Let us identify the upper half plane H with the image embedded diagonally into H^{n};

$$
\tau \rightarrow(\tau, \ldots, \tau) \in H^{n} .
$$

The stabilizer subgroup at H equals $\Gamma_{Q} \subset \Gamma_{K}$. If J_{1} denotes the restriction of J to H, then J_{1} is an automorphy factor for Γ_{Q} of weight $\sum k_{i}$. Proposition 2 shows that $\left(\left.v^{24}\right|_{\Gamma_{0}}\right)_{U}$ is trivial, and that $\left(\left.v^{6}\right|_{\Gamma_{0}}\right)_{U}$ is trivial if the ramification condition on the ideal (2) is satisfied. Then $24 \sum k_{i}$ is divisible by 12 , and $6 \sum k_{i}$ is if the ramification condition is satisfied. q.e.d.

Let us suppose that K is a real quadratic field. If d_{k} denotes the discriminant of K, then the ideal (2) is unramified at any prime of degree one if and only if $d_{K} \not \equiv 1 \bmod 8$. We have the following corollary (compare with Gundlach [3, Theorem 4.1]);

Corollary. Let K be a real quadratic field. Then $2 \sum_{i=1}^{2} k_{i}$ is integral. If the discriminant d_{k} of K satisfies $d_{k} \not \equiv 1 \bmod 8$, then $\frac{1}{2} \sum_{i=1}^{2} k_{i}$ is integral.

REFERENCES

1. U. Christian, Über Hilbert-Siegelsche Modulformen und Poincarésche Reihen, Math. Ann. 148 (1962), 257-307.
2. E. Freitag, Automorphy factors of Hilbert's modular group, In: Discrete subgroups of Lie groups and applications to moduli, (Tata Institute, 1975).
3. K.-B. Gundlach, Multiplier systems for Hilbert's and Siegel's modular groups, Glasgow Math. J. 17 (1985), 57-80
4. F. Kirchheimer, Zur Bestimmung der linearen Charaktere symplektischer Hauptkongruenzuntergruppen, Math. Z. 150 (1976), 135-148.
5. H. Maass, Modulformen und quadratische Formen über den quadratischen Zahlkörper $R(\sqrt{5})$, Math. Ann. 118 (1941), 65-84.
6. R. A. Rankin, Modular forms and functions, (Cambridge University Press, 1977).
7. J.-P. Serre, Le probleme des groupes de congruence pour SL_{2}, Ann. Math. 92 (1970), 489-527.
8. S. Tsuyumine, Multi-tensors of differential forms on the Hilbert modular variety and on its subvarieties, Math. Ann. 274 (1986), 659-670.
9. S. Tsuyumine, Multi-tensors of differential forms on the Hilbert modular variety and on its subvarieties, II. In preparation.

Sonderforschungsbereich 170, Mathematisches Institut, Bunsenstrabe 3-5, 3400 Göttingen, West Germany.

Current address:
Department of Mathematics
Mie University
Tsu, 514
Japan

