AN UPPER BOUND FOR VOLUMES OF CONVEX BODIES

WILLIAM J. FIREY¹

(Received 1 January 1968)

1

Consider a non-degenerate convex body K in a Euclidean (n+1)dimensional space of points $(x, z) = (x_1, \dots, x_n, z)$ where $n \ge 2$. Denote by μ the maximum length of segments in K which are parallel to the z-axis, and let A_j signify the area (two dimensional volume) of the orthogonal projection of K onto the linear subspace spanned by the z- and x_j -axes. We shall prove that the volume V(K) of K satisfies

(1)
$$(2^n \prod_{j=1}^n A_j)/(n+1)\mu^{n-1} - V(K) = \Delta(K) \ge 0.$$

After this, some applications of (1) are discussed.

2

We first study the effect on $\Delta(K)$ of symmetrization of K in each one of the coordinate planes in succession. To symmetrize K in z = 0 for example, we translate each segment in K which is parallel to the z-axis along its containing line so that its midpoint falls in z = 0 and form the union K' of these translated segments. We say K' is obtained from K by symmetrization in z = 0. Analytically we may describe K as the set of (x, z) such that

$$f_1(x) \leq z \leq f_2(x), \qquad x \in k$$

where k is the orthogonal projection of K onto z = 0 and $x \in k$ means $(x, 0) \in k$. Then K' is the set of (x, z) such that

(2)
$$-[f_2(x)-f_1(x)]/2 \leq z \leq [f_2(x)-f_1(x)]/2, \qquad x \in k.$$

The order in which a succession of symmetrizations is carried out affects the final figure in general, but this makes no difference for our discussion.

¹ This work was done while the author was in receipt of a Fulbright Research appointment from the U. S. Educational Foundation in New Zealand.

503

It is essential to note that, when all the planes of symmetrization are mutually orthogonal, then from each step there results a convex body, with the same volume as K, which is symmetric with respect to all those planes of symmetrization used up through that step. For details see [1, pp. 69-70].

Clearly

$$\mu = \max_{k} \left[f_2(x) - f_1(x) \right]$$

is unchanged by symmetrization in z = 0. However, if the symmetrization is in some other coordinate plane, say $x_1 = 0$, and if μ' is the value of μ after symmetrization, then $\mu' \ge \mu$. To see this, consider the orthogonal projection k' of K onto $x_1 = 0$. The maximal length of segments parallel to the z-axis in k' is μ' . On the other hand, a segment parallel to the z-axis in K of maximal length projects into a segment of length μ in k'.

After symmetrization in each one of the coordinate planes, we arrive at a convex body K^* ; the greatest length μ^* of segments parallel to the z-axis in K^* is greater than μ or else equal to μ in case μ is the width of Kin the direction of the z-axis.

As to the behaviour of the areas A_j under symmetrization, there are two situations: that in which the plane of symmetrization contains both the z- and x_j -axes and that in which the plane of symmetrization contains only one of these axes. We shall illustrate these two cases by examining the effect on A_1 of symmetrization in $x_2 = 0$ and in z = 0. The projection of K onto the two-dimensional subspace spanned by the x_1 - and z-axes is the same as the projection of k'' onto that subspace, where k'' is the orthogonal projection of K onto $x_2 = 0$. Since k'' is not altered by symmetrization in $x_2 = 0$, neither is A_1 .

If we write $A_1(K)$ and $A_1(K')$ for the values of A_1 before and after symmetrization in z = 0, then $A_1(K) \ge A_1(K')$. This is shown as follows. Let

$$g_1(x_1) = \min_{x} f_1(x), \ g_2(x_1) = \max_{x} f_2(x), \ g(x_1) = \max_{x} [f_2(x) - f_1(x)]/2,$$

where the starred extrema are taken over those points x of k whose first coordinates have the fixed value x_1 . The projection of K onto the subspace spanned by the z- and x_1 -axes is the set of points $(x_1, 0, \dots, 0, z)$ for which

$$g_1(x_1) \leq z \leq g_2(x_1), \quad a \leq x_1 \leq b$$

where a and b are the least and greatest values of x_1 for x in k. For the projection of K' we have

$$-g(x_1) \leq z \leq g(x_1), \quad a \leq x_1 \leq b.$$

Since

$$g(x_1) \leq [g_2(x) - g_1(x)]/2,$$

and because

$$A_1(K) = \int_a^b [g_2(x_1) - g_1(x_1)] dx_1, \quad A_1(K') = 2 \int_a^b g(x_1) dx_1,$$

we have $A_1(K) \ge A_1(K')$.

For K^* , the final result of all the symmetrizations, we have by the foregoing discussion

$$(3) $\Delta(K) \ge \Delta(K^*)$$$

3

For each choice of j from 1, 2, \cdots , n, the intersection of K^* with

$$x_1 = x_2 = \cdots = x_{j-1} = x_{j+1} = \cdots = x_n = 0$$

is a two dimensional convex body whose points $(0, \dots, 0, x_j, 0, \dots, 0, z)$ satisfy

(4)
$$-\phi_j(z) \leq x_j \leq \phi_j(z), \quad -\zeta \leq z \leq \zeta,$$

where $\zeta = \mu^*/2$ is the greatest value of z in K^* . If C_j is the set of all points (x, z) which satisfy (4), then the symmetry of K^* with respect to each coordinate plane shows that

$$K^* \subseteq \bigcap_{j=1}^n C_j = C.$$

Observe that the convexity of the cylinders C_j is reflected in the nonnegativity and concavity of each of the functions $\phi_1, \phi_2, \dots, \phi_n$ over their common domain. Clearly C is a convex body for which the quantities A_j and μ have the same value as they do for K^* ; further $V(C) \ge V(K^*)$. Therefore

$$\Delta(K^*) \geq \Delta(C).$$

There is equality if and only if each section of K^* by a plane $z = t, -\zeta \leq t \leq \zeta$, is an *n*-dimensional rectangular parallelopiped.

Since

(5)
$$\Delta(C) = (2^{n+1}\zeta/(n+1))(E_1(C) - E_2(C)),$$

where

$$E_1(C) = \prod_{j=1}^n \left(2 \int_0^\zeta \phi_j(t) dt / \zeta \right),$$

$$E_2(C) = (n+1) \int_0^\zeta \prod_{j=1}^n \phi_j(t) dt / \zeta,$$

to prove (1), we must show $E_1(C) \ge E_2(C)$.

In the first orthant of our (n+1)-dimensional space, the edge curve Γ of C has the equations

$$x_j = \phi_j(z), \quad 0 \leq z \leq \zeta, \qquad j = 1, 2, \cdots, n.$$

If Γ is the line segment L joining $(\phi_1(0), \phi_2(0), \dots, \phi_n(0), 0)$ to $(0, \dots, 0, \zeta)$, then

$$\phi_j(z) = \phi_j(0)(1-z/\zeta)$$

and, by direct computation $E_1(C) = E_2(C)$.

If Γ and L do not coincide, then the orthogonal projection of Γ onto the two dimensional subspace spanned by the z-axis and some one of the x_j -axes is not a line segment. Suppose this happens for j = 1; we write the points of this subspace as (x_1, z) . The projection Γ' of Γ onto this subspace has the equation

$$x_1 = \phi_1(z).$$

From the point $P: (0, \zeta)$ we draw a line segment M to a point $R: (\xi_1, 0)$, where $\xi_1 > \phi_1(0)$. Then, in addition to the point P, M intersects Γ' in a second point $Q: (\xi'_1, \zeta')$, at least for ξ_1 near $\phi_1(0)$, because of the concavity of ϕ_1 . Let r be the region bounded by the segment PQ and that arc of Γ' which joins P and Q; let r' be the region bounded by the segment QR, the rest of Γ' and part of the x_1 -axis. We choose ξ_1 so that the areas of rand r' are equal, which is to say so that

$$\int_0^\zeta \phi_1(t)dt = \int_0^\zeta \psi(t)dt$$

where

$$\psi(t) = \xi_1(1-t/\zeta).$$

Thus $E_1(C)$ is unaltered when we replace ϕ_1 by ψ .

Such a replacement increases $E_2(C)$. Each function ϕ_i is concave with respect to z and non-increasing at z = 0. Consequently

(6)
$$\prod_{j=2}^{n} \phi_{j}(z) \gtrless \prod_{j=2}^{n} \phi_{j}(\zeta') \text{ according as } z \lessgtr \zeta'.$$

Also, by our choice of M,

 $\psi(z) \gtrless \phi_1(z)$ according as $z \gneqq \zeta'$.

Hence, because inequalities (6) are strict for some z,

$$\int_0^{\zeta} (\psi(t) - \phi_1(t)) \prod_{j=2}^n \phi_j(t) dt$$

>
$$\prod_{j=2}^n \phi_j(\zeta') \left\{ \int_0^{\zeta'} [\psi(t) - \phi_1(t)] dt - \int_{\zeta'}^{\zeta} [\phi_1(t) - \psi(t)] dt \right\}.$$

506

Since the areas of r and r' are equal, the expression in curly brackets vanishes.

The same argument applies to those of the remaining functions ϕ_i not of the form ψ . In this way, we arrive at a replacement for the final factor on the right of (5) which vanishes. Hence $E_1(C) > E_2(C)$. In summary: we have $E_1(C) \ge E_2(C)$ with equality if and only if $L = \Gamma$. This proves (1).

4

It remains to describe the cases of equality.

To begin with, there is equality in (1) if and only if $\Delta(K) = \Delta(K^*)$ and K^* has the following properties: its sections by planes z = t are rectangular parallelopipeds and $\Gamma = L$. That is to say, K^* is the convex closure of the union of a rectangular parallelopiped Π in z = 0 with the segment τ from $(0, \dots, 0, -\zeta)$ to $(0, \dots, 0, \zeta)$. Π has its centre at the origin and its edges parallel to the coordinate axes.

We shall show that, for equality in (1), it is necessary and sufficient that K is, to within a translation, the convex closure of the union of τ with a translate of Π which intersects τ . For convenience, we call such a figure a dipyramid. Note that this includes the case in which τ intersects the translate of Π in an end point of τ . The sufficiency is trivial and so we need only show that

(7)
$$\Delta(K) = \Delta(K^*) = 0$$

requires K to be a dipyramid.

We noted earlier that the length of the longest segment or segments in K parallel to the z-axis, equals the width of K in the direction of the z-axis. Thus K contains a translate τ' of τ . We suppose K translated so that τ and τ' coincide. This will be true also for all those convex bodies which result from K by symmetrization in one or more coordinate planes.

Let K' be the result of symmetrizing K in each of the coordinate planes excepting z = 0. When we symmetrize K' in z = 0, we obtain K*. We shall first show that K' is a dipyramid. The difference f_1-f_2 of a concave function f_1 and a convex function f_2 is linear if and only if f_1 and f_2 are linear. From this and the analytic description of symmetrization, it follows that K' is a polyhedron, symmetric with respect to each of the planes $x_j = 0, j = 1, \dots, n$. The number of vertices in a convex polyhedron cannot decrease under symmetrization and so K' has at most 2^n+2 vertices. Consider a vertex of K' which is not in any one of the coordinate planes $x_j = 0$. There must be such vertices since the projection of K' onto z = 0 is identical with Π . By reflecting this vertex in each one of the coordinate planes $x_j = 0$, we obtain the 2^n vertices of a translate Π' of Π . Π' lies in some plane z = t and is centred on the z-axis. In addition, K' has one or two more vertices at the ends of τ according as Π' intersects τ in an endpoint or an interior point of τ , and can have no further vertices because such vertices would have to be off the z-axis, and symmetry considerations show K' would have to have more than 2^n+2 vertices which is impossible. Since K' is the convex closure of its vertices, K' is a dipyramid as asserted.

The intersection $\Pi'(a)$ of K' by a plane $z = a, -\zeta \leq a \leq \zeta$, is homothetic to $\Pi' = \Pi'(t)$. $\Pi'(a)$ is obtained from the intersection $\Pi(a)$ of K and z = a by symmetrizing $\Pi(a)$ with respect to all the coordinate planes $x_j = 0$. Moreover, $\Pi'(a)$ is independent of the order in which these symmetrizations are performed.

We next prove that $\Pi(a)$ must be a translate of $\Pi'(a)$. Suppose $x_j = 0$ is the final plane of symmetrization. The pair of (n-1)-dimensional faces of $\Pi'(a)$ which are parallel to $x_j = 0$ necessarily come from a pair of parallel (n-1)-dimensional faces F_j , G_j of $\Pi(a)$, because any line in z = a, perpendicular to $x_j = 0$, must intersect $\Pi(a)$ and $\Pi'(a)$ in segments of the same length. Since j can be any one of the numbers $1, \dots, n$, $\Pi(a)$ has npairs of parallel faces. The number of faces of a convex polyhedron cannot decrease under symmetrization. Therefore the pairs $F_1, G_1, \dots, F_n, G_n$ make up the totality of faces of $\Pi(a)$, and $\Pi(a)$ is a parallelopiped. If F_j , G_j were not parallel to $x_j = 0$, then they would fail to be perpendicular to some one of the planes $x_i = 0$, $i \neq j$. Symmetrization of $\Pi(a)$ with respect to $x_i = 0$ would cause $\Pi'(a)$ to have more than 2n faces. Thus $\Pi(a)$ is a rectangular parallelopiped which, it is easy to see, must be a translate of $\Pi'(a)$.

From its convexity, K contains the convex closure \overline{K} of the union of $\Pi(t)$ with τ , where we recall that $\Pi(t)$ is the largest of the parallelopipeds $\Pi(a)$. If v is the *n*-dimensional volume of $\Pi(t)$ and of Π , then the volumes of \overline{K} and K^* equal $v\zeta$. But $v\zeta$ must also be the volume of K. Hence K is the dipyramid \overline{K} as originally asserted.

5

The inequality $E_1(C) \ge E_2(C)$ may have independent analytic interest. It can be written in the slightly more general form

(8)
$$\prod_{j=1}^{n} \left[2 \int_{a}^{b} \phi_{j}(t) dt/(b-a) \right] \geq (n+1) \int_{a}^{b} \prod_{j=1}^{n} \phi_{j}(t) dt/(b-a)$$

for non-negative, concave functions $\phi_1, \phi_2, \dots, \phi_n$ over $a \leq t \leq b$. To see this, choose for K the set of points (x, z) which satisfy the inequalities

$$-\phi_j(z) \leq x_j \leq \phi_j(z), \quad a \leq z \leq b,$$

and apply (1). The cases of equality in (1) show that there is equality in (8) if and only if

$$\phi_j(z) = \phi_j(a)(b-z)/(b-a), \qquad j = 1, 2, \cdots, n,$$

or

$$\phi_j(z) = \phi_j(b)(z-a)/(b-a), \qquad j = 1, 2, \cdots, n.$$

In particular, if we set $\phi_1(z) = \phi_2(z) = \cdots = \phi_n(z) = \phi(z)$ in (8), then for integers $n \ge 2$ and non-negative, concave functions ϕ we have

(9)
$$[(1+n)^{1/n}/2] \sqrt[n]{\left[\int_a^b (\phi(t))^n dt/(b-a)\right]} \leq \int_a^b \phi(t) dt/(b-a).$$

We contrast this with

(10)
$$\int_a^b \phi(t) dt/(b-a) \leq \sqrt[n]{\left[\int_a^b (\phi(t))^n dt/(b-a)\right]},$$

which holds for non-negative, integrable functions ϕ , cf. [3].

From (9) and (10) we can get upper and lower volume bounds for convex bodies of revolution in (n+1)-dimensional space. Take the axis of such a body K as the z-axis; the boundary of K is made up of points (x, z)which satisfy $\rho = \phi(z)$ where $\rho^2 = x_1^2 + x_2^2 + \cdots + x_n^2$. The function ϕ is non-negative and concave. If μ is the length of the axis of K, we may assume ϕ to be defined over $0 \leq z \leq \mu$. A meridian section of K is a two dimensional body obtained from cutting K with a two dimensional linear subspace which contains the axis of K. Denote its area by A. Then (9) yields for the volume V of K:

$$V \leq \kappa_n A^n / (n+1) \mu^{n-1},$$

where κ_n is the *n*-dimensional volume of the unit ball in *n*-dimensional space.

On the other hand, (10) gives

$$V \ge \kappa_n A^n / 2^n \mu^{n-1}.$$

In the upper bound for V, there is equality if and only if K is a cone or double cone of revolution; in the lower bound there is equality if and only if K is a cylinder.

Inequality (1) can also be used directly to estimate other geometrical quantities associated with a general convex body K in (n+1)-dimensional space. As an example, if D is the diameter of K and σ is the least brightness of K, which we assume to be positive, then

(11)
$$(D/2)^n < (\prod_{j=1}^n A_j)/\sigma.$$

The brightness of K in any direction is the *n*-dimensional volume of its orthogonal projection onto a plane normal to that direction; the least

William J. Firey

brightness is the attained minimum of the brightnesses over all directions.

To prove (11), choose the z-axis in the direction of maximal width of K so that we have $D = \mu$. In [2] it was shown that, for non-degenerate convex bodies,

$$D\sigma/(n+1) < V(K)$$

and this, together with (1) yields (11). Although (11) is a strict inequality, it cannot be improved. This can be seen by computing the quotient of the two sides of (11) for the following family of convex bodies $K(\zeta)$ and then letting ζ tend to infinity. $K(\zeta)$ is the dipyramid with vertices

 $(\pm 1, \pm 1, \cdots, \pm 1, 0), (0, \cdots, 0, \pm \zeta)$

formed by allowing all possible sign combinations. the least brightness of $K(\zeta)$ occurs in a direction which tends to that of z-axis as ζ tends to infinity.

References

- [1] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, (Berlin, 1934).
- [2] W. Firey, 'Lower bounds for volumes of convex bodies', Archiv der Math. 16 (1965), 69-74.
- [3] G. Hardy, J. Littlewood and G. Pólya, Inequalities, (Cambridge, 1934).

University of Otago Dunedin, N.Z. and Oregon State University Corvallis Ore, U.S.A.