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1

Consider a non-degenerate convex body K in a Euclidean (n-4-1)-
dimensional space of points (z, 2) = (%, * * *, ®,, 2) where # = 2. Denote
by u the maximum length of segments in K which are parallel to the z-axis,
and let A, signify the area (two dimensional volume) of the orthogonal
projection of K onto the linear subspace spanned by the z- and xz,-axes.
We shall prove that the volume V (K) of K satisfies

(1) (2,.’13 A)| (1) =V (K) = A(K) = 0.

After this, some applications of (1) are discussed.

2

We first study the effect on 4(K) of symmetrization of K in each one
of the coordinate planes in succession. To symmetrize K in z = 0 for example,
we translate each segment in K which is parallel to the z-axis along its
containing line so that its midpoint falls in z = 0 and form the union K’
of these translated segments. We say K’ is obtained from K by symmetriza-
tion in z = 0. Analytically we may describe K as the set of (z, z) such that

filr) = 2 < f,(=), zek

where % is the orthogonal projection of K onto z = 0 and x € # means
(z, 0) € k. Then K’ is the set of (z, z) such that

(2) — @) —f1(®)])2 = 2 = [fo(=)—F(=)]/2, w ek

The order in which a succession of symmetrizations is carried out affects
the final figure in general, but this makes no difference for our discussion.

1 This work was done while the author was in receipt of a Fulbright Research appoint-
ment from the U. S. Educational Foundation in New Zealand.
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It is essential to note that, when all the planes of symmetrization are
mutually orthogonal, then from each step there results a convex body,
with the same volume as K, which is symmetric with respect to all those
planes of symmetrization used up through that step. For details see
[1, pp. 69—70].
Clearly
p = max [fy(e)—h@)]

is unchanged by symmetrization in 2 = 0. However, if the symmetrization
is in some other coordinate plane, say x;, = 0, and if x4’ is the value of u
after symmetrization, then 4’ = u. To see this, consider the orthogonal
projection & of K onto x; = 0. The maximal length of segments parallel
to the z-axis in £’ is #’. On the other hand, a segment parallel to the z-axis
in K of maximal length projects into a segment of length u in &’

After symmetrization in each one of the coordinate planes, we arrive
at a convex body K*; the greatest length u* of segments parallel to the
z-axis in K* is greater than u or else equal to u in case u is the width of K
in the direction of the z-axis.

As to the behaviour of the areas 4; under symmetrization, there are
two situations: that in which the plane of symmetrization contains both
the z- and ;-axes and that in which the plane of symmetrization contains
only one of these axes. We shall illustrate these two cases by examining
the effect on A4, of symmetrization in z; = 0 and in z = 0. The projection
of K onto the two-dimensional subspace spanned by the ;- and z-axes is
the same as the projection of 2’ onto that subspace, where 2" is the ortho-
gonal projection of K onto x, = 0. Since £’’ is not altered by symmetrization
in 2, = 0, neither is 4,.

If we write 4;(K) and A4,(K’) for the values of A4, before and after
symmetrization in z = 0, then 4,(K) = A,(K’). This is shown as follows.
Let

g1(x) = min f1(®@), &(x1) = m:x f2(z), g(@) = mf.x [fo(x)—fi(2)]/2,

where the starred extrema are taken over those points & of £ whose first
coordinates have the fixed value ;. The projection of K onto the subspace
spanned by the z- and z;-axes is the set of points (z,, 0, - - -, 0, z) for which

g1(®) S 2= go(%y), a2 <0,

where a and b are the least and greatest values of #, for « in k. For the
projection of K’ we have

—gx) S2=5¢m), a=sz, <0
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Since

g(x;) < [go(x)—g1(x)]/2,
and because

4,(K) = f " lealey) —gy(@) ey, Ay (K') = 2 f " g(ey)dey,

we have 4,(K) = A(K').
For K*, the final result of all the symmetrizations, we have by the
foregoing discussion

(3) A(K) = A(K*).

3

For each choice of § from 1, 2, - - -, #, the intersection of K* with

By =Ty = =T =Ty =" "=2,=0
is a two dimensional convex body whose points (0,---,0,;,0,:--,0,2)
satisfy
(4) _¢J(z) é xj é ¢i(z); _C é Z2 é C;

where { = u*/2 is the greatest value of z in K*. If C, is the set of all points
(x, z) which satisfy (4), then the symmetry of K* with respect to each coor-
dinate plane shows that
K*CNC,=C.
=1
Observe that the convexity of the cylinders C; is reflected in the non-
negativity and concavity of each of the functions ¢,, ¢,, - - -, ¢, over their
common domain. Clearly C is a convex body for which the quantities A;
and x have the same value as they do for K*; further V(C) = V(K*).

Therefore
A(K*) = A(C).

There is equality if and only if each section of K* by a plane
z =1, —{ <t =, is an n-dimensional rectangular parallelopiped.
Since

(5) 4(C) = (2"1L](n+1)) (EL(C)—E4(C)),

where

E0) =TI (2 ,0a),

i=1

Ey(C) = (1+1) :f[¢,~(t>dt/<:,

Je=1
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to prove (1), we must show E,(C) = E,(C).
In the first orthant of our (n+1)-dimensional space, the edge curve
I' of C has the equations

x, =¢;(z), 0=2z2=1¢, 7':1,2

,...’n.

If I'is the line segment L joining (¢,(0), ¢,(0), - - -, $,(0), 0) to (0, ---, 0,¢),
then

¢;(2) = 6;(0)(1—2/C)
and, by direct computation E,(C) = E,(C).

If I and L do not coincide, then the orthogonal projection of I" onto
the two dimensional subspace spanned by the z-axis and some one of the
x;-axes is not a line segment. Suppose this happens for § = 1; we write the
points of this subspace as (z,, z). The projection I"" of I" onto this subspace
has the equation

xy = ¢y (2).

From the point P: (0, {) we draw a line segment M to a point R: (§;, 0),
where & > ¢,(0). Then, in addition to the point P, M intersects I in a
second point Q : (&, £’), at least for & near ¢,(0), because of the concavity
of ;. Let » be the region bounded by the segment PQ and that arc of I
which joins P and Q; let ' be the region bounded by the segment QR,
the rest of I'" and part of the x;-axis. We choose &; so that the areas of »
and 7’ are equal, which is to say so that

[F00a = poar,

p(t) = &(1—¢/0).

Thus E((C) is unaltered when we replace ¢, by ».
Such a replacement increases E,(C). Each function ¢, is concave with
respect to z and non-increasing at z = 0. Consequently

(6) 11 ¢,(z) = T] ¢;(¢’) according as z = {'.
j=2 i=2
Also, by our choice of M,

where

p(z) = ¢,(2) according as z ={'.

Hence, because inequalities (6) are strict for some z,

[ vo—s0) T 4,00

=2

> 1L, {f [p(t)— by (1)1t — f ()~ )]
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Since the areas of 7 and #' are equal, the expression in curly brackets
vanishes.

The same argument applies to those of the remaining functions ¢;
not of the form y. In this way, we arrive at a replacement for the final
factor on the right of (5) which vanishes. Hence E,(C) > E,(C). In
summary: we have E;(C) = E,(C) with equality if and only if L =TI
This proves (1).

4

It remains to describe the cases of equality.

To begin with, there is equality in (1) if and only if 4(K) = 4(K*)
and K* has the following properties: its sections by planes z = ¢ are rec-
tangular parallelopipeds and I'= L. That is to say, K* is the convex
closure of the union of a rectangular parallelopiped I7 in z = 0 with the
segment 7 from (0,---,0, —¢) to (0,---,0,¢). IT has its centre at the
origin and its edges parallel to the coordinate axes.

We shall show that, for equality in (1), it is necessary and sufficient
that K is, to within a translation, the convex closure of the union of = with
a translate of IT which intersects 7. For convenience, we call such a figure
a dipyramid. Note that this includes the case in which 7 intersects the
translate of I in an end point of 7. The sufficiency is trivial and so we need
only show that

) A(K) = A(K*) =0

requires K to be a dipyramid.

We noted earlier that the length of the longest segment or segments
in K parallel to the z-axis, equals the width of K in the direction of the
z-axis. Thus K contains a translate v’ of 7. We suppose K translated so
that v and 7’ coincide. This will be true also for all those convex bodies
which result from K by symmetrization in one or more coordinate planes.

Let K’ be the result of symmetrizing K in each of the coordinate planes
excepting z = 0. When we symmetrize K’ in 2 = 0, we obtain K*. We shall
first show that K’ is a dipyramid. The difference f,—f, of a concave function
{1 and a convex function f, is linear if and only if f, and f, are linear. From
this and the analytic description of symmetrization, it follows that K’ is a
polyhedron, symmetric with respect to each of the planesz; = 0,7 = 1,---, n.
The number of vertices in a convex polyhedron cannot decrease under
symmetrization and so K’ has at most 2”42 vertices. Consider a vertex
of K’ which is not in any one of the coordinate planes z; = 0. There must
be such vertices since the projection of K’ onto z = 0 is identical with
II. By reflecting this vertex in each one of the coordinate planes z; = 0,
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we obtain the 2" vertices of a translate II' of II. II' lies in some plane
z =t and is centred on the z-axis. In addition, KX’ has one or two more
vertices at the ends of 7 according as II' intersects 7z in an endpoint or
an interior point of 7, and can have no further vertices because such
vertices would have to be off the z-axis, and symmetry considerations show
K’ would have to have more than 2"+ 2 vertices which is impossible. Since
K’ is the convex closure of its vertices, K’ is a dipyramid as asserted.

The intersection II'(a) of K’ by a plane 2 =4, —(<a <¢{, is
homothetic to II" = IT'(¢). II'(a) is obtained from the intersection II(a)
of K and z = a by symmetrizing II(a) with respect to all the coordinate
planes z; = 0. Moreover, II'(a) is independent of the order in which these
symmetrizations are performed.

We next prove that II(a) must be a translate of IT'(a). Suppose z; = 0
is the final plane of symmetrization. The pair of (n—1)-dimensional faces
of II'(a) which are parallel to z; = 0 necessarily come from a pair of
parallel (n—1)-dimensional faces F;, G, of II(a), because any line in z = a,
perpendicular to x; = 0, must intersect I7(a) and II'(a) in segments of the
same length. Since § can be any one of the numbers 1, - - -, n, II(a) has »
pairs of parallel faces. The number of faces of a convex polyhedron cannot
decrease under symmetrization. Therefore the pairs F,,G;,---, F,, G,
make up the totality of faces of II(a), and II(a) is a parallelopiped. If
F,, G, were not parallel to x; = 0, then they would fail to be perpendicular
to some one of the planes z; = 0, ¢ 5% j. Symmetrization of I7(a) with respect
to x; = 0 would cause II'{a) to have more than 2»n faces. Thus II(a) is a
rectangular parallelopiped which, it is easy to see, must be a translate of
IT (a).

From its convexity, K contains the convex closure K of the union of
II(t) with 7, where we recall that I7(f) is the largest of the parallelopipeds
II(a). If v is the n-dimensional volume of II(¢) and of II, then the volumes
of K and K* equal v¢. But v{ must also be the volume of K. Hence K is the
dipyramid K as originally asserted.

5

The inequality E,(C) = E,(C) may have independent analytic interest.
It can be written in the slightly more general form

®  I[2f sewe—a] = e [ Ta0@e—0

for non-negative, concave functions ¢,, ¢,, * -+, ¢, over a < ¢ < b. To see
this, choose for K the set of points (x, z) which satisfy the inequalities

—¢;(2) Sx; = ¢i(2), a=z=0b,
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and apply (1). The cases of equality in (1) show that there is equality in
(8) if and only if

$;(2) = ¢,(a) (b—2)/(b—a), j=12"-"m,
or

$;(2) = 4,(0)(z—a)/(b—a), f=12-"n
In particular, if we set ¢,(z) = ¢5(2) = - - - = ¢,(2) = #(z) in (8), then for

integers # = 2 and non-negative, concave functions ¢ we have

O e Y[ gorae-a] <[ sowo-a.

a

We contrast this with

(10) qu(t dt|(b—a) <JU ())"dt| (b— a)]

which holds for non-negative, integrable functions ¢, cf. [3].

From (9) and (10) we can get upper and lower volume bounds for
convex bodies of revolution in (#-+1)-dimensional space. Take the axis of
such a body K as the z-axis; the bounda.ry of K is made up of points (z, 2)
which satisfy p = $(z) where p? = a?4-a2+ - - - +-22. The function ¢ is
non-negative and concave. If x is the length of the axis of K, we may assume
¢ to be defined over 0 < 2 < u. A meridian section of KX is a two dimensional
body obtained from cutting K with a two dimensional linear subspace
which contains the axis of K. Denote its area by A. Then (9) yields for the
volume V of K:

V < kA7 (n-1)unt

where «,, is the n-dimensional volume of the unit ball in #-dimensional space.
On the other hand, (10) gives

V =k, A"2runt,

In the upper bound for V, there is equality if and only if K is a cone or
double cone of revolution; in the lower bound there is equality if and only if
K is a cylinder.

Inequality (1) can also be used directly to estimate other geometrical
quantities associated with a general convex body K in (#-1)-dimensional
space. As an example, if D is the diameter of K and o is the least brightness
of K, which we assume to be positive, then

(11) (Di2)* < (HA )[o

i=1

The brightness of K in any direction is the n#-dimensional volume of its
orthogonal projection onto a plane normal to that direction; the least
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brightness is the attained minimum of the brightnesses over all directions.
To prove (11), choose the z-axis in the direction of maximal width of
K so that we have D = u. In [2] it was shown that, for non-degenerate
convex bodies,
Dof(n+1) < V(K)

and this, together with (1) yields (11). Although (11) is a strict inequality,
it cannot be improved. This can be seen by computing the quotient of the
two sides of (11) for the following family of convex bodies K({) and then
letting { tend to infinity. K({) is the dipyramid with vertices

(:i:l, :}:1, < :1:1, 0), (0, .-, 0, iC)

formed by allowing all possible sign combinations. the least brightness of
K (£) occurs in a direction which tends to that of z-axis as { tends to infinity.
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