AN UPPER BOUND FOR VOLUMES OF CONVEX BODIES

WILLIAM J. FIREY ${ }^{1}$

(Received 1 January 1968)

1

Consider a non-degenerate convex body K in a Euclidean ($n+1$)dimensional space of points $(x, z)=\left(x_{1}, \cdots, x_{n}, z\right)$ where $n \geqq 2$. Denote by μ the maximum length of segments in K which are parallel to the z-axis, and let $A_{\text {, }}$ signify the area (two dimensional volume) of the orthogonal projection of K onto the linear subspace spanned by the z - and x_{j}-axes. We shall prove that the volume $V(K)$ of K satisfies

$$
\begin{equation*}
\left(2^{n} \prod_{j=1}^{n} A_{j}\right) /(n+1) \mu^{n-1}-V(K)=\Delta(K) \geqq 0 . \tag{1}
\end{equation*}
$$

After this, some applications of (1) are discussed.

2

We first study the effect on $\Delta(K)$ of symmetrization of K in each one of the coordinate planes in succession. To symmetrize K in $z=0$ for example, we translate each segment in K which is parallel to the z-axis along its containing line so that its midpoint falls in $z=0$ and form the union K^{\prime} of these translated segments. We say K^{\prime} is obtained from K by symmetrization in $z=0$. Analytically we may describe K as the set of (x, z) such that

$$
f_{1}(x) \leqq z \leqq f_{2}(x), \quad x \in k
$$

where k is the orthogonal projection of K onto $z=0$ and $x \in k$ means $(x, 0) \in k$. Then K^{\prime} is the set of (x, z) such that

$$
\begin{equation*}
-\left[f_{2}(x)-f_{1}(x)\right] / 2 \leqq z \leqq\left[f_{2}(x)-f_{1}(x)\right] / 2, \quad x \in k \tag{2}
\end{equation*}
$$

The order in which a succession of symmetrizations is carried out affects the final figure in general, but this makes no difference for our discussion.

[^0]It is essential to note that, when all the planes of symmetrization are mutually orthogonal, then from each step there results a convex body, with the same volume as K, which is symmetric with respect to all those planes of symmetrization used up through that step. For details see [1, pp. 69-70].

Clearly

$$
\mu=\max _{k}\left[f_{2}(x)-f_{1}(x)\right]
$$

is unchanged by symmetrization in $z=0$. However, if the symmetrization is in some other coordinate plane, say $x_{1}=0$, and if μ^{\prime} is the value of μ after symmetrization, then $\mu^{\prime} \geqq \mu$. To see this, consider the orthogonal projection k^{\prime} of K onto $x_{1}=0$. The maximal length of segments parallel to the z-axis in k^{\prime} is μ^{\prime}. On the other hand, a segment parallel to the z-axis in K of maximal length projects into a segment of length μ in k^{\prime}.

After symmetrization in each one of the coordinate planes, we arrive at a convex body K^{*}; the greatest length μ^{*} of segments parallel to the z-axis in K^{*} is greater than μ or else equal to μ in case μ is the width of K in the direction of the z-axis.

As to the behaviour of the areas A_{j} under symmetrization, there are two situations: that in which the plane of symmetrization contains both the z - and x_{j}-axes and that in which the plane of symmetrization contains only one of these axes. We shall illustrate these two cases by examining the effect on A_{1} of symmetrization in $x_{2}=0$ and in $z=0$. The projection of K onto the two-dimensional subspace spanned by the x_{1} - and z-axes is the same as the projection of $k^{\prime \prime}$ onto that subspace, where $k^{\prime \prime}$ is the orthogonal projection of K onto $x_{2}=0$. Since $k^{\prime \prime}$ is not altered by symmetrization in $x_{2}=0$, neither is A_{1}.

If we write $A_{1}(K)$ and $A_{1}\left(K^{\prime}\right)$ for the values of A_{1} before and after symmetrization in $z=0$, then $A_{1}(K) \geqq A_{1}\left(K^{\prime}\right)$. This is shown as follows. Let

$$
g_{1}\left(x_{1}\right)=\min _{*} f_{1}(x), g_{2}\left(x_{1}\right)=\max _{*} f_{2}(x), g\left(x_{1}\right)=\max _{*}\left[f_{2}(x)-f_{1}(x)\right] / 2
$$

where the starred extrema are taken over those points x of k whose first coordinates have the fixed value x_{1}. The projection of K onto the subspace spanned by the z - and x_{1}-axes is the set of points $\left(x_{1}, 0, \cdots, 0, z\right)$ for which

$$
g_{1}\left(x_{1}\right) \leqq z \leqq g_{2}\left(x_{1}\right), \quad a \leqq x_{1} \leqq b
$$

where a and b are the least and greatest values of x_{1} for x in k. For the projection of K^{\prime} we have

$$
-g\left(x_{1}\right) \leqq z \leqq g\left(x_{1}\right), \quad a \leqq x_{1} \leqq b
$$

Since

$$
g\left(x_{1}\right) \leqq\left[g_{2}(x)-g_{1}(x)\right] / 2
$$

and because

$$
A_{1}(K)=\int_{a}^{b}\left[g_{2}\left(x_{1}\right)-g_{1}\left(x_{1}\right)\right] d x_{1}, \quad A_{1}\left(K^{\prime}\right)=2 \int_{a}^{b} g\left(x_{1}\right) d x_{1}
$$

we have $A_{1}(K) \geqq A_{1}\left(K^{\prime}\right)$.
For K^{*}, the final result of all the symmetrizations, we have by the foregoing discussion

$$
\begin{equation*}
\Delta(K) \geqq \Delta\left(K^{*}\right) \tag{3}
\end{equation*}
$$

3

For each choice of j from $1,2, \cdots, n$, the intersection of K^{*} with

$$
x_{1}=x_{2}=\cdots=x_{j-1}=x_{j+1}=\cdots=x_{n}=0
$$

is a two dimensional convex body whose points ($0, \cdots, 0, x_{j}, 0, \cdots, 0, z$) satisfy

$$
\begin{equation*}
-\phi_{j}(z) \leqq x_{j} \leqq \phi_{j}(z), \quad-\zeta \leqq z \leqq \zeta, \tag{4}
\end{equation*}
$$

where $\zeta=\mu^{*} / 2$ is the greatest value of z in K^{*}. If C_{j} is the set of all points (x, z) which satisfy (4), then the symmetry of K^{*} with respect to each coordinate plane shows that

$$
K^{*} \subseteq \bigcap_{j=1}^{n} C_{j}=C
$$

Observe that the convexity of the cylinders C_{j} is reflected in the nonnegativity and concavity of each of the functions $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ over their common domain. Clearly C is a convex body for which the quantities A_{j} and μ have the same value as they do for K^{*}; further $V(C) \geqq V\left(K^{*}\right)$. Therefore

$$
\Delta\left(K^{*}\right) \geqq \Delta(C)
$$

There is equality if and only if each section of K^{*} by a plane $z=t,-\zeta \leqq t \leqq \zeta$, is an n-dimensional rectangular parallelopiped.

Since

$$
\begin{equation*}
\Delta(C)=\left(2^{n+1} \zeta /(n+1)\right)\left(E_{1}(C)-E_{2}(C)\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& E_{1}(C)=\prod_{j=1}^{n}\left(2 \int_{0}^{\zeta} \phi_{j}(t) d t / \zeta\right) \\
& E_{2}(C)=(n+1) \int_{0}^{\zeta} \prod_{j=1}^{n} \phi_{j}(t) d t / \zeta
\end{aligned}
$$

to prove (1), we must show $E_{1}(C) \geqq E_{2}(C)$.
In the first orthant of our $(n+1)$-dimensional space, the edge curve Γ of C has the equations

$$
x_{j}=\phi_{i}(z), \quad 0 \leqq z \leqq \zeta, \quad j=1,2, \cdots, n
$$

If Γ is the line segment L joining $\left(\phi_{1}(0), \phi_{2}(0), \cdots, \phi_{n}(0), 0\right)$ to $(0, \cdots, 0, \zeta)$, then

$$
\phi_{j}(z)=\phi_{j}(0)(1-z / \zeta)
$$

and, by direct computation $E_{1}(C)=E_{2}(C)$.
If Γ and L do not coincide, then the orthogonal projection of Γ onto the two dimensional subspace spanned by the z-axis and some one of the x_{j}-axes is not a line segment. Suppose this happens for $j=1$; we write the points of this subspace as $\left(x_{1}, z\right)$. The projection Γ^{\prime} of Γ onto this subspace has the equation

$$
x_{1}=\phi_{1}(z)
$$

From the point $P:(0, \zeta)$ we draw a line segment M to a point $R:\left(\xi_{1}, 0\right)$, where $\xi_{1}>\phi_{1}(0)$. Then, in addition to the point P, M intersects Γ^{\prime} in a second point $Q:\left(\xi_{1}^{\prime}, \zeta^{\prime}\right)$, at least for ξ_{1} near $\phi_{1}(0)$, because of the concavity of ϕ_{1}. Let r be the region bounded by the segment $P Q$ and that arc of $\Gamma^{\prime \prime}$ which joins P and Q; let r^{\prime} be the region bounded by the segment $Q R$, the rest of Γ^{\prime} and part of the x_{1}-axis. We choose ξ_{1} so that the areas of r and r^{\prime} are equal, which is to say so that

$$
\int_{0}^{\zeta} \phi_{1}(t) d t=\int_{0}^{\zeta} \psi(t) d t,
$$

where

$$
\psi(t)=\xi_{1}(1-t / \zeta) .
$$

Thus $E_{1}(C)$ is unaltered when we replace ϕ_{1} by ψ.
Such a replacement increases $E_{2}(C)$. Each function ϕ_{j} is concave with respect to z and non-increasing at $z=0$. Consequently

$$
\begin{equation*}
\prod_{j=2}^{n} \phi_{j}(z) \gtreqless \prod_{j=2}^{n} \phi_{j}\left(\zeta^{\prime}\right) \quad \text { according as } z \leqq \zeta^{\prime} \tag{6}
\end{equation*}
$$

Also, by our choice of M,

$$
\psi(z) \gtreqless \phi_{1}(z) \text { according as } z \leqq \zeta^{\prime} \text {. }
$$

Hence, because inequalities (6) are strict for some z,

$$
\begin{aligned}
\int_{0}^{\zeta}\left(\psi(t)-\phi_{1}(t)\right) & \prod_{j=2}^{n} \phi_{j}(t) d t \\
& >\prod_{j=2}^{n} \phi_{j}\left(\zeta^{\prime}\right)\left\{\int_{0}^{\zeta^{\prime}}\left[\psi(t)-\phi_{1}(t)\right] d t-\int_{\zeta^{\prime}}^{\zeta}\left[\phi_{1}(t)-\psi(t)\right] d t\right\}
\end{aligned}
$$

Since the areas of r and r^{\prime} are equal, the expression in curly brackets vanishes.

The same argument applies to those of the remaining functions ϕ_{j} not of the form ψ. In this way, we arrive at a replacement for the final factor on the right of (5) which vanishes. Hence $E_{1}(C)>E_{2}(C)$. In summary: we have $E_{1}(C) \geqq E_{2}(C)$ with equality if and only if $L=\Gamma$. This proves (1).

4

It remains to describe the cases of equality.
To begin with, there is equality in (1) if and only if $\Delta(K)=\Delta\left(K^{*}\right)$ and K^{*} has the following properties: its sections by planes $z=t$ are rectangular parallelopipeds and $\Gamma=L$. That is to say, K^{*} is the convex closure of the union of a rectangular parallelopiped Π in $z=0$ with the segment τ from $(0, \cdots, 0,-\zeta)$ to $(0, \cdots, 0, \zeta)$. Π has its centre at the origin and its edges parallel to the coordinate axes.

We shall show that, for equality in (1), it is necessary and sufficient that K is, to within a translation, the convex closure of the union of τ with a translate of Π which intersects τ. For convenience, we call such a figure a dipyramid. Note that this includes the case in which τ intersects the translate of Π in an end point of τ. The sufficiency is trivial and so we need only show that

$$
\begin{equation*}
\Delta(K)=\Delta\left(K^{*}\right)=0 \tag{7}
\end{equation*}
$$

requires K to be a dipyramid.
We noted earlier that the length of the longest segment or segments in K parallel to the z-axis, equals the width of K in the direction of the z-axis. Thus K contains a translate τ^{\prime} of τ. We suppose K translated so that τ and τ^{\prime} coincide. This will be true also for all those convex bodies which result from K by symmetrization in one or more coordinate planes.

Let K^{\prime} be the result of symmetrizing K in each of the coordinate planes excepting $z=0$. When we symmetrize K^{\prime} in $z=0$, we obtain K^{*}. We shall first show that K^{\prime} is a dipyramid. The difference $f_{1}-f_{2}$ of a concave function t_{1} and a convex function t_{2} is linear if and only if t_{1} and t_{2} are linear. From this and the analytic description of symmetrization, it follows that K^{\prime} is a polyhedron, symmetric with respect to each of the planes $x_{j}=0, j=1, \cdots, n$. The number of vertices in a convex polyhedron cannot decrease under symmetrization and so K^{\prime} has at most $2^{n}+2$ vertices. Consider a vertex of K^{\prime} which is not in any one of the coordinate planes $x_{j}=0$. There must be such vertices since the projection of K^{\prime} onto $z=0$ is identical with Π. By reflecting this vertex in each one of the coordinate planes $x_{j}=0$,
we obtain the 2^{n} vertices of a translate Π^{\prime} of $\Pi . \Pi^{\prime}$ lies in some plane $z=t$ and is centred on the z-axis. In addition, K^{\prime} has one or two more vertices at the ends of τ according as Π^{\prime} intersects τ in an endpoint or an interior point of τ, and can have no further vertices because such vertices would have to be off the z-axis, and symmetry considerations show K^{\prime} would have to have more than $2^{n}+2$ vertices which is impossible. Since K^{\prime} is the convex closure of its vertices, K^{\prime} is a dipyramid as asserted.

The intersection $\Pi^{\prime}(a)$ of K^{\prime} by a plane $z=a,-\zeta \leqq a \leqq \zeta$, is homothetic to $\Pi^{\prime}=\Pi^{\prime}(t) . \Pi^{\prime}(a)$ is obtained from the intersection $\Pi(a)$ of K and $z=a$ by symmetrizing $\Pi(a)$ with respect to all the coordinate planes $x_{j}=0$. Moreover, $\Pi^{\prime}(a)$ is independent of the order in which these symmetrizations are performed.

We next prove that $\Pi(a)$ must be a translate of $\Pi^{\prime}(a)$. Suppose $x_{j}=0$ is the final plane of symmetrization. The pair of $(n-1)$-dimensional faces of $\Pi^{\prime}(a)$ which are parallel to $x_{j}=0$ necessarily come from a pair of parallel $(n-1)$-dimensional faces F_{j}, G_{j} of $\Pi(a)$, because any line in $z=a$, perpendicular to $x_{j}=0$, must intersect $\Pi(a)$ and $\Pi^{\prime}(a)$ in segments of the same length. Since j can be any one of the numbers $1, \cdots, n, \Pi(a)$ has n pairs of parallel faces. The number of faces of a convex polyhedron cannot decrease under symmetrization. Therefore the pairs $F_{1}, G_{1}, \cdots, F_{n}, G_{n}$ make up the totality of faces of $\Pi(a)$, and $\Pi(a)$ is a parallelopiped. If F_{j}, G_{j} were not parallel to $x_{j}=0$, then they would fail to be perpendicular to some one of the planes $x_{i}=0, i \neq j$. Symmetrization of $\Pi(a)$ with respect to $x_{i}=0$ would cause $\Pi^{\prime}(a)$ to have more than $2 n$ faces. Thus $\Pi(a)$ is a rectangular parallelopiped which, it is easy to see, must be a translate of $\Pi^{\prime}(a)$.

From its convexity, K contains the convex closure \bar{K} of the union of $\Pi(t)$ with τ, where we recall that $\Pi(t)$ is the largest of the parallelopipeds $\Pi(a)$. If v is the n-dimensional volume of $\Pi(t)$ and of Π, then the volumes of \bar{K} and K^{*} equal $\nu \zeta$. But $\nu \zeta$ must also be the volume of K. Hence K is the dipyramid \bar{K} as originally asserted.

The inequality $E_{1}(C) \geqq E_{2}(C)$ may have independent analytic interest. It can be written in the slightly more general form

$$
\begin{equation*}
\prod_{j=1}^{n}\left[2 \int_{a}^{b} \phi_{j}(t) d t /(b-a)\right] \geqq(n+1) \int_{a}^{b} \prod_{j=1}^{n} \phi_{j}(t) d t /(b-a) \tag{8}
\end{equation*}
$$

for non-negative, concave functions $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ over $a \leqq t \leqq b$. To see this, choose for K the set of points (x, z) which satisfy the inequalities

$$
-\phi_{j}(z) \leqq x_{j} \leqq \phi_{j}(z), \quad a \leqq z \leqq b
$$

and apply (1). The cases of equality in (1) show that there is equality in (8) if and only if

$$
\phi_{j}(z)=\phi_{j}(a)(b-z) /(b-a), \quad j=1,2, \cdots, n,
$$

or

$$
\phi_{j}(z)=\phi_{j}(b)(z-a) /(b-a), \quad j=1,2, \cdots, n .
$$

In particular, if we set $\phi_{1}(z)=\phi_{2}(z)=\cdots=\phi_{n}(z)=\phi(z)$ in (8), then for integers $n \geqq 2$ and non-negative, concave functions ϕ we have

$$
\begin{equation*}
\left[(1+n)^{1 / n} / 2\right] \sqrt[n]{\left[\int_{a}^{b}(\phi(t))^{n} d t /(b-a)\right] \leqq \int_{a}^{b} \phi(t) d t /(b-a) ~} \tag{9}
\end{equation*}
$$

We contrast this with

$$
\begin{equation*}
\int_{a}^{b} \phi(t) d t /(b-a) \leqq \sqrt[n]{\left[\int_{a}^{b}(\phi(t))^{n} d t /(b-a)\right], ~} \tag{10}
\end{equation*}
$$

which holds for non-negative, integrable functions ϕ, cf. [3].
From (9) and (10) we can get upper and lower volume bounds for convex bodies of revolution in ($n+1$)-dimensional space. Take the axis of such a body K as the z-axis; the boundary of K is made up of points (x, z) which satisfy $\rho=\phi(z)$ where $\rho^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$. The function ϕ is non-negative and concave. If μ is the length of the axis of K, we may assume ϕ to be defined over $0 \leqq z \leqq \mu$. A meridian section of K is a two dimensional body obtained from cutting K with a two dimensional linear subspace which contains the axis of K. Denote its area by A. Then (9) yields for the volume V of K :

$$
V \leqq \kappa_{n} A^{n} /(n+1) \mu^{n-1},
$$

where κ_{n} is the n-dimensional volume of the unit ball in n-dimensional space.
On the other hand, (10) gives

$$
V \geqq \kappa_{n} A^{n} / 2^{n} \mu^{n-1}
$$

In the upper bound for V, there is equality if and only if K is a cone or double cone of revolution; in the lower bound there is equality if and only if K is a cylinder.

Inequality (1) can also be used directly to estimate other geometrical quantities associated with a general convex body K in ($n+1$)-dimensional space. As an example, if D is the diameter of K and σ is the least brightness of K, which we assume to be positive, then

$$
\begin{equation*}
(D / 2)^{n}<\left(\prod_{j=1}^{n} A_{j}\right) / \sigma . \tag{11}
\end{equation*}
$$

The brightness of K in any direction is the n-dimensional volume of its orthogonal projection onto a plane normal to that direction; the least
brightness is the attained minimum of the brightnesses over all directions.
To prove (11), choose the z-axis in the direction of maximal width of K so that we have $D=\mu$. In [2] it was shown that, for non-degenerate convex bodies,

$$
D \sigma /(n+1)<V(K)
$$

and this, together with (1) yields (11). Although (11) is a strict inequality, it cannot be improved. This can be seen by computing the quotient of the two sides of (11) for the following family of convex bodies $K(\zeta)$ and then letting ζ tend to infinity. $K(\zeta)$ is the dipyramid with vertices

$$
(\pm 1, \pm 1, \cdots, \pm 1,0), \quad(0, \cdots, 0, \pm \zeta)
$$

formed by allowing all possible sign combinations. the least brightness of $K(\zeta)$ occurs in a direction which tends to that of z-axis as ζ tends to infinity.

References

[1] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, (Berlin, 1934).
[2] W. Firey, 'Lower bounds for volumes of convex bodies', Archiv der Math. 16 (1965), 69-74.
[3] G. Hardy, J. Littlewood and G. Pólya, Inequalities, (Cambridge, 1934).
University of Otago
Dunedin, N.Z.
and
Oregon State University
Corvallis Ore, U.S.A.

[^0]: 1 This work was done while the author was in receipt of a Fulbright Research appointment from the U. S. Educational Foundation in New Zealand.

