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Consider a non-degenerate convex body if in a Euclidean (w+1)-
dimensional space of points (x, z) = (xlt • • •, xn, z) where n 2s 2. Denote
by (i the maximum length of segments in K which are parallel to the 2-axis,
and let As signify the area (two dimensional volume) of the orthogonal
projection of K onto the linear subspace spanned by the z- and x,-axes.
We shall prove that the volume V(K) of K satisfies

(1) {2"UAJ)l(n+l)^-^-V(K) = A(K) ^ 0.
i-i

After this, some applications of (1) are discussed.

We first study the effect on A (K) of symmetrization of K in each one
of the coordinate planes in succession. To symmetrize K in z = 0 for example,
we translate each segment in K which is parallel to the z-axis along its
containing line so that its midpoint falls in z — 0 and form the union K'
of these translated segments. We say K' is obtained from K by symmetriza-
tion in z = 0. Analytically we may describe K as the set of (x, z) such that

/x(x) ^ z ^ U(x), x e k

where k is the orthogonal projection of K onto z = 0 and x e k means
(x, 0) e k. Then K' is the set of (x, z) such that

(2) - |7.(*)-A(*)]/2 ^ z rg [/2(x)-/1(x)]/2, x e k.

The order in which a succession of symmetrizations is carried out affects
the final figure in general, but this makes no difference for our discussion.

1 This work was done while the author was in receipt of a Fulbright Research appoint-
ment from the U. S. Educational Foundation in New Zealand.
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It is essential to note that, when all the planes of symmetrization are
mutually orthogonal, then from each step there results a convex body,
with the same volume as K, which is symmetric with respect to all those
planes of symmetrization used up through that step. For details see
[1, pp. 69—70].

Clearly

H = max [/, (as)-^(a:)]
k

is unchanged by symmetrization in z = 0. However, if the symmetrization
is in some other coordinate plane, say xx = 0, and if ft' is the value of ft
after symmetrization, then ft' ^ ft. To see this, consider the orthogonal
projection k' of K onto xx = 0. The maximal length of segments parallel
to the z-axis in k' is fi'. On the other hand, a segment parallel to the z-axis
in K of maximal length projects into a segment of length ft in k'.

After symmetrization in each one of the coordinate planes, we arrive
at a convex body K*; the greatest length ft* of segments parallel to the
z-axis in K* is greater than ft or else equal to fi in case ft is the width of K
in the direction of the z-axis.

As to the behaviour of the areas As under symmetrization, there are
two situations: that in which the plane of symmetrization contains both
the z- and ayaxes and that in which the plane of symmetrization contains
only one of these axes. We shall illustrate these two cases by examining
the effect on A± of symmetrization in x2 = 0 and in z = 0. The projection
of K onto the two-dimensional subspace spanned by the xx- and z-axes is
the same as the projection of k" onto that subspace, where k" is the ortho-
gonal projection of if onto x2 = 0. Since k" is not altered by symmetrization
in x2 = 0, neither is A1.

If we write A^K) and AX{K') for the values of A1 before and after
symmetrization in z = 0, then AX{K) 2; A^K'). This is shown as follows.
Let

8i(xi) = min/^a;), g^Xj) = max/2(«), g(xx) = max [/2(*)—^(a;)]^,
* * *

where the starred extrema are taken over those points x of k whose first
coordinates have the fixed value xx. The projection of K onto the subspace
spanned by the z- and x1-axes is the set of points (x1, 0, • • •, 0, z) for which

where a and b are the least and greatest values of xx for x in k. For the
projection of K' we have

—g(xt) ^ z ^ g'ixj), a^xx^b.
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Since
g(Xl) fS fe,(*)-gi(*)]/2,

and because

MK) = f [ga(x1)-gl(x1)]dx1, AX(K') = 2 {"gixjdxi,
J a J a

we have AX{K) ^ AX{K').
For K*, the final result of all the symmetrizations, we have by the

foregoing discussion

(3)

3

For each choice of / from 1, 2, • • - , « , the intersection of K* with

Xl = X2 = ' ' ' = X}-1 = xi+l = ' ' ' = xn = = ^

is a two dimensional convex body whose points (0, • • •, 0, xt, 0, • • •, 0, z)
satisfy

(*) -M*) ^*t ^hi*). -C^z^c,
where £ = /<*/2 is the greatest value of z in K*. If Ĉ  is the set of all points
(x, z) which satisfy (4), then the symmetry of K* with respect to each coor-
dinate plane shows that

Observe that the convexity of the cylinders C,- is reflected in the non-
negativity and concavity of each of the functions <f>lt <£2, • • ", <f>n

 o v e r their
common domain. Clearly C is a convex body for which the quantities At

and fj, have the same value as they do for K*; further V(C) 3: V(K*).
Therefore

A(K*)

There is equality if and only if each section of K* by a plane
z = t, — C 5S t ^ C, is an w-dimensional rectangular parallelopiped.

Since

(5) A(C) = (

where

i=l

o j=i
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to prove (1), we must show E^C) ^ E2(C).
In the first orthant of our (w+l)-dimensional space, the edge curve

F of C has the equations

x, = &(*), 0 ̂  z < t, / = 1, 2, • • - , « .

If /"is the line segment L joining (^(0), c£2(0), • • -, <f>n(0), 0) to (0, • • •, 0, f),
then

and, by direct computation EX(C) = E2(C).
If F and L do not coincide, then the orthogonal projection of F onto

the two dimensional subspace spanned by the 2-axis and some one of the
x,-axes is not a line segment. Suppose this happens for / = 1; we write the
points of this subspace as (x1, z). The projection F' of F onto this subspace
has the equation

x1 = 4>x (z).

From the point P: (0, f) we draw a line segment M to a point R: (|x, 0),
where | x >^i(0) . Then, in addition to the point P, M intersects F' in a
second point Q : ($[, £'), at least for £x near ^(O), because of the concavity
of <f>x. Let r be the region bounded by the segment PQ and that arc of F'
which joins P and Q; let r' be the region bounded by the segment QR,
the rest of F' and part of the xx-axis. We choose fx so that the areas of r
and r' are equal, which is to say so that

f ^{t)dt = [ y>(t)dt,
Jo Jo

where
V(t) = M1-

Thus £1(C) is unaltered when we replace j>x by y>.
Such a replacement increases E2{C). Each function <£,• is concave with

respect to z and non-increasing at z = 0. Consequently

(6) n ^ ( z ) i n ^ ) according as z g

Also, by our choice of M,

ip(z) ̂  <f>i(z) according as z 0 £'•

Hence, because inequalities (6) are strict for some z,

,=2

f i u n (fc
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Since the areas of r and r' are equal, the expression in curly brackets
vanishes.

The same argument applies to those of the remaining functions <f>j
not of the form rp. In this way, we arrive at a replacement for the final
factor on the right of (5) which vanishes. Hence EX{C) > E2(C). In
summary: we have E^C) 2: E2(C) with equality if and only if L = F.
This proves (1).

It remains to describe the cases of equality.
To begin with, there is equality in (1) if and only if A(K) = A(K*)

and K* has the following properties: its sections by planes z = t are rec-
tangular parallelopipeds and F = L. That is to say, K* is the convex
closure of the union of a rectangular parallelopiped 77 in z = 0 with the
segment r from (0, • • •, 0, — f) to (0, • • •, 0, f). 77 has its centre at the
origin and its edges parallel to the coordinate axes.

We shall show that, for equality in (1), it is necessary and sufficient
that K is, to within a translation, the convex closure of the union of r with
a translate of 77 which intersects r. For convenience, we call such a figure
a dipyramid. Note that this includes the case in which r intersects the
translate of 77 in an end point of T. The sufficiency is trivial and so we need
only show that

(7) A(K) = A{K*) = 0

requires K to be a dipyramid.
We noted earlier that the length of the longest segment or segments

in K parallel to the z-axis, equals the width of K in the direction of the
2-axis. Thus K contains a translate r' of T. We suppose K translated so
that T and r' coincide. This will be true also for all those convex bodies
which result from K by symmetrization in one or more coordinate planes.

Let K' be the result of symmetrizing K in each of the coordinate planes
excepting z = 0. When we symmetrize K' in z = 0, we obtain K*. We shall
first show that K' is a dipyramid. The difference /x—/2 of a concave function
f1 and a convex function /2 is linear if and only if fx and /2 are linear. From
this and the analytic description of symmetrization, it follows that K' is a
polyhedron, symmetric with respect to each of the planes xd = 0, j = 1, • • •, n.
The number of vertices in a convex polyhedron cannot decrease under
symmetrization and so K' has at most 2"+2 vertices. Consider a vertex
of K' which is not in any one of the coordinate planes xt = 0. There must
be such vertices since the projection of K' onto z = 0 is identical with
77. By reflecting this vertex in each one of the coordinate planes #,- = 0,
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we obtain the 2" vertices of a translate 77' of 77. II' lies in some plane
z = t and is centred on the z-axis. In addition, K' has one or two more
vertices at the ends of T according as 77' intersects r in an endpoint or
an interior point of r, and can have no further vertices because such
vertices would have to be off the z-axis, and symmetry considerations show
K' would have to have more than 2"+2 vertices which is impossible. Since
K' is the convex closure of its vertices, K' is a dipyramid as asserted.

The intersection 77'(a) of K' by a plane z = a, — £ 5j a 5S f, is
homothetic to 77' = 77' (t). II'(a) is obtained from the intersection 77(a)
of K and z = a by symmetrizing 77(«) with respect to all the coordinate
planes x6 = 0. Moreover, 77'(a) is independent of the order in which these
symmetrizations are performed.

We next prove that II(a) must be a translate of 77' (a). Suppose xf = 0
is the final plane of symmetrization. The pair of («—l)-dimensional faces
of 77'(a) which are parallel to x} = 0 necessarily come from a pair of
parallel (w—1)-dimensional faces Fit G, of 77(a), because any line in z = a,
perpendicular to Xj = 0, must intersect 77(a) and 77'(a) in segments of the
same length. Since / can be any one of the numbers 1, • • • ,« , 77(a) has n
pairs of parallel faces. The number of faces of a convex polyhedron cannot
decrease under symmetrization. Therefore the pairs Fl,G1, • • •, Fn,Gn

make up the totality of faces of 77(«), and II{a) is a parallelopiped. If
Fj, Gj were not parallel to xt = 0, then they would fail to be perpendicular
to some one of the planes x( = 0, i ^ /. Symmetrization of 77(a) with respect
to xt — 0 would cause 77'(a) to have more than 2« faces. Thus 77(a) is a
rectangular parallelopiped which, it is easy to see, must be a translate of
7 7 » .

From its convexity, K contains the convex closure K of the union of
II(t) with T, where we recall that II(t) is the largest of the parallelopipeds
77(a). If v is the w-dimensional volume of H(t) and of 77, then the volumes
of K and K* equal z>£. But vt, must also be the volume of K. Hence K is the
dipyramid K as originally asserted.

The inequality EX{C) S; E2(C) may have independent analytic interest.
It can be written in the slightly more general form

(8) n [2 \\t{t)itl{b-a)\ ̂  (n+1) rnh

for non-negative, concave functions <f>lt <f>2, • • •, </>„ over a :£ t rg[ b. To see
this, choose for K the set of points (x, z) which satisfy the inequalities

^ xt =g
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and apply (1). The cases of equality in (1) show that there is equality in
(8) if and only if

M*) = *,(«)(&-*)/(&-«). / = 1, 2, • • •, n,
or

«). / == 1, 2, • • •, n.

In particular, if we set ^(z) = <f>2(z) = • • • = <f>n(z) = <f>(z) in (8), then for
integers n 72: 2 and non-negative, concave functions <£ we have

(9)

We contrast this with

(10) J
which holds for non-negative, integrable functions <f>, cf. [3].

From (9) and (10) we can get upper and lower volume bounds for
convex bodies of revolution in (w+l)-dimensional space. Take the axis of
such a body K as the 2-axis; the boundary of K is made up of points (x, z)
which satisfy p = </>(z) where p2 = ^ + ^ 2 + " " ' +a;n- The function $ is
non-negative and concave. If /i is the length of the axis of K, we may assume
<j> to be defined over 0 5S z ^ ft. A meridian section of if is a two dimensional
body obtained from cutting K with a two dimensional linear subspace
which contains the axis of K. Denote its area by A. Then (9) yields for the
volume V of K:

V ^ KnA
nl{n+l)/in-1,

where Kn is the ^-dimensional volume of the unit ball in w-dimensional space.
On the other hand, (10) gives

V ^ KnA
nj2nnn-^.

In the upper bound for V, there is equality if and only if K is a cone or
double cone of revolution; in the lower bound there is equality if and only if
if is a cylinder.

Inequality (1) can also be used directly to estimate other geometrical
quantities associated with a general convex body K in («+l)-dimensional
space. As an example, if D is the diameter of K and a is the least brightness
of K, which we assume to be positive, then

<

The brightness of K in any direction is the w-dimensional volume of its
orthogonal projection onto a plane normal to that direction; the least
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brightness is the attained minimum of the brightnesses over all directions.
To prove (11), choose the z-axis in the direction of maximal width of

K so that we have D = /i. In [2] it was shown that, for non-degenerate
convex bodies,

Dal(n+1) <V(K)

and this, together with (1) yields (11). Although (11) is a strict inequality,
it cannot be improved. This can be seen by computing the quotient of the
two sides of (11) for the following family of convex bodies K(£) and then
letting f tend to infinity. K(£) is the dipyramid with vertices

( ± i . ± i . •••• ± i , o ) , (o, • • • , o , ±C)

formed by allowing all possible sign combinations, the least brightness of
K(C) occurs in a direction which tends to that of z-axis as £ tends to infinity.
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