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Abstract

We introduce the framework FreeCHR which formalizes the embedding of Constraint Handling
Rules (CHR) into a host language, using the concept of initial algebra semantics from category
theory. We hereby establish a high-level implementation scheme for CHR as well as a common
formalization for both theory and practice. We propose a lifting of the syntax of CHR via
an endofunctor in the category Set and a lifting of the very abstract operational semantics
of CHR into FreeCHR, using the free algebra, generated by the endofunctor. We give proofs
for soundness and completeness with its original definition. We also propose a first abstract
execution algorithm and prove correctness with the operational semantics. Finally, we show
the practicability of our approach by giving two possible implementations of this algorithm in
Haskell and Python. Under consideration in Theory and Practice of Logic Programming.

KEYWORDS: embedded domain-specific languages, rule-based programing languages, con-
straint handling rules, operational semantics, initial algebra semantics

1 Introduction

Constraint Handling Rules (CHR) is a rule-based programing language that is designed

to be embedded into a general-purpose language. Having a CHR implementation available

enables software developers to solve problems in a declarative and elegant manner. Aside

from the obvious task of implementing constraint solvers (Frühwirth (2006); De Koninck

et al. (2006)), it has been used, for example, to solve scheduling problems (Abdennadher

and Marte (2000)) implement concurrent and multi-agent systems (Thielscher (2002,

2005); Lam and Sulzmann (2006, 2007)). In general, CHR is ideally suited for any problem

that involves the transformation of collections of data, as programs consist of a set of

rewriting rules, hiding away the process of finding suitable candidates for rule application.

∗ This is an extended version of a paper presented at the 2023 RuleML+RR Conference. The authors are
grateful to Anna Fensel, Ana Ozaki and Ahmet Soylu, the conference program co-chairs, for encouraging
us to submit the paper to the journal Theory and Practice of Logic Programming and for their help
in overseeing the review process.
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Hereby, we get a purely declarative representation of the algorithm without the otherwise

necessary boilerplate code.

The literature on CHR as a formalism consists of a rich body of theoretical work

concerning CHR, including a rigorous formalization of its declarative and operational

semantics (Frühwirth (2009); Sneyers et al. (2010); Frühwirth (2015)), relations to other

rule-based formalisms (e.g., Betz (2007) and Gall and Frühwirth (2018)) and results on

properties like confluence (Christiansen and Kirkeby (2015)).

Implementations of CHR exist for a number of languages, such as Prolog (Schrijvers

and Demoen (2004)), C (Wuille et al. (2007)), C++ (Barichard (2024)), Haskell (Lam

and Sulzmann (2007); Chin et al. (2003)), JavaScript (Nogatz et al. (2018)) and Java

(Abdennadher et al. (2002); Van Weert et al. (2005); Ivanović (2013); Wibiral (2022)).

While the implementations adhere to the formally defined operational semantics, they

are not direct implementations of a common formal model. Therefore, the two aspects of

CHR (formalism and programing language) are not strictly connected with each other and

there is hence no strict guarantee that the results on the formalism CHR are applicable

on the programing language CHR. Although, such a strict connection is probably not

entirely achievable (unless we define and use everything inside a proof assistant like Coq

or Agda), it is desirable to have both formal definition and implementation as closely

linked as possible. Additionally, to being able to directly benefit from theoretical results,

implementors of CHR embeddings and users of the CHR language can also use the

formally defined properties to define more profound tests for their software.

Another apparent issue within the CHR ecosystem is that many of the implementations

of CHR are currently unmaintained. Although some of them are mere toy implementa-

tions, others might have been of practical use. One example is JCHR (Van Weert et al.

(2005)) which would be a useful tool if it was kept on par with the development of Java,

especially with modern build tools like Gradle. Having a unified formal model from which

every implementation is derived could ease contributing to implementations of CHR as

it provides a strict documentation and description of the system a priori. Also, different

projects might even be merged which would prevent confusion due to multiple competing,

yet very similar implementations, as it can be observed in the miniKanren ecosystem

(e.g., there exist about 20 implementations of miniKanren dialects only for Haskell2).

A third major issue is that many implementations, like the aforementioned JCHR or

CCHR (Wuille et al. (2007)), are implemented as external EDSL, this is, they rely on

a separate compiler which translates CHR code into code of the host language. This

makes it significantly less convenient to use and hence also less likely to be adopted into

the standard distribution of the host language. This is somewhat demonstrated by the

K.U.Leuven CHR system which is implemented as a library in Prolog and distributed

as a standard package with SWI-Prolog ,3 or by the library core.logic4 which implements

miniKanren for the LISP dialect Clojure.

To solve the three issues stated above, we introduce the framework FreeCHR which

formalizes the embedding of CHR, using initial algebra semantics . This common concept

in functional programing is used to inductively define languages and their semantics

2 https://minikanren.org/#implementations
3 https://www.swi-prolog.org/pldoc/man?section=chr
4 see https://github.com/clojure/core.logic
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(Hudak (1998); Johann and Ghani (2007)). FreeCHR provides both a guideline and

high-level architecture to implement and maintain CHR implementations across host

languages and a strong connection between the practical and formal aspects of CHR.

To our knowledge, the presented execution algorithm and its implementations, although

simple, will be the first implementations of CHR for which there are formal proofs of

correctness. Also, by FreeCHR-instances being internal embeddings, we get basic tooling

like syntax highlighting and type-checking for free (Fowler and Parsons (2011)) and are

able to implement CHR as a library, without the need for any external tooling like

source-to-source compilers.

Ultimately, the framework shall serve a fourfold purpose by providing

• a general guideline on how to implement a CHR system in modern high-level

languages,

• a guideline for future maintenance of FreeCHR instances,

• a common framework for both formal considerations and practical implementations

• and a framework for the definition and verification of general criteria of correctness.

In this work, we will give first formal definitions of FreeCHR, upon which we will build

our future work. Section 2 will provide the necessary background and intuitions. Section 3

introduces the syntax and semantics of Constraint Handling Rules and generalizes them

to non-Herbrand domains. Section 4 introduces the framework FreeCHR. Section 4.1

lifts the syntax of CHR programs to a Set-endofunctor and introduces the free algebra,

generated by that functor, Section 4.2 lifts the very abstract operational semantics ωa of

CHR to the very abstract operational semantics ω�
a of FreeCHR and Section 4.3 proves

soundness and completeness of ω�
a with respect to ωa.

Section 5 introduces a simple execution algorithm for a formal instance with very

abstact operational semantics and proves their correctness. This is the second main contri-

bution of this paper, as it gives an example use of a proven correct guideline to implement

FreeCHR.

This is finally demonstrated with the two case studies in Section 6. The section provides

two implementations of the defined instance in Haskell and Python. The languages were

chosen, as they can be considered to be on the opposite sides of a static-dynamic spectrum

of programing languages. They will hence give a good intuition of how the host language

flavors FreeCHR.

Finally, Section 7 discusses the limitations of FreeCHR as presented in this paper,

Section 8 discusses related work, Section 9 will give an overview over planned and ongoing

future work and Section 10 concludes the paper.

2 Preliminaries

2.1 Endofunctors and F-algebras

In this section, we want to introduce endofunctors and F -algebras. Both concepts are

taken from category theory and will be introduced as instances in the category of sets

Set.

We do not assume any previous knowledge of category theory, but to readers more

interested in the topic in general we recommend Milewski (2019) as introductory

literature.
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2.1.1 Basic definitions

The disjoint union of two sets A and B

A�B = {lA(a) | a∈A} ∪ {lB(b) | b∈B}

is the union of both sets with additional labels lA and lB added to the elements to keep

track of the origin set of each element. We will also use the labels lA and lB as injection

functions lA :A→A�B and lB :B→A�B which construct elements of A�B from

elements of A or B, respectively.

For two functions f :A→C and g :B→C, the function

[f, g] :A�B→C

[f, g] (l(x)) =

{
f(x), if l= lA
g(x), if l= lB

is called a case analysis function of the disjoint union A�B. It can be understood as a

formal analog to a case-of expression. Furthermore, we define two functions

f � g :A�B→A′ �B′ f × g :A×B→A′ ×B′

(f � g)(l(x)) =

{
lA′(f(x)), if l= lA (f × g)(x, y) = (f(x), g(y))

lB′(g(x)), if l= lB

which lift two functions f :A→A′ and g :B→B′ to the disjoint union and the Cartesian

product, respectively.

2.1.2 Endofunctors

A Set-endofunctor5 F maps all sets A to sets FA and all functions f :A→B to functions

Ff : FA→ FB, such that F idA = idFA and F (g ◦ f) = Fg ◦ Ff , where idX(x) = x is the

identity function on a setX.6 A signature Σ= {σ1/a1, . . . , σn/an}, where σi are operators

and ai their arity, generates a functor

FΣX =
⊔

σ/a∈Σ

Xa FΣf =
⊔

σ/a∈Σ

fa

with X0 = 1 and f0 = id1, where 1 is a singleton set. Such a functor FΣ models flat (this

is, not nested) terms over the signature Σ.

Example 1.

The signature

Γ= {0/0,⊕/2, 1/0,⊗/2}

models two constants 0 and 1, as well as two binary operators ⊕ and ⊗. It generates the

functor

FΓX = 1�X ×X � 1�X ×X

FΓf = id1 � f × f � id1 � f × f

5 Since we only deal with endofunctors in Set we will simply call them functors.
6 We will omit the index of id if it is clear from the context.
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2.1.3 F -algebras

Since an endofunctor F defines the syntax of terms, an evaluation function α : FA→A

defines the semantics of terms. We call such a function α, together with its carrier A,

an F -algebra (A, α).

If there are two F -algebras (A, α) and (B, β) and a function h :A→B, we call h an

F -algebra homomorphism if and only if h ◦ α= β ◦ Fh, that is h preserves the structure

of (A, α) in (B, β) when mapping A to B. In this case, we also write h : (A, α)→ (B, β).

A special F -algebra is the free F -algebra F � = (μF, inF ), for which there is a homo-

morphism (|α|) : F � → (A, α) for any other algebra (A, α). We call those homomorphisms

(|α|) F -catamorphisms . The functions (|α|) encapsulate structured recursion on values in

μF with the semantics defined by the function α which is itself only defined on flat

terms. The carrier of F �, with μF = FμF , is the set of inductively defined values in

the shape defined by F . The function inF : FμF → μF inductively constructs the values

in μF .

Example 2.

The initial FΓ-algebra

(μFΓ, [0,⊕, 1,⊗])

can be used to construct the nested expressions like 1⊕ (1⊗ 0) of μFΓ. The FΓ

algebras

(2, [false,∨, true,∧]) (N0, [0,+, 1, ·])

give to FΓ the semantics of Boolean and arithmetic expressions, respectively. Using the

catamorphism (|[false,∨, true,∧]|) : μFΓ → 2, we can evaluate the expression from above

as

(|[false,∨, true,∧]|)(1⊕ (1⊗ 0))

=(|[false,∨, true,∧]|)(1)∨(|[false,∨, true,∧]|)(1⊗ 0)

=true∨(|[false,∨, true,∧]|)(1)∧(|[false,∨, true,∧]|)(0)
=true∨(true∧false)
=true∨false
=true

Analogously, if we use (|[0,+, 1, ·]|) : μFΓ →N0, we get

(|[0,+, 1, ·]|)(1⊕ (1⊗ 0))

=(|[0,+, 1, ·]|)(1) + (|[0,+, 1, ·]|)(1⊗ 0)

=1+ (|[0,+, 1, ·]|)(1) · (|[0,+, 1, ·]|)(0)
=1+ (1 · 0)
=1+ 0

=1
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Technically, the constants 0, 1, false, true, 0 and 1 are supposed to be functions from

the singleton set 1 to the respective carrier. Since 1 only has one element, there is

essentially no difference between such a function and the constant itself. We will hence

use the constant directly.

2.2 Labeled transition systems

In this section, we will lay out our definition and notation of labeled transition systems

and notions of soundness and completeness.

Definition 1 (Labeled transition system).

A labeled transition system (LTS) is a structure 〈S, A, R〉, where S is the set of states

called the domain of the system,A is a set of labels and R ∈ S ×A× S a ternary transition

relation.

For an LTS ω= 〈S, A, �→〉, we write s
a�−→ s′, if (s, a, s′)∈ ( �→) and s0

a1�−→ s1
a2�−→ s2

a3�−→
. . .

an�−−→ sn for s0
a1�−→ s1 ∧ s1

a2�−→ s2 ∧ . . .∧ sn−1
an�−−→ sn. Also, we will write s1

a�−→∗
sn if there

is an a∈A, such that s1
a�−→ s2 ∧ . . .∧ sn−1

a�−→ sn, for n≥ 0.

Definition 2 (θ-Soundness).

Given two labeled transition systems ω= 〈S, A, �→〉 and ω′ = 〈S, A′, ↪→〉. For function

θ :A→A′, we call ω θ-sound with respect to ω′ if and only if

s
a�−→ s′ =⇒ s

θ(a)
↪−−→ s′

for all s, s′ ∈ S and a∈A7.

θ-soundness means that any transition defined by ω is also defined by ω′, when mapping

labels with θ. This is typically used to verify a more constrained system (ω) against a

more general one (ω′).
Dually, there exists a concept of completeness .

Definition 3 (θ-Completeness).

Given two labeled transition systems ω= 〈S, A, �→〉 and ω′ = 〈S, A′, ↪→〉. For a function

θ :A→A′, we call ω θ-complete with respect to ω′ if and only if

s
a�−→ s′ ⇐= s

θ(a)
↪−−→ s′

for all s, s′ ∈ S and a∈A.

θ-completeness means that ω defines all transitions that are defined by ω′, but using

only the mapped labels of ω.

We will also need a slightly relaxed notion of soundness.

Definition 4 (θ-Soudness up to repeated transition).

Given two labeled transition systems ω= 〈S, A, �→〉 and ω′ = 〈S, A′, ↪→〉. For a function

θ :A→A′, we call ω θ-sound up to repeated transition with respect to ω′ if and only if

7 We will generally just use the symbol �→ for the relation if the respective transition system is clear
from the context.
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s
a�−→ s′ =⇒ s

θ(a)∗
↪−−−→ s′

for all s, s′ ∈ S, a∈A and l≥ 0.

This definition says that an LTS is also θ-sound with respect to another if we can

accomplish a transition in one LTS with zero or more transitions in the other.

3 CHR over non-Herbrand domains

The first implementations of CHR were embedded into the logical programing language

Prolog, where terms like 3+4 or f(a,b,c) are not evaluated, as is the case in most

other programing languages, but interpreted as themselves. This is called the Herbrand

interpretation of terms. Since we want to embed CHR in any programing language,

we need to generalize the language to non-Herbrand interpretations of terms. We will

formalize this, using initial algebra semantics.

3.1 Host language

We first define a data type in the host language. A data type determines the syntax and

semantics of terms via a functor ΛT and an algebra τT . The fixed point μΛT contains

terms that are inductively defined via ΛT and the catamorphism (|τT |) evaluates those

terms to values of T .

Definition 5 (Data types).

A data type is a triple 〈T,ΛT , τT 〉, where T is a set, ΛT a functor and (T, τT ) a ΛT -

algebra.

We write t≡T t′ for t∈ μΛT and t′ ∈ T if and only if (|τT |)(t) = t′.

Example 3 (Boolean data type).

The signature

Σ2 = {(n≤m)/0 | n,m∈N0} ∪ {(n<m)/0 | n,m∈N0} ∪ {∧/2, true/0, false/0}

defines Boolean terms8. Σ2 generates the functor

Λ2X = N0 ×N0 � N0 ×N0 � X ×X � 1� 1

the fixed point, μΛ2, of which is the set of valid nested Boolean terms like (0< 4∧4≤ 6).

Let 〈2,Λ2, τ2〉, with 2= {true, false}, be a data type. If we assume τ2 to implement the

usual semantics for Boolean terms and comparisons, (0< 4∧4≤ 6) will evaluate as

(|τ2|)(0< 4∧ 4≤ 6) = (|τ2|)(0< 4)∧(|τ2|)(4≤ 6) = true ∧ true = true

For a set T , both ΛT and τT are determined by the host language which is captured

by the next definition.

8 We will generally overload symbols like false, true, ∧, ¬, . . ., if their meaning is clear from the context.
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Definition 6 (Host environment).

A mapping

LT = 〈T,ΛT , τT 〉

where 〈T,ΛT , τT 〉 is a data type, is called a host environment.

A host environment is implied by the host language (and by the program, the CHR

program is part of) and assigns to a set T a data type, effectively determining syntax

and semantics of terms that evaluate to values of T .

3.2 Embedding CHR

With the formalization of our host environment, we can define the syntax and semantics

of CHR.

Definition 7 (CHR programs).

CHR programs are sets of multiset-rewriting rules of the form

N @ K \ R ⇐⇒ G | B

For a set C, called the domain of the program, for which there is a data type LC =

〈C,ΛC , τC〉, K,R ∈ listC are called the kept and removed head, respectively. The back-

slash ( \) is used to separate the kept and removed part of the head. Either K or R must

be non-empty. If either head part is empty, the separator is omitted as well.

listX =
⋃

i∈N0
Xi maps a set X to the set of lists over X, with X0 = ε being the empty

sequence, and functions f :A→B to functions

listf (a1, . . . , an) = (f(a1), . . . , f(an))

The optional G∈ μΛ2 is called the guard. If G is omitted, we assume G≡2 true and

omit the pipe ( |) which separates the guard from the body as well. B ∈ msetμΛC is called

the body. The functor mset maps sets X to the set of multisets over X and functions

f :X → Y to functions

msetf ({a1, a2, . . .}) = {f(a1), f(a2), . . .}

N is an optional name for the rule, which is generally used for debugging and tracing.

The @ symbol is used to separate the name of the rule from the rule itself. It is also

omitted if the rule is not given a name.

The members of the kept and removed head are matched against values of the domain

C. The guard G is a term that can be evaluated to a Boolean value. The body B is

a multiset over terms which can be evaluated to values of C. This includes any call of

functions or operators which evaluate to Boolean, or values of C, respectively.

In literature, rules with an empty kept head are called simplification rules and rules

with an empty removed head propagation rules. Rules which have both a removed and

kept head are called simpagation rules.

Definition 7 corresponds to the positive range-restricted ground segment of CHR which

is commonly used as the target for embeddings of other (rule-based) formalisms (e.g.,

colored Petri nets as by Betz (2007)) into CHR (Frühwirth, 2009, Chapter 6.2). Positive
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means that the body of the rule contains only user constraints (this is, values from C)

which guarantees that computations do not fail. Range-restricted means that instantiat-

ing all variables of the head (K and R) will ground the whole rule. This also maintains

the groundness of the segment of CHR which requires that the input and output of a

program are ground. PRGC denotes the set of all such programs over a domain C.

Example 4 (Euclidean algorithm).

The program GCD= {zero, subtract}9

zero @ 0 ⇔ ∅

subtract @ N \ M ⇔ 0<N∧0<M∧N ≤M | M −N

computes the greatest common divisor of a collection of natural numbers. The first rule

removes all zeros from the collection. For any pair of numbers N and M greater 0 and

N ≤M , the second rule replaces M by M −N . Note that we omitted the kept head and

guard of the zero rule.

Definition 8 (C-instances of rules).

For a positive range-restricted rule

R @ k1, . . . , kn \ r1, . . . , rm ⇔ G | B

with universally quantified variables v1, . . . , vl, and a data type LC = 〈C,ΛC , τC〉, we call

the set

ΓC(R) = { (R @ k1σ, . . . , knσ \ r1σ, . . . , rmσ ⇔ Gσ | mset(|τC |)(Bσ))

| σ instantiates all variables v1, . . . , vl,

k1σ, . . . , knσ, r1σ, . . . , rmσ ∈C,

Gσ ∈ μΛ2,

Bσ ∈ msetμΛC }

the C-grounding of R. Analogously, for a set R of rules, ΓC(R) =
⋃

R∈R ΓC(R) is the

C-grounding of R. An element r′ ∈ ΓC(R) (or ΓC(R) respectively) is called a C-instance

of a rule R ∈R.

A C-instance (or grounding) is obtained, by instantiating all variables and evaluating

the then ground terms in the body of the rule, using the ΛC-catamorphism (|τC |). The
functor mset is used to lift (|τC |) into the multiset.

Example 5.

Given a body {M −N} and a substitution σ= {N �→ 4, M �→ 6}, the body is instantiated

like

mset(|τC |)({M −N} σ) = mset(|τC |)({6− 4}) = {(|τC |)(6− 4)}= {2}

With Example 5, we can also easily see that if we use a data type LμΛC =

〈μΛC ,ΛC , inΛC
〉 we get the Herbrand interpretation of terms over C. Hence, for instance,

an expression (3 + 4)∈ μΛN0
is evaluated to itself, as it is the case in Prolog.

9 We will typically use the rule name as a symbol for the rule as a whole.
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empty
S

RÑÝÞ S
r P R S

truÑÝÝÞ S1 S1 RÑÝÞ S2
step

S
RÑÝÞ S2

R@c1, ..., cnzcn`1, ..., cn`m ô G|B P ΓCprq τ |ù G
apply

tc1, ..., cn`mu ΔS
tru tÑÝÝÞ c1, ..., cnu B ΔS

Fig. 1. Very abstract operational semantics for ground and pure CHR.

Example 6 (C-instances).

If we instantiate the rule

subtract @ N \ M ⇔ 0<N∧0<M∧N ≤M | M −N

with σ1 = {N �→ 4, M �→ 6} and σ2 = {N �→ 0, M �→ 6}, respectively, we get the N0-

instances

(subtract)σ1 = subtract @ 4 \ 6 ⇔ 0< 4∧0< 6∧4≤ 6 | 2
(subtract)σ2 = subtract @ 0 \ 6 ⇔ 0< 0∧0< 6∧0≤ 6 | 6

Both instances are elements of the N0-grounding ΓN0
(GCD) of the program in

Example 4 .

Classically, the guard G contains constraints which are defined with respect to a con-

straint theory CT . We typically write CT |=G10 to denote that the guard is satisfiable

with respect to CT and CT |=¬G otherwise. Since in our case G∈ μΛ2, CT is essentially

τ2, as it determines the semantics of Boolean terms. We thus write

τ2 |=G⇐⇒G≡2 true τ2 |=¬G⇐⇒G≡2 false

Note that we always need a data type L2. In Prolog, for instance, 2 corresponds to the

set ttrue, falseu, representing successful or failed computations, respectively.

Finally, the operational semantics of CHR is defined as a state transition system where

the states are multisets11 over the elements of C.

Definition 9 (Very abstract operational semantics of CHR).

The very abstract operational semantics of CHR programs over a domain C is given by

the labeled transition system

ωa = 〈msetC,PRGC , �→〉

where the transition relation ( �→) is defined by the inference rules in Figure 1.

Rules are applied until no more are applicable to the state, this is, we have reached a

final state.

Example 7 (ωa-transitions).

Intuitively, both

τ2 |= 0< 4∧0< 6∧4≤ 6 and τ2 |=¬(0< 0∧0< 6∧0≤ 6)

10 As we only work with ground values, we do not need to quantify any variables.
11 There may be some additional decoration in more refined operational semantics.
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hold. Hence, we can prove the transition {4, 6} {subtract}�−−−−−−−→{4, 2}, but not {0, 6} {subtract}�−−−−−−−→
{0, 6}.

The following example shows the execution of the Euclidean algorithm as a final

example of the operational semantics of CHR.

Example 8 (Euclidean algorithm (cont.)).

The rules of GCD are applied until exhaustion, leaving only the greatest common divisor

of all numbers of the input. For an input {4, 6}, the program will perform a sequence

{4, 6} {subtract}�−−−−−−−→{4, 2} {subtract}�−−−−−−−→{2, 2} {subtract}�−−−−−−−→{2, 0} {zero}�−−−−→{2}

of transformations.

4 FreeCHR

The main idea of FreeCHR is to model the syntax of CHR programs as a functor CHRC .

We then use the free CHRC-algebra to define the operational semantics of FreeCHR.

4.1 Syntax

We first present the fundamental definition of our work which allows us to model CHR-

programs over a domain C.

Definition 10 (Syntax of FreeCHR programs).

The functor12

CHRCD= list2C × list2C × 2listC × (msetC)listC �D×D

CHRCf = id� f × f

describes the syntax of FreeCHR programs.

The set list2C × list2C × 2listC × (msetC)listC is the set of single rules. The kept

and removed head of a rule are sequences of functions in list2C which map elements

of C to Booleans, effectively checking individual values for applicability of the rule. The

guard of the rule is a function in 2listC and maps sequences of elements in C to Booleans,

checking all matched values in the context of each other. Finally, the body of the rule is a

function in (msetC)listC and maps the matched values to a multiset of newly generated

values.

The set D×D represents the composition of FreeCHR programs by an execution

strategy, allowing the construction of more complex programs from, ultimately, single

rules.

By the structure of CHRC , a CHRC-algebra with carrier D is defined by two functions

ρ : list2C × list2C × 2listC × (msetC)listC −→D ν : D×D→D

12 That CHRC is indeed a functor can easily be verified via equational reasoning.
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as (D, [ρ, ν]). The free CHRC-algebra CHR�
C provides us with an inductively defined

representation of programs which we will later use to lift the very abstract operational

semantics ωa.

Lemma 1 (Free CHRC-algebra).

With

μCHRC = list2C × list2C × 2listC × (msetC)listC � μCHRC × μCHRC

and labels/injections

rule : list2C × list2C × 2listC × (msetC)listC −→ μCHRC

� : μCHRC × μCHRC −→ μCHRC

CHR�
C = (μCHRC , [rule,�]) is the free CHRC-algebra.

Proof.

We show that CHR�
C = (μCHRC , [rule,�]) is the free CHRC-algebra, by constructing

the CHRC-catamorphism

(|[ρ, ν]|) : μCHRC −→ (A, [ρ, ν])

for any CHRC-algebra (A, [ρ, ν]). By definition of the free CHRC-algebra,

(|[ρ, ν]|)([rule,�] (p)) = [ρ, ν] ((CHRC(|[ρ, ν]|))(p)) (1)

needs to be true for any p∈ μCHRC .

Case 1 (p= rule(k, r, g, b)).

(|[ρ, ν]|)([rule,�] (k, r, g, b)) = [ρ, ν] ((CHRC(|[ρ, ν]|))(k, r, g, b))
⇔ (|[ρ, ν]|)(rule(k, r, g, b)) = [ρ, ν] (id(k, r, g, b))

⇔ (|[ρ, ν]|)(rule(k, r, g, b)) = [ρ, ν] (k, r, g, b)

⇔ (|[ρ, ν]|)(rule(k, r, g, b)) = ρ(k, r, g, b)

Case 2 (p= p1 � p2).

(|[ρ, ν]|)([rule,�] (p1, p2)) = [ρ, ν] ((CHRC(|[ρ, ν]|))(p1, p2))
⇔ (|[ρ, ν]|)(p1 � p2) = [ρ, ν] (((|[ρ, ν]|)× (|[ρ, ν]|))(p1, p2))
⇔ (|[ρ, ν]|)(p1 � p2) = [ρ, ν] ((|[ρ, ν]|)(p1), (|[ρ, ν]|)(p2))
⇔ (|[ρ, ν]|)(p1 � p2) = ν((|[ρ, ν]|)(p1), (|[ρ, ν]|)(p2))

Therefore, (1) holds if and only if

(|[ρ, ν]|) : μCHRC −→A

(|[ρ, ν]|)(rule(k, r, g, b)) = ρ(k, r, g, b)

(|[ρ, ν]|)(p1 � p2) = ν((|[ρ, ν]|)(p1), (|[ρ, ν]|)(p2))
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pass/final
S

pÑÝÞ S
S

piÑÝÞ S1 S1 p1d...dpid...dplÑÝÝÝÝÝÝÝÝÝÝÝÝÞ S2
stepi

S
p1d...dpid...dplÑÝÝÝÝÝÝÝÝÝÝÝÝÞ S2

k1pc1q ^ ... ^ knpcnq ^ r1pcn`1q ^ ... ^ rmpcn`mq ^ gpc1, ..., cn`mq ” true
apply

tc1, ..., cn`mu ΔS
rulepk,r,g,bq tÑÝÝÝÝÝÝÝÝÝÞ c1, ..., cnu b pc1, ..., cm`nq ΔS

Fig. 2. Very abstract operational semantics of freeCHR.

for all CHRC-algebras (A, [ρ, ν]). Hence, there is a unique homomorphism

(|[ρ, ν]|) : CHR�
C → (A, [ρ, ν])

for any CHRC-algebra (A, [ρ, ν]), making CHR�
C the free CHRC-algebra.

The free CHRC-algebra corresponds to the definition of abstract syntax trees of pro-

grams, while the catamorphism (|α|) corresponds to an interpretation that preserves the

semantics of α.

We can easily see that � is associative up to isomorphism.13 We thus will not explicitly

write parentheses and generally use chained expressions like p1 � . . .� pl for some l ∈N.

Example 9 (Euclidean algorithm (cont.)).

The program gcd = zero � subtract with

zero = rule(ε, (λn.n= 0), (λn.true), (λn.∅))

subtract = rule((λn.0<n), (λm.0<m), (λn m.n≤m), (λn m. {m− n}))

implements the euclidean algorithm, as defined in Example 4 . λ-abstractions are used for

ad-hoc definitions of functions.

4.2 Operational semantics

We now lift the very abstract operational semantics ωa of CHR to the very abstract

operational semantics ω�
a of FreeCHR. We assume that our programs are defined over

a domain C, where there is a data type LC = 〈C,ΛC , τC〉. Like ωa, ω
�
a is defined as a

labeled transition system, where states are multisets over elements of C.

Definition 11 (Very abstract operational semantics ω�
a).

The very abstract operational semantics of FreeCHR is defined as the labeled transition

system

ω�
a = 〈msetC, μCHRC , �→〉

where the transition relation ( �→) is defined by the inference rules in Figure 2.

The rule pass/final states that a program is always allowed to do nothing to a state.

stepi states that we can derive a transition from S to S′′, if we can transition from S

to S′ with the i-th program in the composition p1 � . . .� pl (for 1≤ i≤ l) and from S′

to S′′ with the whole composition. The idea is that, without loss of generality pi is a

13 By assoc(a, (b, c)) = ((a, b), c) and assoc−1((a, b), c) = (a, (b, c)).
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rule that is applied to the current state, whereafter execution is continued. apply is the

translation of the original apply-rule of ωa. ki and rj denote the i-th and j-th elements

of the sequences k and r.

We want to demonstrate the very abstract operational semantics of FreeCHR on a

small example.

Example 10 (Euclidean algorithm (cont.)).

Given the program gcd of Example 9 and the initial state {12, 9}, we can prove the

derivation

{12, 9} gcd�−−→ {3}
as follows. We first use the STEP transition to apply the subtract rule to the initial state.

{12, 9} subtract�−−−−−−→{3, 9} {3, 9} zero�subtract�−−−−−−−−−−→{3}
{12, 9} zero�subtract�−−−−−−−−−−→{3}

step2

and prove that this transition is valid

0< 9∧ 0< 12∧ 9≤ 12≡ true

{12, 9} �∅
subtract�−−−−−−→{9} � {3} �∅

apply

We repeat this process for the transitions {3, 9} gcd�−−→ {3, 6}, {3, 6} gcd�−−→ {3, 3} and

{3, 3} gcd�−−→ {3, 0}. At this point, we have to apply the zero rule to remove the 0 and use

the PASS/FINAL transition to prove the empty transition {3} gcd�−−→ {3}.

0 “ 0 ^ true ” true apply
t3, 0u H zero tÑÝÝÝÞ 3u H H

t3, 0u zero tÑÝÝÝÞ 3u
pass/final

t3u zerodsubtract tÑÝÝÝÝÝÝÝÝÝÝÞ 3u
step2

t3, 0u zerodsubtract tÑÝÝÝÝÝÝÝÝÝÝÞ 3u

With this done, we have fully proven the derivation.

4.3 Soundness and completeness of ω�
a

To prove the soundness and completeness of ω�
a with respect to ωa, we first need to embed

FreeCHR into the positive range-restricted ground segment of CHR. This is a common

approach to relate rule-based formalisms to CHR (Frühwirth, 2009, Chapter 6).

Definition 12 (Embedding FreeCHR into CHR).

Let

Θ : μCHRC −→PRGC

Θ (rule (k, r, g, b)) = {R@v1, . . . , vn \ vn+1, . . . , vn+m ⇔G|b (v1, . . . , vn+m)}
Θ (p1 � . . .� pl) =Θ (p1)∪ . . .∪Θ (pl)

be the function embedding FreeCHR programs into the positive range-restricted ground

segment of CHR, with universally quantified variables v1,. . .,vn+m, R a uniquely

generated rule name and

G= k1 (v1)∧ . . .∧rm (vn+m)∧g (v1, . . . , vn+m)
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Example 11.

If we apply the embedding Θ to the program gcd (including the evaluation of function

applications14), we get the program

zero @ ε \ n ⇔ n= 0∧true | ∅
subtract @ n \ m ⇔ 0<n∧0<m∧n≤m | m− n

with universally quantified variables n and m. The program corresponds to the head-

normalization (Duck (2005)) of the program in Example 4 .

We now prove Θ-soundness of ω�
a with respect to ωa, this is, if we can prove a derivation

under ω�
a for a program p, we can prove it under ωa for Θ(p).

Theorem 1 (Θ-Soundness of ω�
a).

ω�
a is Θ-sound with respect to ωa, this is, for S, S′ ∈ msetC and p∈ μCHRC ,

S
p�−→S′ =⇒ S

Θ(p)�−−−→S′

Proof.

We prove soundness by induction over the inference rules of ω�
a.

Induction Base Case (pass/final).

Follows directly from empty.

Induction Base Case (apply).

Given a proof

G≡2 true

{c1, . . . , cn+m} �ΔS
p�−→ {c1, . . . , cn} � b(c1, . . . , cn+m)�ΔS

apply

with r= rule((k1, . . . , kn) , (r1, . . . , rm) , g, b) and

G= k1 (t1)∧ . . .∧kn (tn)∧r1 (tn+1)∧ . . .∧rm (tn+m)∧g (t1, . . . , tn+m)

there is a C-instance

R @ c1, . . . , cn \ cn+1, . . . , cn+m ⇔ G | b(c1, . . . , cn+m)∈ ΓC(Θ(p))

such that τ2 |=G. By Definition 12 we know that {p′}=Θ (p). We can thus prove S
Θ(p)�−−−→S′

by

R@c1, . . . , cn \ cn+1, . . . , cn+m ⇔G|b(c1, . . . , cn+m)∈ ΓC (Θ(p′)) τ2 |=G

{c1, . . . , cn+m} �ΔS︸ ︷︷ ︸
=S

{p′}�−−−→{c1, . . . , cn} � b(c1, . . . , cn+m)�ΔS︸ ︷︷ ︸
=S′

apply

Induction Step (stepi)

Given a proof

S
pi�→S′ S′ p�−→S′′

S
p�−→S′′

stepi

14 this is, β-reductions
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with p= p1 � . . .� pi � . . .� pl, for 1≤ i≤ l, we assume

∀i∈ 1, . . . , l.S
pi�→S′ =⇒ S

Θ(pi)�−−−→S′ (2)

S′ p�−→S′′ =⇒ S′ Θ(p)�−−−→S′′ (3)

as induction hypotheses.

Since we can, without loss of generality, assume that pi = rule(. . .), we know from

Definition 12 that {p′}=Θ(pi)⊆Θ(p). By induction hypothesis (2) we know from S
pi�−→S′

that S
Θ(pi)�−−−→S′. By induction hypothesis (3) we know from S′ p�−→S′′ that S′ Θ(p)�−−−→S′′. We

can thus prove S
Θ(p)�−−−→S′′ by

p′ ∈Θ(p) S
{p′}�−−−→S′ S′ Θ(p)�−−−→S′′

S
Θ(p)�−−−→S′′

step

We established that we can prove any derivation we can prove with a program p under

ω�
a, with a program Θ(p) under ωa. We also want to prove Θ-completeness, this is, we

can prove any derivation with a program Θ(p) under ωa with a program p under ω�
a.

Theorem 2 (Θ-completeness of ω�
a).

ω�
a is Θ-complete with respect to ωa, this is, for S, S′ ∈ msetC and p∈ μCHRC ,

S
Θ(p)�−−−→S′ =⇒ S

p�−→S′

Proof.

We prove Θ-completeness by induction over the inference rules of ωa

Induction Base Case (empty).

Follows directly from pass/final

Induction Base Case (apply).

Given a proof

R@c1, . . . , cn \ cn+1, . . . , cn+m ⇔G|B ∈ ΓC(Θ(p)) τ2 |=G

{c1, . . . , cn+m} �ΔS
Θ(p)�−−−→{c1, . . . , cn} �B �ΔS

apply

By definition of ωa, we know that Θ(p) = {p′}. Therefore, p= rule(k, r, g, b), and

hence G= k1(c1)∧ . . .∧rm(cn+m)∧g(c1, . . . , cn+m) and B = b(c1, . . . , cn+m). From τ2 |=
G follows G≡2 true. We can thus construct a proof

G≡2 true

{c1, . . . , cn+m} �ΔS
p�−→ {c1, . . . , cn} �B �ΔS

apply

Induction Step ( step).

Given a proof

p′ ∈Θ(p) S
{r′}�−−−→S′ S′ Θ(p)�−−−→S′′

S
Θ(p)�−−−→S′′

step
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By Definition 12, we know from r′ ∈Θ(p) that for p= p1 � . . .� pi � . . .� pl (with l≥ 1)

there is a pi such that {p′}=Θ(pi). We hence assume as induction hypotheses that

S
{p′}�−−−→S′ =⇒ S

pi�→S′ (4)

S′ Θ(p)�−−−→S′′ =⇒ S′ p�−→S′′ (5)

From S
{r}�−−→S′ and induction hypothesis (4) follows S

pi�→S′. From S′ Θ(p)�−−−→S′′ and induction

hypothesis (5) follows S′ p�−→S′′. We can hence construct the proof

S
pi�→S′ S′ p�−→S′′

S
p�−→S′′

step

With Theorem 1 and Theorem 2, we have established that, up to Θ, FreeCHR is as

expressive as CHR. Analogously to classical CHR, we are now able to define more refined

operational semantics for FreeCHR and prove their soundness with respect to ω�
a, which

is ongoing future work.

5 An instance with very abstract operational semantics

In this section, we want to present a simple execution algorithm and prove its adherence

to ω�
a by using the inductive nature of our definition of syntax and semantics of FreeCHR.

This will serve both as a first, albeit simple, guideline for implementations, as well as a

case study on how a FreeCHR execution algorithm can be defined and verified.

5.1 Instances

Since the operational semantics define the execution of FreeCHR programs as a state

transition system, an obvious way to implement FreeCHR is by mapping programs to

functions mapping one state to its successor.

Definition 13 (FreeCHR instance).

An instance of FreeCHR is a CHRC-algebra(
(msetC)msetC , [rule, compose]

)
with

rule : list2C × list2C × 2listC × (msetC)
listC −→ (msetC)msetC

compose : (msetC)msetC × (msetC)msetC −→ (msetC)msetC

A FreeCHR instance hence needs to define the two functions rule and compose which

implement the execution of programs and hence the operational semantics of the program.

compose implements the application of a single rule to a state if it is possible. compose

implements the execution strategy of, fundamentally, a sequence of rules to a state. Both

are only concerned with single execution steps. We hence also need the function

run : (msetC)msetC −→ (msetC)msetC
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which maps a function performing singular steps to a function applying this function

until a final state is reached. In CHR this generally means, until no rules are applicable

to the state.

Since an instance practically also defines operational semantics it makes sense to

directly associate it with an LTS as well.

Definition 14 (LTS of a FreeCHR instance).

Let

I =
(
(msetC)msetC , [ρ, ν]

)
I implies an LTS

crI = 〈msetC, L, �→〉

where the labels L are recursively defined as

L=
{
ρ(k, r, g, b) | k, r ∈ list(2C), g ∈ 2listC , b∈ (msetC)listC

}
∪ {ν(f, g) | f, g ∈L}

and the transition relation as

( �→) =
{
s

f�−→ s′ | s∈ msetC, f ∈L, f(s)≡msetC s′
}

With this, we can easily verify an instance against operational semantics, using the

concepts from Section 2.2. We will do so from the perspective of the operational seman-

tics, instead of from the perspective of the implementation. To verify, that an instance

only performs valid transitions, we hence prove Θ-completeness

S
p�−→S′ ⇐= S

(|α|)(p)�−−−−→S′

Consequentially, to prove that the implementation can perform all valid transitions, we

prove Θ-soundness up to repeated transition

S
p�−→S′ =⇒ S

(|α|)(p)�−−−−→
∗
S′

We need the relaxation ”up to repeated transition” since the instances, and hence their

respective LTS, are only defined for singular steps.

5.2 Execution algorithm

The algorithm presented in this section implements the operations required for a

FreeCHR instance as non-deterministic imperative pseudo-code. The rule function is

implemented by rule, � by compose, in Algorithm 1.

Definition 15 (Pure CHR-programs in Set (cont.)).

Algorithm 1 shows the abstract implementation of a CHRC-algebra

Execa =
(
(msetC)msetC , [rule, compose]

)

The function rule first checks whether there is a matching {c1, . . . , cn+m} ⊆ S, such

that head constraints kepti applied to ci and removedj applied to cn+j evaluate to true,

as well as the guard, applied to all constraints of the matching (l. 2). If such a subset
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Algorithm 1 Implementation of Execa

1: function rule(kept, removed, guard, body, S)
2: if ∃ {c1, . . . , cn+m} ⊆ S.kept1(c1)∧ . . .∧removedm(cn+m)∧guard(c1, . . . , cn+m)≡2 true

then
3: return (S {cn+1, . . . , cn+m}Ȳ )� body(c1, . . . , cn+m)
4: else
5: return S
6: end if
7: end function
8:
9: function compose((p1, . . . , pl), S)
10: if ∃p∈ {p1, . . . , pl} .p(S) �≡msetC S then
11: return p(S)
12: else
13: return S
14: end if
15: end function

Algorithm 2 Implementation of run f

1: function run(f , S)
2: repeat
3: S′← S
4: S← f(S)
5: until S = S′

6: return S
7: end function

exists, the constraints cn+j with 1≤ j ≤m are removed and the multiset resulting from

applying the body to the matching will be added to S (l. 3). The function compose

checks if there is a p∈ {p1, . . . , pl} with p(S) �= S (l. 10). If this is the case, p is applied

to S (l. 11). If in either function the respective check does not succeed, S is returned

unmodified (l. 5 and 13, respectively). The execution strategy implemented by compose

is to non-deterministically select an applicable program and apply it to the state.

Note, that we will freely use currying on the last argument of either function, for

instance, rule(k, r, g, b) is a function from msetC to msetC, and rule(k, r, g, b, S) eval-

uates to an S′ ∈ msetC. Also, compose will accept an arbitrary number of subprograms

(but always an input state).

Finally, we need to implement the run function.

Definition 16 (Pure CHR-programs in Set (cont.)).

Algorithm 2 implements application until exhaustion for FreeCHR programs defined using

Algorithm 1 .
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run(f, S) applies the function f to the argument state S repeatedly. After each iter-

ation, it is compared to the last state. As soon as both are equal it is assumed that no

more rules could be applied. Then, the state is returned as the final state.

Note, that this algorithm would also terminate if a propagation rule with an empty

body is applied. As such rules are nonsensical, we will ignore this case.

5.3 Correctness

We will now prove the correctness of Execa. With execa = [rule, compose], let

(|execa|) : CHR�
C →Execa

be the CHRC-catamorphism to Execa, this is, the interpretation of programs in μCHRC

that respects the semantics of Algorithm 1.

Theorem 3.

The very abstract operational semantics ω�
a is (|execa|)-complete with respect to Execa

(Algorithm 1), this is,

S
(|execa|)(p)�−−−−−−−→S′ =⇒ S

p�−→S′

Proof.

To prove the theorem, we will first discern two basic cases.

Case 3 (S = S′).
This case is trivial by rule PASS/FINAL.

Case 4 (S �= S′).
We prove this case via induction over the structure of p∈CHRC .

Induction Base Case (p= rule(k, r, g, b)).

The transition

S
(|execa|)(rule(k,r,g,b))�−−−−−−−−−−−−−−→S′

implies that

(|execa|)(rule(k, r, g, b))(S)
= rule(k, r, g, b, S)

≡ S′

From Algorithm 1 follows that the condition in line 2 must be true, since there were

changes to the state. This implies that there is a subset {c1, . . . , cn+m} ⊆ S for which

k1(c1)∧ . . .∧ kn(cn)∧ r1(cn+1)∧ . . .∧ rm(cn+m)∧ g(c1, . . . , cn+m)≡2 true

Hence

S = {c1, . . . , cn+m} �ΔS

and

(S {cn+1, . . . , cn+m}) b(c1, . . . , cn+m) = {c1, . . . , cn} b(c1, . . . , cn) ΔSȲ
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From this, we can construct a proof

k1(c1)∧ . . .∧ kn(cn)∧ r1(cn+1)∧ . . .∧ rm(cn+m)∧ g(c1, . . . , cn+m)≡2 true

{c1, . . . , cn+m} �ΔS
rule(k,r,g,b)�−−−−−−−−→{c1, . . . , cn} � b(c1, . . . , cn)�ΔS

apply

Induction Step ( p= p1 � . . .� pn).

As the induction hypothesis, we assume

∀p∈CHRC .S
(|execa|)(p)�−−−−−−−→S′ =⇒ S

p�−→S′

The transition

S
(|execa|)(p1�...�pn)�−−−−−−−−−−−−−→S′

implies that

(|execa|)(p1 � . . .� pn)(S) = compose(p1, . . . , pn, S)≡msetC S′

From Algorithm 1 , especially line 10 , we know that there must hence be a pi with 1≤ i≤ n

such that (|execa|)(pi)(S)≡msetC S′, or in terms of the transition relation

S
(|execa|)(pi)�−−−−−−−−→S′

By induction hypothesis, we then have a proof for S
pi�−→S′. We can thus construct a proof

S
piÑÝÞ S1

pass/final
S1 p1d...dpnÑÝÝÝÝÝÝÝÞ S1

stepi

S
p1d...dpnÑÝÝÝÝÝÝÝÞ S1

Theorem 4.

The very abstract operational semantics ω�
a is (|execa|)-sound up to repeated transition

with respect to Execa (Algorithm 1), this is,

S
(|execa|)(p)�−−−−−−−→

∗
S′ ⇐= S

p�−→S′

Proof.

We prove the theorem by induction over the inference rules of ω�
a.

Induction Base Case (pass/final).

Trivial, since S
(|execa|)(p)�−−−−−−−→

∗
S is always true for zero transition steps

Induction Base Case (apply).

Given a proof

k1(c1)∧ . . .∧kn(cn)∧r1(cn+1)∧ . . .∧rm(cn+m)∧g(c1, . . . , cn+m)≡2 true

{c1, . . . , cn+m} �ΔS
rule(k,r,g,b)�−−−−−−−−→{c1, . . . , cn} � b (c1, . . . , cn+m)�ΔS

apply

We want to show that

{c1, . . . , cn+m} �ΔS
(|execa|)(rule(k,r,g,b))�−−−−−−−−−−−−−−→{c1, . . . , cn} � b (c1, . . . , cn+m)�ΔS
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or respectively

(|execa|)(rule(k, r, g, b))({c1, . . . , cn+m} �ΔS)

= rule(k, r, g, b, {c1, . . . , cn+m} �ΔS)

= {c1, . . . , cn} � b (c1, . . . , cn+m)�ΔS

Since by assumption the condition in line 2 will be true. From line 3 we then know that

RULE(k, r, g, b, {c1, . . . , cn+m} ΔS)

≡ {c1, . . . , cn+m} ΔS {cn+1, . . . , cn+m} b(c1, . . . , cn+m)Ȳ

which can be simplified to {c1, . . . , cn} � b (c1, . . . , cn+m)�ΔS.

Induction Step ( step i)

Given a proof

S
pi�→S′ S′p1�...�pl�→ S′′

S
p1�...�pl�→ S′′

stepi

with 1≤ i≤ l. We assume

S
(|execa|)(pi)�−−−−−−−−→

∗
S′ ⇐= S

pi�−→S′ (6)

S′ (|execa|)(p1�...�pl)�−−−−−−−−−−−−→
∗
S′′ ⇐= S′ p1�...�pl�−−−−−−→ S′′ (7)

as induction hypotheses. We want to show that

S
(|execa|)(p1�...�pl)�−−−−−−−−−−−−→

∗
S′′

From the premises of the given proof we can infer S
(|execa|)(pi)�−−−−−−−−→

∗
S′ and

S′ (|execa|)(p1�...�pl)�−−−−−−−−−−−−→
∗
S′′ by induction hypotheses (6) and (7), respectively. By the def-

inition of compose we know that, since (|execa|)(pi)(S)≡ S′, S′ is also a possible

outcome of (|execa|)(p1 � . . .� pl)(S). From S
(|execa|)(pi)�−−−−−−−−→

∗
S′, we can hence assume

S
(|execa|)(p1�...�pl)�−−−−−−−−−−−−→

∗
S′. Therefrom S

(|execa|)(p1�...�pl)�−−−−−−−−−−−−→
∗
S′′ follows directly.

With Theorem 3 and Theorem 4 we established that Algorithm 1 correctly implements

the very abstract operational semantics ω�
a. The theorems also imply that Execa is an

equivalent representation of ω�
a.

6 Implementation case studies

We now present two implementations that are based on the execution algorithm described

in Section 5 as case studies. The source code of the implementations is also available on

GitHub.15

15 https://gist.github.com/SRechenberger/d5e1eb875ae72ce5cafe6ea1c5b3ee38
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The purpose of this section is twofold: first, we show how the abstract execution algo-

rithm can be used as a guide to implement FreeCHR. Second, we show how the chosen

host language flavors the implementation of FreeCHR both in the back end, as well as

in the front end.

The presented implementations have two limitations to be noted: first, they solve any

source of non-determinism in the original algorithm. Whenever the original algorithm

chooses an element from a (multi) set, the implementations will sequentially search for

them. Especially is the state, in both implementations, a list instead of a multiset. Also,

the rules of a program will be traversed sequentially to find an applicable one. It is,

though, easy to see that they will only perform transitions Algorithm 1 would perform

as well. They are, in other words, concretizations of Execa.

Second, as they are based on the very abstract operational semantics, they do not

yet account for trivial non-termination due to repeated application of propagation rules

(this is, rules with an empty removed head) (Frühwirth (2009)). Hence, a program with

such rules will not terminate if any of them is at some point applicable. This problem

is solved with the abstract operational semantics by recording a propagation history . It

saves applied constraints (by a unique identifier) as well as the rule applied to them. If

a propagation rule is to be applied, it is first checked if the combination was already

executed. If this is the case, the rule will not fire again.

The consequence for the presented implementations is that they only work on a subset

of CHR/FreeCHR without propagation rules.

6.1 Host languages

To sufficiently demonstrate how FreeCHR can be implemented in different programing

languages and how the respective host language flavors the implementation, we chose

two programing languages of very different paradigms: Haskell and Python.

Haskell is a statically typed functional programing language with a powerful type

system. Python is a dynamically typed imperative language with plenty of practical

applications.

One might consider both languages to be on the opposite of a static-

dynamic/functional-imperative spectrum as well. They will hence serve well for this case

study, as most languages are featurewise somewhere in between. Languages like Java or

C# successively adopt functional features but stay imperative in their core. They also

have a static type system like Haskell, but not as powerful and strict. Languages like

Kotlin move further towards the functional end of the spectrum but still inherit many

characteristics from Java. On the other hand, the whole LISP family of programing

languages is functional but dynamically typed.

6.2 Execution algorithm

We will now give a detailed overview of the implementations, connect them to the abstract

algorithm and compare them to each other.
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1 newtype SolverStep c = SolverStep { runSolverStep :: [c] -> [c] }

Fig. 3. Wrapped solver function type.

6.2.1 Carrier

We first want to discuss the implementation of the carrier of the implemented CHRC-

algebra.

In Haskell, the carrier is explicitly defined as the type SolverStep c shown in Figure 3.

The type is essentially equal to functions of type [c] -> [c] which is the Haskell rep-

resentation of the set (msetC)msetC . As mentioned above, we will use lists instead of

multisets. This eliminates one source of non-determinism.

Wrapping the functions by defining a new type allows the implementation of type class

instances (which is used for compose) and to discern programs that are ”in construction”

from such that were already passed to run.
The Python implementation directly models functions mapping lists to lists. Since

Python is (by default) dynamically typed, there are no constraints on the type of the

elements of the lists. This, on the one hand, gives more freedom to the user of the

FreeCHR instance since it is easier to define rules on different types of constraints. This

is also possible when using Haskell, but needs additional work like defining and matching

on a sum type. On the other hand, in Python, one should always explicitly check if the

constraints have the correct type in the head of the rule.

For example, the program in Figure 4b allows values of any type in its state and will

apply the rules only if integers are encountered. Not checking the type of constraints

beforehand is a serious source of runtime errors. If a rule of the gcd program is applied

to something other than two integers, the comparison operations (l. 3 and 6) in the guard

or the subtraction (l. 7) in the body will raise an exception. Such errors are impossible

in the Haskell version in Figure 4a since the input type needs to be some sort of integer

(Integral; see l. 1) which guarantees support for comparison (Ord) and subtraction

(Num).16

6.2.2 RULE

The implementations of rule can be seen in Figure 5. First, either function lazily com-

putes the sequence of possible matchings (l. 5 in Figure 5a and l. 3–5 in Figure 5b). This

is done using the match functions which are shown in Figure 6. Both generate a lazy

sequence of all permutations of the state that have the same length as the head of the

rule (l. 3–4 and l. 3, respectively) and select those for which the conjunction of the ele-

mentwise application (done by zipWith and zip) of the elements of the head evaluates

to true, this is, those for which k1(c1)∧ . . .∧kn(cn)∧r1(cn+1)∧ . . .∧rm(cn+m)≡2 true, for

a head [k1, . . . , kn, r1, . . . , rm] and a permutation [c1, . . . , cn+m] of the state. Then, both

implementations of rule take the first of those sequences for which the guard g holds,

this is, g(c1, . . . , cn+m)≡2 true. In total, this corresponds to l. 2 in Algorithm 1. If such

a matching is found, the new state is computed and returned as in l. 3 (l. 7 and 8–11).

In the Python implementation, an explicit copy of the state is created to not modify the

original state. If no matching is found, the state is returned unchanged (l. 8 and 6–7).

16 Both constraints are inherited via Haskell’s type class Real.1.
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1 gcd :: Integral a => SolverStep a
2 gcd = rule [] [(<= 0)]
3 (const True)
4 (const []) <>
5 rule [(> 0)] [(> 0)]
6 (\[n, m] -> n <= m)
7 (\[n, m] -> [m - n])

Haskell
1 gcd = compose(
2 rule([], [lambda n: isinstance(n, int)],
3 lambda n: n <= 0,
4 lambda _: []),
5 rule([lambda n: isinstance(n, int)], [lambda m: isinstance(m, int)],
6 lambda n, m: 0 < n <= m,
7 lambda n, m: [m-n])
8 )

Python

(a)

(b)

Fig. 4. Greatest common divisor.

Note that both variants explicitly create and return a function after getting the rule

elements passed. The implementations of compose (Figure 7) work in the same way.

Also, the Python implementation makes heavy use of the spread operator (∗ before

function arguments) (l. 4 and 11). In consequence, we can write the guard and body of

a rule as functions that accept as many arguments as the head has patterns. In Haskell,

guard and body accept a list as their single argument (compare lines 6 and 7 in either

implementation in Figure 4).

An issue specific to Python can be seen in Figure 8b. Python does only allow expres-

sions in lambda functions. If any function of a rule needs to use statements, it must be

defined separately.

6.2.3 COMPOSE

Figure 7 shows the implementations of compose. Figure 7a implements the algorithm

as the binary operator (<>) of the Semigroup type class. First, the left subprogram will

be applied to the state (l. 5). If this has no effect, the second subprogram is applied

(l. 7). Otherwise, the result of the first application which must have altered the state,

is returned (l. 8). One can easily see that the implementation is associative, as required

by Semigroup. In nested expressions like p1 <> p2 <> ... <> pn, the algorithm will

always perform a depth-first search, beginning from the leftmost subprogram, effectively

traversing the program from left to right.

The same is true for the Python variant in Figure 7b. Here, we loop through the

subprograms, passed to the function compose (l. 4–7) until a program alters the state

(l. 6 & 7). Finally, result is returned which is either the input state (see l. 3) if the

program made it through the loop without finding an applicable subprogram, or the first

result of an effective application (see l. 5).

Contrary to the Haskell variant, compose is implemented as a variadic function by use

of the spread operator in Python. The consequence for the user can be seen in Figure 4,

where we use (<>) to compose the rules (l. 4) in Haskell and compose in Python.
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1 rule :: Eq c => [c -> Bool] -> [c -> Bool] -> ([c] -> Bool) -> ([c] -> [c])
2 -> SolverStep c
3 rule kept removed guard body = SolverStep
4 { runSolverStep = \state ->
5 let matching = find guard (match (kept ++ removed) state)
6 in case matching of
7 Just ms -> (state \\ drop (length kept) ms) ++ body ms
8 _ -> state
9 }

Haskell

1 def rule(k, r, g, b):
2 def solver(state):
3 matching = next(
4 (matching for matching in match(k+r, state) if g(*matching)),
5 None)
6 if not matching:
7 return state
8 state_copy = state.copy()
9 for c in matching[len(k):]:

10 state_copy.remove(c)
11 return b(*matching) + state_copy
12 return solver

Python

(a)

(b)

Fig. 5. Implementations of rule.

1 match :: [a -> Bool] -> [a] -> [[a]]
2 match ps as = [ as''
3 | as' <- subsequences as, length as' == length ps
4 , as'' <- permutations as'
5 , and (zipWith ($) ps as'')
6 ]

Haskell

1 def match(pattern, cs):
2 return (perm
3 for perm in permutations(cs, len(pattern))
4 if all(p(c) for p, c in zip(pattern, perm))
5 )

Python

(a)

(b)

Fig. 6. Lazy matching.

6.2.4 RUN

Figure 9 shows the implementations of run. The implementation in Figure 9a first applies

the passed program to the query (also called the initial state) (l. 6). If this has no effect,

the state is returned (l. 3). Otherwise, run is recursively called with the new state (l. 4),

repeatedly applying the program until exhaustion.
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1 instance Eq c => Semigroup (SolverStep c) where
2 (<>) :: Eq c => SolverStep c -> SolverStep c -> SolverStep c
3 solver <> solver' = SolverStep
4 { runSolverStep = \state ->
5 let state' = runSolverStep solver state
6 in if state == state'
7 then runSolverStep solver' state
8 else state'
9 }

Haskell

1 def compose(*solvers):
2 def solver(constraints):
3 result = constraints
4 for s in solvers:
5 result = s(constraints)
6 if result != constraints:
7 break
8 return result
9 return solver

Python

(a)

(b)

Fig. 7. Implementations of compose.

1 alldifferent :: Eq a => SolverStep a
2 alldifferent = rule [const True, const True] []
3 (\[x, y] -> x == y) (const $ error "False")

Haskell
1 def false(*args):
2 raise Exception(False)
3

4 all_different = rule(
5 [lambda a: True, lambda b: True], [],
6 lambda a, b: a == b,
7 false
8 )

Python

(a)

(b)

Fig. 8. Implementation of all diff constraint.

The algorithm in Figure 9b accomplishes the same by the loop in lines 5 to 9, which

is interrupted if the state remains unchanged after applying the program (l. 6 & 7).

Again, the use of the spread operator in Python causes a minor difference in usage.

While in Haskell, we need to pass a list to run , in Python run it is a variadic

function. Hence, to calculate the greatest common divisor of 6, 9 and 12, we call

run(gcd)(6, 9, 12) in Haskell and run gcd [6, 9, 12] in Python and get in both

cases [3] as the result.

https://doi.org/10.1017/S1471068425000043 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425000043


FreeCHR 367

1 run :: Eq c => SolverStep c -> [c] -> [c]
2 run solver query
3 | result == query = result
4 | otherwise = run solver result
5 where
6 result = runSolverStep solver query

Haskell
1 def run(solver):
2 def solve(*query):
3 state = list(query)
4 result = solver(state)
5 while True:
6 if result == state:
7 break
8 state = result
9 result = solver(result)

10 return result
11 return solve

Python

(a)

(b)

Fig. 9. Implementations of run.

6.3 Side effects

A major difference between the two presented implementations is the handling of side

effects. Python allows for arbitrary side effects like I/O, assigning variables or raising

exceptions, as can be seen in Figure 8b. Although this is also possible in Haskell (see

Figure 8a), it is highly discouraged by the language. The programs raise an error if they

encounter the same value in the query twice. Although the implementations allow it, this

behavior is not defined by the operational semantics and domain of future work.

7 Limitations

We want to briefly discuss the current limitations of FreeCHR as it is presented in this

paper.

The very abstract operational semantics ωa for CHR is meant as a tool for formal

reasoning and an abstract baseline. It does not describe the behavior of an actual imple-

mentation, since it is heavily non-deterministic. As discussed above, it does also not

account for trivial non-termination due to repeated application of a propagation rule on

the same constraints. Since the very abstract operational semantics for FreeCHR ω�
a is a

direct translation of ωa, it inherits these issues.

The presented implementations are hence only defined on programs without propaga-

tion rules as they would inevitably get stuck on the repeated application of such a rule.

This issue is solved by the refined operational semantics ωr as presented by Duck et al.

(2004). Translating ωr to FreeCHR is currently ongoing work. For now, the implementa-

tions hence only serve as a proof of concept of the applicability of our framework and are
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not meant for actual use.17 We therefore did also not concern ourselves with applying

any optimization techniques and do hence not yet expect any reasonable performance.

The approach presented herein is strictly to be understood as the formal foundation

upon which we will build our future work, as it connects our framework to the original

definition of CHR on the most fundamental level.

8 Related work

8.1 Constraint handling rules

8.1.1 Embeddings

The first approach to embed CHR into a host language was via source-to-source transfor-

mation. Holzbaur and Frühwirth (2000) and Schrijvers and Demoen (2004), for example,

translate CHR via Prolog’s macro system. Similarily, Abdennadher et al. (2002) and Van

Weert et al. (2005) use a precompiler to translate CHR programs into Java, Wuille et al.

(2007) into C, Nogatz et al. (2018) into Javascript, and Barichard (2024) into C++.

Van Weert et al. (2008) introduces compilation schemes for imperative languages,

upon which, for example, Nogatz et al. (2018) builds. The work of van Weert (2010)

also provides compilation schemes for imperative languages, but optimizes the matching

process by performing it lazily. The algorithms do not first compute a full matching and

check it against the patterns and the guard but collect it sequentially.

The inherent disadvantage of an approach using source-to-source compilation is the

need for a precompiler in the build chain if the host language does not have a sufficiently

expressive macro system like Prolog or LISP. It comes with the cost of more sources of

errors and an additional dependency that is often rather tedious to fulfill. Hanus (2015)

approaches this problem by extending the Curry compiler to be able to compile CHR

code. The obvious problem with this approach is that it is in most cases not viable to

extend the compiler of the host language.

A relatively new approach by Ivanović (2013) was to implement CHR as an internal

language in Java. This has a major advantage: CHR can now simply be imported as a

library, similarly as if implemented by a macro system like by Schrijvers and Demoen

(2004). Wibiral (2022) further builds upon this idea and introduces the idea of explicitly

composing CHR programs of singular rules by an abstract and modular execution strat-

egy and describing rules through anonymous functions. This was our main inspiration

and FreeCHR aims to improve and generalize this idea for arbitrary languages.

8.1.2 Operational semantics

Duck et al. (2004) first formalized the behavior of existing implementations which

were mostly derived from but not exactly true to existing formal definitions of oper-

ational semantics. The techniques used in the implementations were also generalized

and improved upon by Van Weert et al. (2008) and van Weert (2010). Duck (2005)

standardized call-based semantics for CHR, especially in logical programing languages.

17 Aside maybe from very small applications.
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8.2 Algebraic language embeddings

The idea of algebraic embeddings of a domain specific language (DSL) into a host

language was first introduced by Hudak (1998). The style in which the languages are

embedded was later called tagless , as it does not use an algebraic data type, to construct

an abstract syntax tree (see, e.g., Carette et al. (2007)). The tags are the construc-

tors of the data type which defines the syntax of the language. Instead, the embedding

directly defines the functions which implement the semantics of the language. This

is, defining the free F -algebra versus defining the concrete F -algebras, for a functor

F which defines the syntax of the language. The advantage of embedding a DSL in

this way is that it does not rely on external build tools, but can instead be easily

implemented and used as a library. It also enables the use of any features the host

language offers, without any additional work. With an external code-to-code compiler,

it would be necessary to re-implement at least the syntax of any desired host language

features.

Hofer et al. (2008) and Hofer and Ostermann (2010) then extended this idea by using

type families in order to provide more flexibility concerning the semantics of the language.

8.3 Logic and constraint based languages and formalisms

CHR was initially designed as a tool to implement constraint solvers for user-defined

constraints. Hence, its domain intersects with those of Answer Set Programming (ASP)

and Constraint Logic Programming (CLP). However, on the one hand, CHR can rather

be understood as a tool in combination with ASP or especially CLP, as it provides an

efficient language to implement solvers, than as an alternative approach. On the other

hand, CHR has already exceeded its original purpose and developed more towards a

general purpose language.

Another relevant logic based language is miniKanren (see Byrd (2009)). miniKan-

ren is a family of EDSLs for relational and logic programing. There exists a myriad

of implementations for plenty of different host languages as well as formal descriptions

of operational semantics (see e.g., Rozplokhas et al. (2020)). The miniKanren language

family, though, seems to suffer from similar issues as traditional Constraint Handling

Rules does. As there is no unified embedding scheme, there is an inherent disconnect

between any implementation and the formally defined semantics. Applying an approach

similar to ours might be beneficial to the miniKanren project as well, especially as it

generally is implemented in a way similar to the methods described by Hudak (1998) or

Carette et al. (2007).

9 Future work

With this foundational introduction of FreeCHR in place, our future work will focus on

three main aspects.

First, since the execution algorithm presented here is only of limited practical use, we

plan to introduce an algorithm that implements the refined operational semantics ωr of
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CHR. The ωr semantics of CHR is the basis for most existing implementations. Since

we already have the very abstract operational semantics as a baseline, we can use it as a

basic anchor to verify any execution algorithm. The algorithm we intend to formalize is

already implemented in Haskell18 and Python.19

Second, we currently work on translating the refined operational semantics and verify-

ing them against ω�
a, as well as the aforementioned execution algorithm. This will provide

a base for theory concerning practically relevant aspects of FreeCHR.

We plan to verify both the execution algorithm implementing ω�
r and ω�

r itself by

showing that they are valid concretization of ω�
a.

Finally, we plan to tackle the issue of side effects that we encountered in the case

study in Section 6. This can be done by generalizing the functor CHRC to use monads to

encapsulate arbitrary side effects (see Jones and Wadler (1993)). This was already done

in implementations in Haskell but is not yet formalized. This is an important aspect, as

it further formalizes practical aspects of everyday programing.

10 Conclusion

In this paper, we introduced the framework FreeCHR that formalizes the embedding of

CHR, using initial algebra semantics. We provided the fundamental definition of our

framework which models the syntax of CHR programs over a domain C as a Set-

endofunctor CHRC . We defined the very abstract operational semantics ω�
a, using the

free CHRC-algebra CHR�
C and proved soundness and completeness with respect to the

original very abstract operational semantics ωa of CHR. We also provided a first abstract

instance Execa of FreeCHR, proved its correctness with respect to to ω�
a and discussed

deterministic implementations of the algorithms in Haskell and Python.

Hereby, we established FreeCHR as a valid representation of the original definition of

CHR and a usable framework for the implementation of the embedded language in a

wide range of host languages.

Moreover, are the presented execution algorithm and the implementations of it,

although very simple, to our knowledge the first implementations of CHR for which

there is an actual prove of correctness with respect to to a formal definition of their

operational semantics.
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