Verotoxin-producing *Escherichia coli* infections in Sheffield: cattle as a possible source

P. A. CHAPMAN, D. J. WRIGHT AND P. NORMAN

Public Health Laboratory, Northern General Hospital, Herries Road, Sheffield S5 7AU

(Accepted 10 January 1989)

SUMMARY

During 1986 and 1987, faecal samples from patients with haemorrhagic colitis (HC) or haemolytic-uraemic syndrome (HUS) were examined for evidence of infection by verotoxin-producing *Escherichia coli* (VTEC). During the 2-year period VTEC infections were found in 31 (78%) of 40 patients initially presenting with HC, and in 5 (63%) of 8 patients initially presenting with HUS. VTEC were found in only 2 (0.9%) of 229 age and sex matched control patients with acute non-bloody diarrhoea. All but one VTEC belonged to *E. coli* serogroup O157. During 1987 this serogroup was isolated from 2 (1%) of 207 samples of faeces taken from cattle arriving at a Sheffield abattoir, indicating a possible source of these infections for man. We are unaware of previous reports of isolation of this organism from cattle in England.

INTRODUCTION

Strains of *Escherichia coli* producing a powerful cytotoxin active against cultured vero cells were first described by Konowalchuk *et al.* (1977), and have since been recognized as important human pathogens. Such verotoxigenic *E. coli* (VTEC') have been associated with outbreaks and sporadic cases of haemorrhagic colitis (HC) in North America, Europe and Japan (Riley *et al.* 1983; Pai *et al.* 1984; Itoh *et al.* 1985; Robaeys *et al.* 1987; Smith *et al.* 1987), and with sporadic cases of haemolytic-uraemic syndrome (HUS) in North America and England (Karmali *et al.* 1983, 1985; Scotland *et al.* 1988). Beef products and untreated milk have both been suggested as possible sources of VTEC infection for man (Riley *et al.* 1983; Martin *et al.* 1986; Ryan *et al.* 1986; Borczyk *et al.* 1987).

The aim of this study was to monitor the incidence of VTEC infection in patients with HC or HUS, in age/sex matched controls with non-bloody diarrhoea, and in cattle arriving at a Sheffield abattoir.

MATERIALS AND METHODS

Selection of patients

Patients selected for study were those presenting with either HC (sudden onset of grossly bloody diarrhoea, sometimes preceded by abdominal pain and cramps...
and watery non-bloody diarrhoea) or HUS (acute renal failure, thrombocytopaenia and microangiopathic haemolytic anaemia). Faecal samples were selected from those submitted by general practitioners, the Communicable Diseases Unit of Lodge Moor Hospital, Sheffield, or other hospitals in the area, on the basis of information supplied on the original request forms. For each HC or HUS patient selected for study, we also selected control patients of the same sex, whose age and date of onset of illness matched as closely as possible those of the HC or HUS patient, but who presented with acute non-bloody diarrhoea. All patients were examined for the presence of free faecal verotoxin and *E. coli* O 157.

Cattle specimens

Faeces were obtained from 207 randomly selected cattle brought to a Sheffield abattoir during 1987. These samples were examined for the presence of *E. coli* O 157, but not for free faecal verotoxin.

Detection of *E. coli* O 157

Faecal samples were inoculated onto sorbitol MacConkey agar (Oxoid CM813). After overnight incubation, apparently non-sorbitol fermenting colonies were identified using a series of standard biochemical tests. Isolates identified as *E. coli* were checked for agglutination with *E. coli* O 157 antiserum (Difeo) using standard methods. Isolates identified as *E. coli* O 157 were then grown in a modified brain heart infusion broth (Chapman & Swift, 1984) and after centrifugation at 3000 g at 4 °C for 30 min and filtration of the supernatant through a 0.22 μm membrane, the filtrate was then assayed for verotoxin as described by Konowalchuk et al. (1978).

Detection of faecal verotoxin

Faecal samples were diluted 1 in 2 in phosphate buffered saline and centrifuged at 3000 rev./min at 4 °C for 30 min. The supernatant was then filtered through a 0.22 μm membrane filter and assayed for verotoxin as above.

Detection of VTEC serogroups other than O 157

If free faecal verotoxin was found in the absence of *E. coli* O 157, then a search for other toxigenic serogroups was made. After culture of the sample on ordinary MacConkey agar (Oxoid CM7b), colonies resembling those of *E. coli* were checked for verotoxin production as above; those proving to be VT+ were then serogrouped.

Detection of other pathogens

HC and HUS patients and controls were examined for salmonellas, shigellas, campylobacters and *Cryptosporidium* by methods described in an earlier survey (Chapman & Mitchelmore, 1988).

RESULTS

Table 1 shows the results of the examinations of human and cattle faeces. During the 2-year period VTEC infections were found in 31 (78%) of 40 patients initially presenting with HC, and in 5 (63%) of 8 patients initially presenting with
Verotoxin-producing Escherichia coli

Table 1. VTEC infections in Sheffield, 1986–7

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>HUS</th>
<th>XBD</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number examined</td>
<td>40</td>
<td>8</td>
<td>229</td>
<td>207</td>
</tr>
<tr>
<td>Faecal verotoxin</td>
<td>31</td>
<td>2</td>
<td>2</td>
<td>NE</td>
</tr>
<tr>
<td>Non-sorbitol</td>
<td>36</td>
<td>8</td>
<td>46</td>
<td>25</td>
</tr>
<tr>
<td>Fermenting E. coli</td>
<td>VT- E. coli O 157</td>
<td>30</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>VT- E. coli O 128</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other pathogens</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td>NE</td>
</tr>
</tbody>
</table>

HC, haemorrhagic colitis; HUS, haemolytic-uraemic syndrome; XBD, control patient with non-bloody diarrhoea; CF, cattle faeces; NE, not examined.

Fig. 1. Age and seasonal distribution of verotoxin-producing E. coli infections in Sheffield.

HUS, VTEC were found in only 2 (0.9%) of 229 age- and sex-matched control patients with acute non-bloody diarrhoea. All isolates of E. coli O 157 produced verotoxin and had identical biochemical test profiles (indole +, ONPG +, urea −, malonate −, PPA −, citrate −, arginine dihydrolase −, lysine decarboxylase +, ornithine decarboxylase +, sorbitol −, inositol −, adonitol −, rhamnose −, arabinose −, xylose −). Only one other VTEC serogroup, O 128, was isolated. No other pathogens were isolated from HC or HUS patients, but of those with acute non-bloody diarrhoea 52 (23%) of 229 patients had a recognized enteric pathogen.
During 1987, *E. coli* O 157 was isolated from 2 (1%) of 207 samples of faeces taken from cattle arriving at a Sheffield abattoir. Both isolates produced verotoxin and had identical biochemical test profiles to the human isolates.

Figure 1 shows the seasonal and age distribution of VTEC associated HC cases over the 2-year period.

DISCUSSION

HUS is a serious illness previously reported mainly in young children, which may often be preceded by an attack of bloody diarrhoea and is frequently a cause of renal damage (Fong, de Chadarevian & Kaplan, 1982; Drummond, 1985; Neill, Agosti & Rosen, 1985). Many infectious agents have been reported in association with sporadic cases of HUS including shigellae (Bhuyan, Srivastava & Choudhry, 1985), campylobacters (Fumarola, Miragliotta & Jirillo, 1985; Haq, Rahman & Akbar, 1985) and *Yersinia* spp. (Davenport & Finn, 1988a, b), but few of these studies have excluded VTEC infection as a cause. A strong association between dysentery caused by *Shigella dysenteriae* serotype 1 and subsequent development of HUS was observed in Indian children by Bhuyan et al. (1985), and workers have noted a strong homology between shigatoxin produced by *S. dysenteriae* serotype 1 and the vero cytotoxin produced by VTEC (O'Brien & Holmes, 1987). Karmali et al. (1983, 1985) reported an association between *E. coli* O 157 and sporadic cases of HUS. Our findings would support this, but in our study the age range for HUS patients varied from 2 to 85 years, and the disease cannot therefore be regarded as one exclusively encountered in children.

The ages of patients initially presenting with HC varied from 4 to 87 years. Of 31 patients subsequently positive for VTEC, 7 developed complications including full HUS, uraemia, haemolytic anaemia or renal failure. The seasonal distribution (Fig. 1) shows marked clusters of cases of HC in summer each year which are difficult to explain; these could perhaps be small unrecognized point-source outbreaks associated with beef products, or with a contaminated seasonal food crop as described recently by Morgan et al. (1988). Based on epidemiological evidence, studies in N. America and Europe have implicated cattle as possible sources of VTEC infection for man (Riley et al., 1983; Martin et al., 1986; Ryan et al. 1986; Borczyk et al. 1987), although their isolation from cattle has been reported infrequently (Martin et al. 1986). During 1987 we examined 207 samples of faeces from cattle arriving at a Sheffield abattoir. Of these 2 (1%) yielded heavy growths of VTEC O 157 on sorbitol MacConkey medium; we are unaware of previous reports of isolation of this organism from cattle in England. In view of the rarity of *E. coli* O 157 in relation to other enteric pathogens, this low level carriage by cattle cannot be excluded as a source of these infections in Sheffield.

The confirmation of the presence of VTEC infections can pose difficulties. Most, but not all strains, belong to serogroup O 157 and are unusual among *E. coli* strains in not fermenting sorbitol (Wells et al., 1983: Pai et al. 1984). This feature was utilized in developing a medium for screening for *E. coli* O 157 (March & Ratnam, 1986), and such a medium is now available commercially, as is antiserum to *E. coli* O 157.

Demonstration of VT production is necessary for all isolates of *E. coli* O 157.
Verotoxin-producing Escherichia coli

because not all produce VT, and in the absence of E. coli O157, other VTEC serogroups should be sought (Gross & Rowe, 1985). Sensitive DNA probes for VT genes have been developed (Strockbine et al. 1986; Willshaw et al. 1987) but these unfortunately hybridize with shigatoxin genes harboured by most shigellass. A probe detecting genes for fimbrial antigens of E. coli O157 may not detect other serogroups of VTEC (Levine et al. 1987).

Demonstration of free faecal VT is a rapid and diagnostically useful procedure (Karmali et al. 1983). However, several other toxins that affect Vero cells may be present in faecal samples, and antitoxin to VT, which is not available commercially, is needed for specific confirmation of positive results.

Better, and more easily managed laboratory methods need to be developed to enable studies to elucidate further the epidemiology of VTEC infections.

ACKNOWLEDGEMENTS

We thank Dr M. W. McKendrick and General Practitioners in Sheffield for providing further information on some patients, Dr B. Rowe, Division of Enteric Pathogens, Central Public Health Laboratory, Colindale, London for confirming the identity of initial isolates of VT E. coli O157, Mr R. Ineson of Sheffield Environmental Health Department for collecting the samples of cattle faeces, and the staff of Sheffield PHL for their co-operation in these investigations.

REFERENCES

Verotoxin-producing Escherichia coli