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FRAMES WITH BLOCK SIZE FOUR 

Dedicated to the memory ofHaim Hanani 

ROLF S. REES AND DOUGLAS R. STINSON 

ABSTRACT. We investigate the spectrum for frames with block size four, and discuss 
several applications to the construction of other combinatorial designs. 

Our main result is that a frame of type hu, having blocks of size four, exists if and 
only if u > 5, h = 0 mod 3 and h(u — 1) = 0 mod 4, except possibly where 

(i) h = 9 and u G {13,17,29,33,93,113,133,153,173,193}; 
(ii) h = Omod 12 and u G {8,12}, 

h = 36 and u <E {7,18,23,28,33,38,43,48}, 
h = 24 or 120 and u <E {7}, 
h = 72 and u G 2Z+ U {n : n = 3 mod4 and n < 527} U {563}; or 

(iii) h = 6modl2andw G ({17,29,33,563} U {n : n = 3 or 11 mod 12 and 
n < 527} U {n : n = 7 mod 12 and n < 259}), h = 18. 

Additionally, we give a new recursive construction for resolvable group-divisible 
designs from frames: if there is a resolvable k-GDD of type gu, a £-frame of type {mgf 
where u > m + 1, and a resolvable TD(&, mv) then there is a resolvable k-GDD of type 
(mg)™. We use this to construct some new resolvable GDDs with group size three and 
block size four. 

1. Introduction. A frame is a group-divisible design (X, G, B) whose block set ad
mits a partition into holey parallel classes, each holey parallel class being a partition of 
X-Gj for some group Gj £ G. The groups of a frame are usually referred to as holes. 
The degree of a hole Gj is the number of holey parallel classes that partition X-Gj. Per
haps the simplest example of a frame is a near-one-factorization of Kjn+i • (The groups all 
have size one and the holey parallel classes are the near-one-factors.) While the forego
ing is the generally accepted definition of a frame, it is worth noting that the term frame 
originally meant a structure with an additional property, being used in the construction 
of Room squares (see e.g. [14]). Specifically, a Room frame is a group-divisible design, 
with blocks of size two, whose block set admits a pair of orthogonal holey resolutions, 
meaning that if H[ is a holey parallel class with respect to hole G, in the first resolution 
and Hjf is a holey parallel class with respect to hole Gj in the second resolution then 
\H't H H}'\ < 1 if iV h and \H[ H H'{\ - 0. 

We use as our standard design theory reference Beth, Jungnickel and Lenz [5]. Be
fore proceeding, we will review some of the terminology and notation regarding incom
plete designs. An incompletepairwise balanced design (v, w; K)-IPBD is a triple (X, Y, B) 
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where X is a v-set, F is a w-subset of X (Y is called the hole) and B is a collection of sub
sets of X, each having cardinality from K, such that a given pair x\,X2 of points from 
X is contained in exactly one block from B unless both x\,X2 are in Y, in which case 
there is no block containing them both. Note then that (X, F, B) is an IPBD if and only 
if (X,B U {Y}) is a PBD. Similarly, an incomplete group-divisible design (IGDD) is a 
quadruple (X, F, G, B) where y is a distinguished subset of X (called the hole) so that a 
given pair x\,X2 of points from X is contained either in one block from B or one group 
from G unless both x\, X2 are in F, in which case there is no block containing them both. 
(There may be a group containing them both however.) We shall have occasion to speak 
about incomplete frames; to avoid ambiguity we will state at the outset that for these 
designs the members of G will be called groups and the set Y will be termed the hole. An 
incomplete resolvable block design (v, w; {£})-IRBIBD is a (v, w; {£})-IPBD (X, Y,B) 
whose block set is a disjoint union PU Q, where P can be partitioned into parallel classes 
on X and Q can be partitioned into holey parallel classes (with respect to the hole Y) 
on X\Y. It is not difficult to show that if a (v, w; {£})-IRBIBD exists then v = w = k 
(mod k(k — 1)). Hence determining the spectrum for resolvable subdesigns in resolvable 
(v, k, l)-BIBDs yields the spectrum for incomplete resolvable designs with block size k. 
The same is not true if we remove the resolvability criterion. For example there is an 
(11,5; {3})-IPBD (just adjoin 5 infinite points to a one-factorization of K$) but there is 
no (5,3,1)-BIBD. 

A transversal design TD(k, n) is a group-divisible design in which there are k groups 
of size n and in which all blocks have size k. It is well-known that a TD(fc, n) is equiv
alent to k — 2 MOLS of order n. Recent work of Abel [1] and Todorov [26] on the 
existence of 4 MOLS requires that we update [5]: there exists a TD(6,«) if n > 5, 
n ^ 6,10,14,18,22,26,30,34,42. An incomplete transversal design ITD(A:, («, m)) is 
an IGDD in which there are k groups of size «, having a hole Y which intersects each 
group in exactly m points, and in which all blocks have size k. These designs are also 
denoted by TD(&, n)-TD(k, ra), to emphasize their equivalence to sets of k — 2 MOLS of 
order n 'missing' k — 2 sub-MOLS of order m. More generally, if M is a set of positive 
integers we will denote by ITD(&, (n, Af)) an incomplete transversal design having a mu
tually disjoint set of holes which, respectively, intersect each group in m points, m EM. 
In particular if EmeM m — n then the holes are said to be spanning. (Such designs are 
equivalent to sets of orthogonal partitioned incomplete latin squares (OPILS), which we 
will discuss in Section 5.) Incomplete transversal designs are of considerable interest be
cause of their versatility in constructions for other types of combinatorial designs. For 
recent work (together with extensive bibliographies) on ITDs we refer the reader to Stin-
son and Zhu [25] and Zhu [28]. 

We will use the usual exponential notation for GDDs and frames. Thus a k-GDD of 
tyPe 8*î #2 ' " 8 s *s a group-divisible design in which the blocks have size k and in which 
there are u groups of size gt, i — 1, . . . , s. Alternatively we may say fc-GDD of type 5, 
where S is the multiset consisting of u copies of gi9 i = 1, . . . , s. Similarly, a &-IGDD of 
type (gi, h\)tl(g2, h2)h • • • (gs, hs)

ts is an incomplete group-divisible design in which the 
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blocks have size k and in which there are tt groups of size gi9 each of which intersects the 
hole in ht points. If some hj = 0 we generally suppress it, writing just gj. The following 
fundamental property of frames is proven in [23]: 

LEMMA 1.1. If (X,G,B) is a k-frame and Gj G G, then the hole G, has degree 
\Gj\/(k - 1). In particular, \Gj\ = 0 (mod k - 1). 

COROLLARY 1.2. If there is a k-frame of type hu (with u > 1), then u>k+l,h = 0 
(mod k—\) and h(u — 1) — 0 modk. 

PROOF. The first and third conditions follow from the definition of a holey parallel 
class, while the second follows from Lemma 1.1. • 

The necessary conditions given by Corollary 1.2 are known to be sufficient to guaran
tee the existence of these ^-frames for block sizes k — 2 or 3. The purpose of this paper 
is to investigate the case k = 4. Note that our concern here is only with establishing 
existence criteria for uniform frames, that is, frames in which all holes have the same 
size h. 

The case k = 3 was done by Stinson [24]. Due to a typesetting error that was not 
noticed in the proof-reading, a part of the frame of type 66 is missing in that paper. We 
present the whole frame here: 

Points: (((Z5 x {l,2})U{oo}) x Z3) U {ai,a2,a3}. 
Holes: {(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2)} (mod 5 , - ; - ) 

{(oo, 1), (oo, 2), (oo, 3), au <x2, a3}. 

Holey parallel classes: 

(oo,l), (1,1,0), (3,1,2) 
(oo,2), (4,2,1), (3,2,2) 
(oo,0), (3,1,0), (2,2,1) 

<*! , (1,1,1), (2,2,2) 
a2 , (2,1,2), (1,2,1) 

and 

(4,1,2), (3,1,0), (0,2,2) (2,2,0), (4,2,1), (1,1,1) (mod 5 , - ;3) . 

The case k = 2 falls under the category of 'folklore'. We are not aware of any simple 
constructions for these frames appearing in the literature, and so we will, for the sake of 
completeness, present such a set of constructions here. These are based largely on the 
following lemma: 

LEMMA 1.3. The additive group ~Ln admits a partition P into pairs such that 

a3 , (4,1,1), (2,2,0) 
(2,1,1), (3,1,1), (4,1,2) 
(1,2,2), (3,2,1), (4,2,2) (mod 5 , - ; 3) 
(4,1,0), (2,1,0), (1,2,0) 
(3,2,0), (4,2,0), (1,1,2) 
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{±(a - b) : (a, b) <E P] = Z„\{0} if and only ifn = 0or2 mod 8. 

PROOF. We first show necessity. Suppose that n = 0 mod 4. Then the difference | is 
even and, without loss of generality, appears in P as {0, | } . This leaves ?J odd residues 
and § — 2 even residues to be covered by the remaining pairs in P\ this can occur only if 
the number {{a, b} G P : a — b is an even residue mod « and {a, b} ^ {0, \ }} I is odd. 
But this number is | — 1, that is, | must be even, which means n = 0mod8. A similar 
argument shows that if n = 2 mod 4 then in fact we must have n = 2 mod 8. 

We now show sufficiency by direct construction. 
(i)rc EE 0mod8 

Z8 : 0,4 1,3 2,5 6,7 
Zi6 : 0,8 4,11 3,5 2,6 1,7 10,15 9,12 13,14 

Zn,n>24: 0,§ 1» f — 1 f + 2 , / i - l f + 1 , ^ - 2 

n 3n i ! ! ! 
4 ' 4 L 

7n i Tn ! ! ! 
o 1 , o 
n , I 3n « i « , I 5n 7« • i 3n 9 3n , i 
2 + 1 ' 4 4 1 M " h l S ' S ^ 1 4 ^ 4 " 1 ' 1 

(ii)« = 2mod8 

Z2 

-10 

0,1 
0,5 1,23,64,87,9 

Z „ , « > 1 8 : 0,f l , f - l ^ P , ^ § + 2 , / ! - l ' 2 

«-2 n+6 

/i+2 n , 1 
4 ' 2 "̂  X 

n+6 3/7+2 Ai-10 3/i+lQ w-2 n+10 3n-2 3n+6 
4 » 4 8 ' 8 4 ' 4 4 ' 4 

This completes the proof of Lemma 1.3. • 
In the terminology of frame starters, Lemma 1.3 concerns frame starters in 

Zn\{0, | } . The necessary condition n = 0 or 2mod8 was shown by Anderson [la]. 
Furthermore, Rosa has pointed out that these starters can in fact be generated by Skolem 
sequences {(pr, qr) : r — 1, . . . , m} where qr—pr — rand wherepm = 1. Such sequences 
were constructed by Rosa for all m = 0 or 1 (mod 4) in [20]. (In fact our starters corre
spond precisely to Rosa's Skolem sequences when n = 0 (mod 8) (i.e. m = 0mod4). 
For n = 2 (mod 8) we can add 1 to each symbol in our starters to obtain Skolem se
quences with m — \n which are non-isomorphic to Rosa's sequences.) 

THEOREM 1.4. There exists a 2-frame of type hli if and only ifu > 3 and h(u — 1) = 
0mod2. 

PROOF. Necessity is given by Corollary 1.2. If u is odd the construction is quite 
simple; start with a near-one-factorization of Ku (i.e. 2-frame of type 1") and use weight 
h. 
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We now suppose that u is even, so that h must be even. It therefore suffices to show that 
there exist 2-frames of type 2U for each even u > 4 (the desired frame is then obtained by 
applying weight hj 2). If u = 0 mod 4 we use the frame starter on Ziu given in Lemma 1.3 
and develop modulo 2w (the holes in the frame are {0, u}, {1, u+1},..., {u — 1, 2w — 1}). 
If u = 2 mod 4 we begin with the frame starter on Z2W-2 and add two ideal points ooj 
and 002. Replace the pair {£jp, ^ } by {ooi, ^ } and {oo2, ^ } and develop modulo 
2M — 2; this will give the holey parallel classes with respect to the holes {0,w — 1}, 
{l,w},...,{w — 2, 2M — 3}. The holey parallel classes with respect to the hole {ooi, 002} 
are 0,1 2,3 • • • 2u - 4, 2M - 3 and 1,2 3,4 • • • 2w - 3,0. 

This completes the proof of Theorem 1.4. • 
As a final note, we remark that frames with more than one block size have been consid

ered by Rees in connection with g*(l, 2; v) problem, which asks for the smallest number 
of blocks possible in a pairwise balanced design on v points in which the largest block 
has size k (see [15]). Another variation of frames which has received considerable at
tention recently is frames for a-resolvable designs (see Furino [9]). A design is called 
a-resolvable if its block set admits a partition into a-parallel classes, each a-parallel 
class being a set B' of blocks with the property that each point is contained in exactly 
a blocks of B'. Note that a 1-resolvable design is just a resolvable design in the usual 
sense. 

2. Some preliminaries. We concentrate our efforts now on the construction of 
frames with block size four. Henceforth the term frame will, unless specifically indicated 
otherwise, mean a uniform 4-frame. Corollary 1.2 gives us the necessary conditions for 
the existence of our frames: 

LEMMA 2.1. If a frame of type hu exists, then u > 5, h = 0mod3 and h(u — 1) = 
0mod4. 

We'll now briefly review some of the more common constructions for frames, many 
of which can be found in [24]. 

CONSTRUCTION 2.2 (INFLATING BY TDS). If there is a frame of type hu and a resolv
able TD(4, m) then there is a frame of type (mh)u. 

CONSTRUCTION 2.3 (GDD CONSTRUCTION I). Let (X,G,£) be a GDD, and let 

w: X —• Z+ U {0} be a weight function on X. Suppose that for each block b G B there is a 
4-frame of type {w(x) : x G b}. Then there is a 4-frame of type {EJCGG W(*) • Gj G G}. 

CONSTRUCTION 2.3A (GDD CONSTRUCTION II). Let (X,G,5) be a GDD, and let 

w: X —> Z+ U {0} be a weight function on X. Suppose that for each block b e B there 
is a 4-frame of type {VV(JC) : x G b} and that for each group Gj G G there is a frame of 
type hsilhJri, where Sj = EjceG; w(*) ^ d S = 0 or 1. Then there is a frame of type hslh**, 
where s = Exex w(x). 

As a corollary to Construction 2.3a, we get: 
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LEMMA 2.4 (PBD CLOSURE). For each fixed hole size h, the set {u : 3 frame of type 
hu} is PBD-closed. 

We will use, as a starting point for many of our frames, the following fundamental 
result of Hanani, Ray-Chaudhuri and Wilson [10]: 

THEOREM 2.5. There exists a resolvable (v, 4,1)-BIBD if and only ifv = 4 mod 12. 

COROLLARY 2.6. There exists a frame of type 3U if and only ifu=l mod 4. 

PROOF. Necessity is given by Lemma 2.1 ; for sufficiency we delete a point from a 
resolvable (3w + 1,4,1)-BIBD. 

We will make extensive use of pairwise balanced designs with block sizes from the 
set H4 = {k : k = 1 mod 4}. These designs have been studied extensively, particularly 
with a view towards determining the minimal finite basis for H4 (see [12], [13], [14] and 
[27]). The following result is from [8]. 

THEOREM 2.7. 

«(5,9*) D {v : v = 9,17 mod20, v ^ 17,29}\{49} 

B(5,13*) = {v : v = 13 mod20, v ̂  33} 

As usual the presence of an asterisk indicates exactly one occurrence of a block of the 
indicated size. We will also use the following terminology, adapted from [14]. If (X9B) 
is a pairwise balanced design with block sizes from the set H4 and there is a point x G X 
which is contained exclusively in blocks of size 5, then we will say that x is a 5-head 
of (X,B) and we will write v = |X| G B(5,H4). Thus, for example, the only known 
construction that puts 49 G B(5,9) (see [12]) does not yield a 5-head, and so it is not yet 
known whether or not 49 G (5,9). Note that #(5,9*)\{9} C B(5,9). It is worth noting 
thatv G ^ ^ i f a n d o n l y i f t h e r e i s a n ^ - G D D o f t y p e ^ - ^ / 4 , / . ^ v - 1 G GD(/J4,4). 
Lindner and Stinson [12a] investigated the set GD({5,9,13,17,29,49}, 4) and showed 
that Au G GD({5,9,13,17,29,49}, 4) whenever u > 5, u ^ 7,8,12,14,18,19,23,24, 
33,34. From Theorem 2.7 we see that the values u = 14,18,19,23,24,33, and 34 can 
be removed from their list of exceptions, leaving only u = 12 open (the cases u = 7,8 
are of course real exceptions). 

We will now work towards determining the set B(5,9). In consideration of Theo
rem 2.7 we need only concentrate our efforts on the fibre u = 13 (mod 20). 

LEMMA 2.8. £(5,9) D {v : v = 13mod20andv > 213}. 

PROOF. We first observe that 53 G £(5,9) (a 5-GDD of type 4783 is given in the 
Appendix), and that 73 G B(9) (take the projective plane of order 8). 

Now let v > 213 be given. Let m— ^(v — 53). 
If m = 0 or 1 mod 5, m > 15, m ^ 26 or 30 then take a TD(6,m) and truncate a 

group to 13 points. Now apply Wilson's Fundamental Construction (WFC) [27], using 
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weight 4 and using 5-GDDs of types 45 and 46, to obtain a 5-GDD of type (4m)5521. 
Then adjoin one ideal point, filling in (4m + 1,5, l)-BIBDs and a (53, {5,9})-PBD. 

If m = 26 or 30, start with a TD(6,m — 1), truncating a group to 17 points. Use 
the WFC to yield a 5-GDD of type (4m — 4)5681, and adjoin five ideal points, filling in 
(4m + 1,5, l)-BIBDs (in which the ideal points form a block) and a (73, {9})-PBD. 

If m = 4 mod 5, m > 19, m ^ 34 then we proceed as above, except that we truncate 
a group to 12 points before applying the WFC, and that we use five ideal points, filling 
(4m + 5,5, l)-BIBDs (in which the ideal points form a block) and a (53, {5,9})-PBD. 

Form = 2mod5,m > 12,m ^ 22,42 we can proceed as in the m = Oor 1 mod5case, 
truncating a group to 11 points before applying the WFC and using 9 ideal points, filling 
in (4m+9, {5,9*})-PBDs (in which the ideal points form a block) and a (53, {5,9})-PBD 
(Theorem 2.7). If m = 22 or 42, we start with a TD(6, m — 1), truncating a group to 18 
points and using one ideal point upon applying the WFC. Now we fill in (4m — 3,5,1)-
BIBDs and a (73, {9})-PBD. 

Finally, if m = 3 mod 5, m > 13, m ^ 18 we start with a TD(6, m), truncating a group 
to 12 points and removing a block of size 5 to obtain a {5,6}-IGDD of type (m, l)5121. 
Now apply the WFC, yielding a 5-IGDD of type (4m,4)5481. Use 5 ideal points, filling 
in (4m + 5,9; {5})-IPBDs (= (4m + 5, {5,9*})-PBDs in which the block of size 9 forms 
the hole, see Theorem 2.7), a (25,5,1)-BIBD in which the ideal points form a block, and 
a (53, {5,9})-PBD. For m = 18 use a TD(6,17), truncating a group to 16 points and 
using 9 ideal points after applying the WFC; now fill in (77, {5,9*})-PBDs (in which the 
ideal points form a block) and a (73, {9})-PBD. 

There remain the values v = 213,233,253,273,333 and 733. 
Now213 = 4x53+1; since 53 G fl(5,9)and4;t+l G £(5,9)forx G 5(5,9) it follows 

that 213 G #(5,9). The case v = 733 can be done similarly. If we take a TD(11,17) and 
remove two points from each of two groups we get 183 G B(9,10,11,15,17). Since for 
each x G {9,10,11,15,17} we have Ax + 1 G £(5,9), we therefore have 4(183) + 1 = 
733 G £(5,9). 

For v = 253, start with a TD(6,5) and apply the WFC with weight 8, filling in 5-
GDDs of type 86 (which can be obtained by removing the hole from a TD(6,10)-TD(6,2), 
see [4]). Now adjoin 13 ideal points, filling in (53, {5,13*})-PBDs (in which the ideal 
points form a block) and a (53, {5,9})-PBD. For v = 273, proceed similarly, applying 
weight 4 to a TD(6,11) and adjoining 9 ideal points. Fill in (53, {5,9})-PBDs in which 
the ideal points form a block. 

Finally for v = 233 start with a TD(6,10)-TD(6,2) (see [4]) and remove two points 
from the hole (but from different groups); apply weight 4 to get a 5-IGDD of 
type (36,4)2(40,8)4. Now adjoin one ideal point, filling in (37,5; {5,9*})-IPBDs, 
(41,9; {5,9})-IPBDs and a (41,5,1)-BIBD. (The first designs exist by Theorem 2.7 and 
the second can be obtained by fusing the groups of a TD(5,8) with a new point.) This 
can be done so that the ideal point becomes a 5-head in the finished design. For v = 333 
take TD(9,9) and truncate a group to one point. Now give all points on a long group 
weight 8, and all remaining points weight 4, applying the WFC with 5-GDDs of type 
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478 ! (obtained by deleting a point from the block of size 9 in a (37, {5,9*})-PBD) and 
{5,9}-GDDs of type 488J (obtained by deleting a point from the (41, {5,9})-PBD pre
viously referred to). Use 5 ideal points, filling in (41,5; {5})-IPBDs, a (77,5; {5,9*})-
IPBD and a (9, {9})-PBD. Note that the 77-point filler will have 5-heads in the finished 
design. 

This completes the proof of Lemma 2.8. • 
The reader will have noticed that in all but a few of the cases in Lemma 2.8 we showed 

that v G £(5,9) by first showing that v G 5(5,53*) or v G £(5,73*). Anticipating that 
this result will be useful in applications other than that for which we used it here, weTl 
isolate it: 

LEMMA 2.9. 5(5,53*) D {v : v = 13 mod 20 and v > 213}\{233,273,333,413, 
493,573,653,733,893}. 

Of the possible exceptions, we have {413,493,573,653,893} Ç 5(5,73*). 
If we collect the results of Lemma 2.8 and Theorem 2.7 we get: 

THEOREM 2.10. 5(5,9) D {v : v = lmod4,v > 21, v ^ 29,33}\{49,73,93,113, 
133,153,173,193}. 

Before proceeding to our constructions we point out a useful equivalence between 
frames and incomplete group divisible designs which we shall have occasion to employ. 
If (X, G, 5) is a frame (of type hu) then from Lemma 1.1 each hole has degree \h. We can 
therefore adjoin \h new points to each hole, each new point completing a holey parallel 
class, to obtain a 5-IGDD of type (|/z, \h)u. The construction is, of course, reversible. 

3. Frames with block size four. We will begin our consideration with the easi
est case, namely h = 3 mod 6. In this case we must have u = 1 mod 4 (Lemma 2.1). 
Corollary 2.6 and Construction 2.2 now give the following result. 

THEOREM 3.1. Let h = 3 mod 6, h ^ 9. There is a frame of type hu if and only if 
u = 1 mod 4. 

There remains the case h — 9 to be dealt with. Frames of types 95 and 99 appear, 
respectively, in [23] and in the Appendix. From Lemma 2.4, therefore, 5(5,9) C {u : 3 
frame type 9"}. We get the following result. 

THEOREM 3.2. There exists a frame of type 9U if and only ifu = l mod 4, except 
possibly when u G {13,17,29,33,93,113,133,153,173,193}. 

PROOF. Theorem 2.10, together with the fact that 49 and 73 are in 5(5,9). • 
We turn our attention now to frames with hole size h = 0 mod 12. Here there are no 

congruential conditions on u (Lemma 2.1). Note that by Construction 2.2 it is necessary 
only to consider h = 12,24,36,72 and 120. We'll start with h — 12, using as our main 
tool the following. 
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LEMMA 3.3. If v € B(5,H4) then there is a frame of type 12" where u — \{v — 1). 

PROOF. Remove a 5-head from a (v; 5, //4)-PBD to obtain an //4-GDD of type 4". 
Now apply Construction 2.3, with weight 3, and appeal to Corollary 2.6. • 

The following is an immediate consequence of Theorem 2.7. 

LEMMA 3.4. £(5,9,13) D {v : v = 1 mod4, v > 21, v ^ 29,33}\{49}. 

THEOREM 3.5. There is a frame of type 12" for all u > 5, except possibly for u — 
8,12. 

PROOF. Apply Lemmas 3.3 and 3.4. There remains the value u = 7 to be dealt with; 
a frame of type 127 is constructed in the Appendix. • 

We consider now hole size 36. We construct these frames in similar fashion as for 
hole size 12, except that a weight of 9 is applied instead of weight 3 (see Lemma 3.3). 

THEOREM 3.6. There is a frame of type 36uforall u > 5, except possibly for u G 
{7,8,12,18,23,28,33,38,43,48}. 

PROOF. Let u be given and let v = Au + 1. By Theorem 2.10 we have v E B(5,9), 
whence there is a {5,9}-GDD of type 4". Apply Construction 2.3 to this GDD, using 
weight 9 (frames of types 95 and 99 exist by Theorem 3.2). • 

Hole sizes 24 and 120 are dealt with analogously. 

THEOREM 3.7. There are frames of types 24" and 120" for all w > 5, except possibly 
/orwG{7,8,12}. 

PROOF. There are frames of type 65, 69 and 613 (the first can be found in [23]; the 
second and third are constructed in the Appendix). Let u be given and let v = Au + 1. 
By Lemma 3.4 we have v E £(5,9,13) so that there is a {5,9,13}-GDD of type 4". 
Applying Construction 2.3 to this GDD, using weight 6, gives a frame of type 24". If 
we apply Construction 2.2 (with m — 5) to this resulting frame we get a frame of type 
120". • 

There remains hole size 72 (in the fibre h = 0 mod 12); we will postpone discussion 
on this until the end of the section. 

We consider now the case h = 6 mod 12; in this fibre the number of holes u must be 
odd (Lemma 2.1). By Construction 2.2 we need consider only h — 6,18. We begin with 
ft = 6. 

THEOREM 3.8. There exists a frame of type 6" for all u = 1 mod 4, u > 5, except 
possibly for u — 17,29,33. 

PROOF. Frames of types 69 and 613 are constructed in the Appendix, and a frame of 
type 65 can be found in [23]. By Lemma 2.4, {u : 3 frame of type 6"} D #(5,9,13). Then 
from Lemma 3.4 we see that only the value u = 49 need be considered; now 49 G 5(5,9) 
(see [12]), and so the proof is complete. • 
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Frames of type 6", where u = 3 mod 4, seem to be difficult to construct directly. 
The only 'small' frame that we have is of type 631, and is obtained by applying Con
struction 2.3 to a 5-GDD of type 231. This latter design was kindly provided to us by 
W. H. Mills (see Appendix). We are nonetheless, able to obtain a reasonable bound on 
these frames via the following adaptation of Construction 2.3a: 

LEMMA 3.9. Suppose that m > 8, that there is a TD(7,2m), and that 0 < t < m 
where t (j? {4,7,8}. Then there is a frame of type 6U, where u = 20m + 47 + 31. 

PROOF. Truncate one group in the TD to 15 points and a second to It points. Now 
apply Construction 2.3a with h — 6, <5 = 1 and weight 12; frames of types 125, 126 and 
127 exist by Theorem 3.5, while frames of types 64m+1 and 64f+1 exist by Theorem 3.8. 
A frame of type 631 exists from the discussion preceding the Lemma. • 

THEOREM 3.10. There exists a frame of type 6U for all u > 531 with u = 3 mod 4, 
except possibly for u — 547,559,563. 

PROOF. We apply Lemma 3.9 with m £ S = {25,28,29} U {n : n > 32}. It is a 
simple exercise to verify that given u > 531, M ̂  547,559,563, we can always write 
u — 3l = 20m + At = 4(5m +1) for some m G S and 0 < t < m with t ^ 4, 7 or 8. Since 
2m G OA(7) (see [5]), the proof is complete. • 

In order to obtain some more frames with hole size 6 we can start with a resolvable 
(v,5,1)-BIBD, adjoin r points at infinity (0 < r < \{v - 1)) to obtain a {5,6}-GDD 
of type 5V/V and apply Construction 2.3a with h — 6, 8 = 1 and weight 36. Frames 
of types 365 and 366 exist by Theorem 3.6, while a frame of type 631 exists, as noted 
previously. All that is needed is a frame of type 66rf l. If r is even, these frames all exist 
by Theorem 3.8. Thus we have: 

LEMMA 3.11. Ifv e RB(5) andO <2m< \(v - 1) then there is a frame of type 6", 
where u — 6v + 12m + 1. 

REMARK. Note that u = 1 (mod 12) in the foregoing lemma. 

COROLLARY 3.12. There is a frame of type 6", where u G {31,151,163,175,391, 
403,415,427,439,451,463,475,511,523,535,547,559}. 

PROOF. Apply Lemma 3.11 with v = 5,25,65 and 85. • 
Note that the foregoing construction admits to a simple generalization. If there is a 

K-GDD of type 5r(2m)] and a frame of type 36* exists for each k G K then there is a 
frame of type 6", where u = 30t+ 12m + 1. By employing resolvable transversal designs 
RTD(5, t) fort = 9,11 and 15 we get the following further values for u in the fibre 7 
(mod 12): 

t u 
~~9 271, 283, 295, 307, 319 
11 331, 343, 355, 367, 379 
15 487, 499 

TABLE 3.1 
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We'll collect the values from Table 3.1 together with those from Corollary 3.12 into the 
following. 

THEOREM 3.13. There is a frame oftype 6" for u G {31,151,163,175}U{« : n = 7 
(mod \2)andn>21\}. 

PROOF. We need only point out that frames with u > 571 exist by Theorem 3.10. • 
Finally, we consider hole sizes 18 and 72. We can obtain the following partial result 

for hole size 72: 

LEMMA 3.14. There exists a frame of type 72" for all odd u>5 except possibly for 
u e {n : n = 3 mod4 and n < 527} U {563}. 

PROOF. If u = 1 mod 4 apply Construction 2.2, with m — 24, to a frame of type 3" 
(Corollary 2.6). If u = 3 mod 4 apply Construction 2.2, with m— 12, to a frame of type 
6" (Theorem 3.10 and Corollary 3.12). • 

There is not much that we can say about hole size 18 at this time; the only frames that 
we have are of types 1813 and 1831. Consequently, we are unable to make headway with 
hole size 72 where the number of holes is even (72 bears the same relationship to 18 as 
did 36 to 9 and 24 to 6). 

A frame of type 1813 is obtained by applying Construction 2.3, with weight 3, to 
a {5,13}-GDD of type 613 (see Appendix), while a frame of type 1831 is obtained by 
applying the same construction, but using weight 9, to Mills' 5-GDD of type 231 (see 
Appendix). 

We'll collect the relevant results of this section to form our main theorem: 

THEOREM 3.15. There is a frame of type hu if and only ifu>5,h = 0mod3 and 

h(u — 1) = 0mod4, except possibly where 

(i) h = 9andu<E {13,17,29,33,93,113,133,153,173,193}; 
(ii) h = Omod 12 and u G {8,12}, 

h = 36 and ue {7,18,23,28,33,38,43,48}, 

h = 24 or 120 and ue {7}, 

h = 12andue 2Z+ U{" : n = 3 mod4 and n < 527} U {563}; or 

(Hi) h ~ 6modl2 and u G {17,29,33,563} U {n : n = 3 or 11 mod 12 and n < 
527} U {n : n = 1 mod 12 and n < 259}, 

h= 18. 

4. A new construction for resolvable group divisible designs. One of the most 
important direct applications of frames is to the construction of resolvable group-divisible 
designs. Frames, together with resolvable GDDs, are then very useful in the considera
tion of certain subdesign problems (which we will discuss in Section 5). The following 
results are well-known (see [15a], [16], [2]): 
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THEOREM 4.1 (FOLKLORE). A resolvable 2-GDD of type gu exists if and only ifgu is 
even. 

PROOF. Necessity is obvious. For sufficiency, suppose first that u is even. Apply 
weight g to a resolvable 2-GDD of type 1" (= one-factorization of Ku). If u is odd then 
g must be even, and so we can apply weight g/2 to a resolvable 2-GDD of type 2" (= 
one-factorization of A^). • 

THEOREM 4.2. A resolvable J-GDD of type gu exists if and only if gu = 0mod3 
and g(u — 1) = 0mod2, except when (g, u) = (2,3), (2,6) or (6,3), and possibly when 
fe, ii) = (22,6). 

To our knowledge the only systematic work done regarding resolvable GDDs with 
block size 4 is the following result, due to H. Shen [21], [22]: 

THEOREM 4.3. There is a resolvable 4-GDD of type 3U if and only ifu = 0mod4, 
u > 8, except possibly for u G {28,40,44,60,72,88,104,108,124,152,184,216,220, 
268,284,296}. 

We will present a new construction for resolvable GDDs from frames and then use it 
to remove several of the exceptional values from Shen's list in Theorem 4.3. Our con
struction is a generalization of Zhu, Du and Zhang's Theorem 2.1 [29]. 

CONSTRUCTION 4.4. Suppose that there is a resolvable £-GDD of type g", and that 
there is a &-GDD of type (mg)v with the following property: its block set admits a partition 
into at most ru+rv colour classes, where ru = g(u— 1 )/(k— 1) and rv = mg(v— l)/(k— 1), 
and where each colour class constitutes a set of pairwise disjoint blocks which precisely 
covers some subcollection of groups. If there is a resolvable TD(£, rav) then there is a 
resolvable fc-GDD of type {mg)uv. 

Briefly, the construction works as follows. Let (£/, G, B) be the first (resolvable) GDD 
and let (V,//,L) be the second GDD. Let G = { d , G2 , . . . , Gu}. The finished design 
will be on the point set X = U x {1,2, . . . , rav} with groups JG,- x {m(j — 1) + 1, m(j — 
l )+2 , . . . , r a /} : 1 < i <w, l <j<v). We build a copy of (V, //, L) on each 'horizontal' 
line G/ x {1,2, . . . , rav}; now replace each block in (£/, G, B) by a transversal design so 
that (U, G,B) is copied onto each 'vertical' line U x {/}(1 <j< rav) in the grid. The 
parallel classes on X are of essentially two types. The first type exhausts the blocks in the 
horizontal GDDs. Specifically, for each colour class C in the colouring £ of (V, //, L) we 
create a parallel class on X which looks like {C\, C2,... , Cu} U {/*y : y G 5(C)}, where 
C, is the copy of C on the ith horizontal line and Pj is any (as yet unused) parallel class 
on the / 1 vertical line. The set S(Q = [j G {1,2, . . . , rav} : (G, x {/}) D c = 0 for every 
c G C/}, that is, S(C) is the set of indices for the vertical lines which are not crossed 
by any block of the colour class C. Note that the condition |£| < ru + rv insures that no 
vertical line will be called upon more than ru times to provide a parallel class. The second 
type of parallel class on X involves composing the parallel classes of the GDD (£/, G, B) 
with those of the transversal design in the usual way; note that ru — (|£| — rv) of these 
parallel classes will be vertical (and so will exhaust the blocks in the vertical GDDs). 
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If we set g = m = 1 in Construction 4.4 we retrive the Zhu, Du and Zhang construc
tion for resolvable BIBDs. 

COROLLARY 4.5. If there is a resolvable k-GDD of type gu, a k-frame of type {mg)v 

where u > m + 1, and a resolvable TD(/c, mv) then there is a resolvable k-GDD of type 
(mg)uv. 

PROOF. Use Construction 4.4, noting that a /c-frame of type (mg)v admits an allow
able block-colouring of size - ^ x v , which is < ru + rv if and only if u > m + 1. • 

If we specialize Corollary 4.5 to resolvable 4-GDDs of type 3M we have the following. 

LEMMA 4.6. If there is a resolvable 4-GDD of type 3" and v = 1 mod 4 then there 
is a resolvable 4-GDD of type 3"v. 

PROOF. Apply Corollary 4.5 with k = 4, g = 3 and m = 1. A 4-frame of type 3V 

exists by Corollary 2.6. • 
Several of Shen's possible exceptions can be factored as n = u x v where u and v 

satisfy the hypothesis of Lemma 4.6: 

n u x v 
~~4Ô 8 x 5 

60 1 2 x 5 
72 8 x 9 

104 8 x 13 
108 1 2 x 9 
216 2 4 x 9 
296 8 x 3 7 

TABLE 4.1 

Corollary 4.5 will undoubtedly play an important role in future investigations into 
resolvable GDDs. 

Related to resolvable designs and resolvable group-divisible designs are resolvable 
coverings and resolvable packings. A resolvable /^-covering (resp. fc-packing) on v points 
(v = 0 mod k) is a collection of parallel classes of blocks of size k that, among them, 
covers each pair of the v-set at least (resp. at most) once, and that has minimum (resp. 
maximum) possible cardinality. Thus for example a resolvable (v,k, 1)-BIBD is both a 
resolvable ^-covering and a resolvable fc-packing. 

Not surprisingly, frames are proving to be very useful in the construction of these 
designs. Assaf, Mendelsohn and Stinson [3] used Kirkman Frames to determine almost 
completely the spectrum of sizes of resolvable coverings by triples on v = 0 (mod 6) 
points: 

THEOREM 4.7. There is a resolvable covering of6n points by 3n parallel classes of 
triples if and only ifn > 3, except possibly when n G {6,7,8,10,11,13,14,17,22}. 

Note that resolvable packings by triples on v = 0 (mod 6) points are just Nearly 
Kirkman Triple Systems when v > 18. When v = 6 or 12 a resolvable packing consists 
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of 1 (resp. 4) triangle-factors. The resolvable 4-GDDs of type 3" (Theorem 4.3) of Shen 
constitute resolvable 4-packings on 3w = 0 (mod 12) points. Resolvable 4-packings on 
2w = 8 (mod 12) points will, except for some small cases, correspond to resolvable 
4-GDDs of type 2"; virtually nothing is known about the spectrum for these designs. 
Similarly we know of no systematic work concerning resolvable coverings by quadru
ples. It is anticipated that our current work on frames with block size four will be very 
helpful in the consideration of these problems. 

5. Other applications of frames. 
Incomplete block designs and incomplete resolvable block designs. As indicated in 
Section 4, frames (together with resolvable GDDs) have come to play an important role 
in certain sub-design problems, via the following construction, taken from [17]: 

CONSTRUCTION 5.1. Suppose that (X,Y,G,B) is an incomplete GDD and that 
w: X —• Z+ U {0} and d: X —• Z+ U {0} are functions on X (called weight and degree 
functions, respectively) where d(x) < w(x) for all x G X. Let « be a fixed non-negative 
integer and suppose that 

(i) for each block beB there is a AMGDD of type { (W(JC), d(x)) : x G B)9 

(ii) there exists a K-IGDD of type {(Execpr w(*), E*=G,-nr d(xj) : G, G G}, and 
(iii) for each group Gj G G there is a K-GDD on a + EJCGG,- W(X) points having a group 

of size a and a group of size EJCGG d(x). 
Then there is a K-GDD on a + T,xex w(x) points having a group of size T,X£X d(x) (and a 
group of size a). 

Incomplete block designs arise by setting K — {k} in the above construction. Typi
cally, frames and (resolvable) GDDs are required in the construction of designs satisfying 
criteria (ii) and (iii). Designs satisfying criterion (i) form a 'mixed bag' which must gen
erally be constructed directly. Thus, for example in the case of k = 4 we had to construct 
4-IGDDs of types (9,3)'65~' and (9,3)566"5 for all 0 < t < 5, 0 < s < 6 (see [17]). It 
is the group of size Y^XGX d(x) (possibly with some ideal points) that becomes the hole in 
the incomplete block design. 

Consider the following illustration. We will suppose that there is a 5-IGDD of type 
(16,4)5121. Take a transversal design TD(6,5) and truncate a group to three points. Let 
3̂1» 3̂2 be two points on the truncated group. Let 

(16, ' ^ y i o r w a n d l e t < / ( j t ) = 

12, x = y\ orj2 
f4, x^y{ory2 

| 0, JC = vi or j 2 ' 
w(x) = 

and set a = 4. Now 
(i) there exist 5-IGDDs of types (16,4)5 and (16,4)6 (these are equivalent to frames 

of types 125 and 126), and by supposition there is a 5-IGDD of type (16, ^ H 1 . 
(ii) this condition is vacuous as Y — 0 here. 
(iii) there exist 5-GDDs of types 416201 (adjoin 20 infinite points to a resolvable 4-

GDD of type 416) and 41041 (remove a point from a (45,5,1)-BIBD). 
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Therefore, there is a 5-GDD of type 4851041. If we now adjoin one ideal point to 
complete the groups we get a (445,105; {5})-IPBD. 

Incomplete resolvable block designs arise from Construction 5.1 when we add an 
extra condition: 

(iv) for each k G K there is a frame of type hk. 

Let us again hypothesize the existence of a 5-IGDD of type (16,4)5121. Then the 
5-GDD of type 4851041 constructed previously allows us to construct an incomplete re
solvable design with block size four as follows. Apply the frame construction, using 
weight h = 3, to get a frame of type 12853121. Adjoin four ideal points and fill the holes 
with (16,4; {4})-IRBIBDs to get a (1336,316; {4})-IRBIBD. 

As another illustration let us again start with our TD(6,5) and truncate a group to three 
points, but this time assign weight 12 and degree 0 to just one of its points. To satisfy 
condition (iii) of Construction 5.1 we must find a GDD on 48 points with a group of size 4 
and a group of size 8. If it is our objective to construct an incomplete design with block 
size 5 then we are out of luck, since no such GDD is (yet) known to exist. If instead our 
objective is to construct an incomplete resolvable design with block size 4 then we are 
in good shape; start with a 5-GDD of type 86 (see [4]) and add a new point to complete 
the groups, and then delete an old point to get a 5,9-GDD of type 41081. The result of 
Construction 5.1 is now a 5,9-GDD of type 4851081 (with five blocks of size 9). Now 
apply weight h = 3, using the frames construction, and then adjoin four ideal points to 
yield a (1348,328; {4})-IRBIBD. Note that this corresponds to a maximum embedding, 
that is, a resolvable (1348,4,1)-BIBD cannot have a resolvable sub-design on more than 
328 points. 

For many more examples of applications of Construction 5.1 we refer the reader 
to [17]. This construction proved instrumental in giving complete solutions for the spec
trum of incomplete designs with block size 4 (see [19]) and the spectrum of incomplete 
resolvable designs with block size 3 (see [18]). The spectrum for incomplete designs 
with block size 3 had been determined some time previously by Doyen and Wilson [7], 
and Huang, Mendelsohn and Rosa [11]. 

We conclude this subsection by noting that Tianwen Cai has shown that a (v, w; {4})-
IRBIBD exists whenever v = w = 4 (mod 12) and v > 5w — 160, where w > 340 [6]. 
Thus there remain the 'large' embeddings to look at. 

Orthogonal partitioned incomplete latin squares (OPILS) . A Partitioned incomplete 
latin square (PILS) of order n is an n x n array A indexed by an «-set S which has been 
equipped with a partition P — {S\, S2,..., Sm} where m > 2. The following properties 
are to be satisfied: 

(i) each cell of A is either empty or contains a symbol from S. 
(ii) the subarrays indexed by Si x 5,- are empty for I < i < m, (these subarrays are 

called holes) and 
(iii) the symbols occuring in row (or column) s G S are exactly those of S\Sj where 

s e Sj. 
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The type of a PILS is the multiset T — {|S/| : 1 < / < m}, for which an exponential 
notation is often used (as for GDDs). 

A pair of PILS on the same set-partition pair (5, P) are called orthogonal if their su
perposition yields every pair in S2\(U^), and a collection of PILS is termed orthogonal 
(and denoted a set of OPILS) if each pair in the collection is. OPILS arise naturally in 
the consideration of many design-theoretical problems; for further discussion on this we 
refer the reader to Stinson and Zhu [25]. 

A set of k OPILS of type T is equivalent to an incomplete transversal design 
YTD^k + 2, (Y,X<ETX> ^))> tlmt is, a transversal design with k + 2 groups of side EjcEr*(= 

\S\ = order of the squares), having a spanning disjoint set of holes of side x,x ET. Now 
let G be a fixed group in the ITD. Since every block intersects G and the holes induce a 
partition of G, its removal yields an incomplete (k + l)-frame of type {(k + l)x : x E T} 
having a spanning disjoint set of holes (formerly the groups of the ITD, except G), k + 1 
in number, each hole intersecting each group H in the frame in exactly \H\ /(k+1) points 
(note that this number depends only on the group //, and is independent of the hole con
cerned). This construction is reversible. If we start with an incomplete (k + l)-frame of 
type T\ where y = 0 (mod k + 1) for each y E T', having a spanning disjoint (k + l)-set 
of holes each one of which intersects a given group in the same number of points, then 
we can adjoin sufficiently many points to each group to 'complete' the holey parallel 
classes corresponding to that group. (Here 'sufficiently many' is easily calculated. If H 
is a group, then because each hole intersects H in a fixed number (namely \H\ /{k + 1)) 
of points, the group H has degree ^ — ' 'k

+ — j^j- (Lemma 1.1). This is because 
our incomplete frame can be regarded as a (k + l)-frame of type T' having (or miss
ing) a spanning disjoint set of (k + l)-subframes of type T = {tf/(k + 1) : t' G T'}.) 
Thus the result of adjoining these new points is just an ITD^A: + 2, (EJ^JC , T)\ where 
T = {y/(k + 1) : y G T'}, which in turn give us k OPILS of type T. 

The foregoing is the basis for the following construction of Stinson and Zhu [25, 
Theorem 2.8]. 

CONSTRUCTION 5.2. If there is an m-frame of type T and k MOLS of order m then 
there are k OPILS of type T. 

PROOF. Apply weight k + 1 to the frame, replacing each block in the frame by a 
resolvable TD(fc+l,m). The result is an incomplete (fc+l)-frame of V — {(k+\)t : t ET}, 
having a spanning disjoint (k + l)-set of holes where each hole intersects a group H of 
the frame in exactly \H\/(k+l) points. The result follows from the discussion preceding 
the statement of the construction. • 

Construction 5.2 is similar to the following well-known construction due to Bose: if 
there is an incomplete resolvable design (v, w; {m}) IRBIBD and A: MOLS of order m 
then there are &MOLS of order v 'missing' k sub-MOLS of order w (or equivalently, an 
I T D ( * + 2,(V,HO)). 
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APPENDIX 

Frame of type 99 (given as a 5-IGDD of type (12,3)9): 

Points: {1,2, . . . , 108} 
Hole: {82,83,. . . , 108} 
Groups: {{9JC + y : 0 < x < 11} : 1 < v < 9} 
Blocks: Develop the following base blocks under the group generated by 

( 1 2 - -81)(82 83- - • 108) 
1 2 9 48 87 1 5 21 42 88 
1 3 13 26 83 1 6 23 54 102 
1 4 15 30 92 1 7 31 50 99 

Frame of type 127 (given as a 5-IGDD of type (16,4)7): 

Points: {1,2, . . . , 112} 
Hole: {85,86,... , 112} 
Groups: {{7JC + y : 0 < * < 15}: 1 < y < 7 } 
Blocks: Develop the following base blocks under the group generated by 

(12---84)(85 86---112) 
1 2 10 67 89 1 5 30 74 94 
1 3 13 35 103 1 6 39 59 86 
1 4 17 40 98 1 7 31 48 102 

Frame of type 69 (given as a 5-IGDD of type (8,2)9): 

Points: {1,2, . . . , 72} 
Hole: {55,56.. . , 72} 
Groups: {{9;c + y : 0 < JC < 7} : 1 <y < 9} 
Blocks: Develop the following base blocks under the group generated by 

(12-.-54X55 56 •••72) 
1 2 4 24 61 1 6 13 41 71 
1 5 16 49 69 1 9 26 39 70 

Frame of type 613 (given as a 5-IGDD of type (8,2)13): 

Points: {1,2, . . . , 104} 
Hole: {79,80.. . , 104} 
Groups: {{13x + y : 0 < x < 7} : 1 < y < 13} 
Blocks: Develop the following base blocks under the group generated by 

(12---78)(79 80---104) 
1 2 9 30 90 1 5 19 52 99 
1 3 12 56 96 1 6 23 42 80 
1 4 16 36 86 1 7 17 55 104 
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A5-GDDoftype4783: 

Points: {1,2, . . . , 52} 
Groups: {{1,2,3,4}, {5 +*, 11 +JC, 17+JC,23 +X} 

{29+y,32 + v,35+y,38 + v,41+y,44 + y,47 + v,50 + y} : 
0 < * < 5 , 0 < y < 2 } 

Blocks: Develop the following base blocks under the group generated by 
(12 3 4)(5 6 • • • 16)(17 18 • • • 28) 
(29 30 • • -40)(41 42 • • -52) and (5 17)(6 18) • • • 
(16 28)(29 41)(30 42)---(40 52) 

1 5 7 29 30 
1 6 20 32 39 
5 6 13 26 46 
5 8 36 43 47 
5 22 35 49 51 

A 5-GDD of type 231 (W. H. Mills): 

Points: 13\ x {1,2} 
Groups: {{(*, 1), (JC, 2 ) } : J C G Z 3 I ) 

Blocks: Develop the following base blocks modulo 31 : 
(7,1) (14,1) (19,1) (25,1) (28,1) 
(0,1) (1,1) (4,2) (11,2) (15,2) 
(0,1) (2,1) (8,2) (22,2) (30,2) 
(0,1) (4,1) (16,2) (13,2) (29,2) 
(0,1) (8,1) (1,2) (26,2) (27,2) 
(0,1) (16,1) (2,2) (21,2) (23,2). 

A{5,13}-GDDoftype613: 

Points: Z7g 
Groups: {{0 + jt, 13 +JC,26 +JC,39 + ;C,52 +Jt,65 +x} :0<x< 12} 

Blocks: Develop the following base blocks modulo 78: 
{ 6 J C : 0 < J C < 12} 

0 1 5 16 51 
0 2 9 49 70 
0 3 23 37 56 

Remark: The blocks of size 13 form a parallel class. 
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