
Judgment and Decision Making, Vol. 13, No. 2, March 2018, pp. 185–201

Weighted Brier score decompositions for topically heterogenous

forecasting tournaments

Edgar C. Merkle* Robert Hartman†

Abstract

Brier score decompositions, including those attributed to Murphy and to Yates, provide popular metrics for estimating

forecast performance attributes like calibration and discrimination. However, the decompositions are generally limited to

situations where forecasters make successive forecast judgments against the same class of substantive event (e.g., rain vs. no

rain). They do not readily translate to common situations where: forecasts are weighted unequally; forecasts can be made

against a range of heterogeneous topics and events over varying time horizons; forecasts can be updated over time until an

event occurs or an event deadline is reached; or outcome alternatives can vary in number and nature (e.g., ordered vs. unordered

outcomes) across forecast questions. In this paper, we propose extensions of the Murphy and Yates decompositions to address

these features. The extensions involve new analytic expressions for the decompositions of weighted Brier scores, along with

proposed resampling methods. We use data from a recent forecasting tournament to illustrate the methods.

Keywords: Brier score, Murphy decomposition, Yates decomposition, calibration, discrimination, forecasting, probability

judgment

1 Introduction

Proper scoring rules comprise one of the most popular

classes of metrics for evaluating probabilistic forecasts (e.g.,

Carvalho, 2016; Gneiting and Raftery, 2007; Merkle &

Steyvers, 2013; Winkler & Jose, 2010). The Brier (1950)

score, also known as quadratic loss, is particularly popular

because it can be decomposed into simple expressions for

the forecast properties of calibration and discrimination. In

forecasting contexts, calibration roughly refers to the fore-

caster’s reported probabilities matching the long-run propor-

tion of events that resolve in favor of a specific outcome al-

ternative. Discrimination, on the other hand, refers to the

forecaster consistently assigning larger (or different) proba-

bilities to realized alternatives, as compared to probabilities

of unrealized alternatives.

Approved by the MITRE Corporation for Public Release; Distribu-

tion Unlimited. Case Number 17-1687. This research is based on work

supported by the Office of the Director of National Intelligence (ODNI),

Intelligence Advanced Research Projects Activity (IARPA), via ODNI con-

tract number 2015-14120200002-002. The views and conclusions con-

tained herein are those of the authors and should not be interpreted as nec-

essarily representing the official policies or endorsements, either expressed

or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Gov-

ernment is authorized to reproduce and distribute reprints for Governmen-

tal purposes notwithstanding any copyright annotation thereon. ©2017 The

MITRE Corporation. ALL RIGHTS RESERVED.

Copyright: © 2018. The authors license this article under the terms of

the Creative Commons Attribution 3.0 License.
*Department of Psychological Sciences, University of Missouri. Email:

merklee@missouri.edu.
†The MITRE Corporation

The Murphy (1973) and Yates (1982) decompositions of

the Brier score provide explicit metrics related to a fore-

caster’s calibration and discrimination across a set of re-

solved questions. They are popular because their com-

ponents sum to the corresponding mean Brier score and

because they can be easily written and computed arith-

metically (without, e.g., extra statistical modeling or al-

gorithms). The decompositions are somewhat inflexible,

however, because they require (i) all questions to have the

same number of consistently-coded outcome alternatives;

(ii) question alternatives to be unordered; and (iii) all fore-

casts to be weighted equally. These requirements would all

be fulfilled when we have daily forecasts of whether or not

it will rain, or when we have monthly forecasts of whether

or not there will be military conflict between a specific pair

of countries. In the latter case, for example, the outcome al-

ternatives are always “no conflict” vs. “conflict;” these alter-

natives have no particular ordering; and any single forecast

for a particular pair of countries in a given month would be

weighted the same as any other pair of countries in any other

month.

These restrictive requirements are frequently violated in

applied forecasting activities and competitions (see, e.g.,

Tetlock, 2005; Mandel & Barnes, 2014). A salient recent

example, to which we will refer throughout this paper, is the

Aggregative Contingent Estimation (ACE) program. This

was a multi-year geopolitical forecasting tournament spon-

sored by the Intelligence Research Advanced Projects Ac-

tivity (IARPA; see Tetlock & Gardner, 2016). Over a four-
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year period, hundreds of heterogeneous, real-world geopo-

litical forecasting questions were posed, spanning such top-

ics as regime change, democratic elections, non-state actor

violence, the Eurozone crisis, financial market behavior, and

infectious disease spread, among others. In addition to their

subject matter diversity, tournament competitors were asked

to make daily forecast updates of all available questions.

For example, consider forecasting whether or not there

would be substantial military conflict between China and N

Korea during 2014. Instead of providing a single forecast for

this question, competitors supplied a daily forecast until ei-

ther (i) there was a substantial conflict between the nations,

or (ii) the year 2014 ended. Thus, forecast questions var-

ied in their duration, with some opening and closing within

a single week, and others staying open for several months.

Moreover, although all forecast questions were defined by

a discrete set of mutually exclusive and exhaustive outcome

alternatives, the questions varied in the number of possible

alternatives presented, the labeling of those outcome alter-

natives (e.g., “yes” vs. “no,” Candidate A vs. B vs. C), and

in whether those outcomes could be meaningfully ordered.

Conventional Brier score decompositions have no way of

accommodating these features, so that the modifications de-

scribed in this paper are required.

2 Brier score decomposition overview

We first review the traditional Murphy and Yates decom-

positions of the Brier score. These decompositions pro-

vide finer detail about forecast attributes, as compared to

the mean Brier score, but they also have some inherent lim-

itations. For example, the Murphy decomposition requires

rounded (“binned”) forecasts, so that the raw data must often

be modified. The Murphy decomposition also yields biased

estimates of the corresponding large-sample component val-

ues (Ferro & Fricker, 2012). More generally, it is often dif-

ficult to interpret the magnitudes of individual component

values or differences between values. We provide some fur-

ther detail on these issues below.

2.1 Murphy components

The three Murphy Brier components are uncertainty, cal-

ibration, and discrimination. As Murphy (1973) discusses,

the uncertainty term reflects the mean Brier score that would

be obtained by a base rate judge who reports the base rate of

each alternative’s occurrence across all resolved questions.

This component ranges from 0 to (M∗
−1)/M∗ (where M∗

is the number of alternatives per question), with its value in-

creasing as the base rates become equal across all alterna-

tives. Larger values are not necessarily worse, because they

reflect the degree of baseline uncertainty in the forecasting

environment, as opposed to the forecaster. However, larger

values imply that there is more “room” for forecasters to

improve upon a base rate judge.

The second component, calibration, ranges from 0 to 2.

The minimum of 0 is achieved when each unique forecast

matches the base rate of event occurrences, whereas the

maximum of 2 is achieved when the forecaster always as-

signs a probability of 1 to events that never occur. Because

smaller values are better, this component might be more

profitably labeled “miscalibration” instead of “calibration.”

Murphy (1973) calls this term “reliability,” because it re-

flects the extent to which the reported probabilities match

the relative frequencies of the corresponding alternatives’

occurrences.

The final component, discrimination, ranges from 0 to

(M∗
− 1)/M∗, with larger values being better. This com-

ponent indicates the extent to which forecasts differ for al-

ternatives that occur, as opposed to alternatives that do not

occur. In most cases, this metric gauges the extent to which

the forecaster reports larger probabilities for alternatives that

occur, as compared to alternatives that do not occur.

The Murphy calibration and discrimination terms are cor-

related, in the sense that better calibration is related to worse

discrimination and vice versa (also see Yates, 1982). Fur-

ther, if two forecasters have the same average Brier score,

it is impossible for one of the forecasters to be better than

the other on both calibration and discrimination. These re-

sults highlight the difficulty of being simultaneously good

on both calibration and discrimination.

2.2 Yates components

The focal Yates components include the forecast-outcome

covariance, calibration-in-the-large, and excess forecast

variance (∆Varf ). Additional components include uncer-

tainty (which also appears in the Murphy decomposition)

and minimum conditional variance. These latter compo-

nents reflect properties of the forecasting environment, as

opposed to the forecaster, so we attend to them less than the

other components.

The forecast-outcome covariance metric is somewhat

similar to the Murphy discrimination metric, measuring the

extent to which forecasts are related to outcome occurrence.

This covariance ranges from 0 to (M∗
− 1)/M , with larger

values being better.

The calibration-in-the-large metric is a simple assessment

of bias, measuring the squared difference between the aver-

age forecast and the base rate of outcomes. The minimum

value of 0 is best, with the maximum value of 2 achieved

when the forecaster always assigns a forecast of 1 to an

outcome that never occurs and a forecast of 0 to an out-

come that always occurs. This metric will often be close

to zero, because it is measuring squared differences be-

tween average probabilities. For example, for binary ques-

tions, say that one outcome occurs 40% of the time. If a
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forecaster’s average probability for this outcome is .5, then

his/her calibration-in-the-large value is only 0.02.

Finally, the “excess forecast variance” metric measures

the extent to which variability in the observed forecasts is

due to noise. Yates points out that a forecaster can improve

his/her Brier score by reducing the variance in his/her re-

ported forecasts, but some variance in reported forecasts is

necessary due to the “signal” in each question. Thus, Yates

derived the minimum variance in the forecasts necessary

to obtain the observed forecast-outcome covariance and the

observed base rate of outcomes. This minimum variance can

be considered the “variability in forecasts due to the ques-

tion signal,” somewhat similarly to the interpretation of R2

in linear regression contexts. The “excess” variance is then

the extent to which the observed variance in forecasts ex-

ceeds the minimum necessary variance. Thus, values closer

to the minimum of 0 are better, and values closer to the total

forecast variance are worse. Because this value explicitly

depends on other aspects of the forecasts (in particular, the

covariance between forecasts and outcomes), it appears dif-

ficult to compare this metric across forecasters.

3 Generalizing the Brier decomposi-

tions

Now that we have reviewed the traditional decompositions,

we discuss our generalizations to weighted average Brier

scores. These generalizations can be used in situations

where multiple forecasters report probabilities on the same

sets of questions at the same times, with the questions po-

tentially having different numbers of alternatives (possibly

ordinal) and different labels for the alternatives. The indi-

vidual Brier scores can be weighted unequally, which po-

tentially allows for the use of questions whose alternatives

have cardinal categories (ranges of continuous values) or

questions whose alternatives are conditional on intermediate

outcomes (where, e.g., some alternatives may be eliminated

during the life of the question). The generalizations de-

scribed here cannot immediately handle missing data, where

forecasters report on different sets of questions, or where

forecasters decide when to report on a question. Analysts

could potentially impute missing forecasts prior to using the

methods described here, or they could turn to model-based

methods for evaluating forecasters in the presence of miss-

ing forecasts (see, e.g., Merkle et al., 2017).

To handle weighted Brier scores (including ordinal Brier

scores), we derive weighted versions of the Murphy and

Yates decompositions below, which can be viewed as gen-

eralizations of Young (2010). To address diverse ques-

tions with different alternatives, we propose averaging the

Brier decompositions over the possible ways that alterna-

tives could be grouped together across questions. This av-

eraging is accomplished via a resampling algorithm and is

described after the weighted decompositions. For concrete-

ness, we refer to the IARPA ACE example throughout, de-

tailing the use of weighted Brier scores in that tournament.

3.1 ACE Brier scores

In the IARPA ACE program, it was important to provide a

simple metric characterizing overall accuracy across the het-

erogeneous set of forecast questions that defined the tourna-

ment. Because competitors were required to submit daily

forecast updates on each question, the adopted approach

was as follows: for each forecast question, calculate a daily

Brier score for each day the question is active; average those

daily scores to produce a per-question mean daily Brier

score; finally, take the average of those per-question mean

daily Brier scores to produce a weighted overall average

Brier score. This two-step averaging process was used so

that each question counted equally towards the overall Brier

score. If we instead averaged all daily Brier scores across all

questions in a single step, then questions that were active for

longer time periods would be most influential on the overall

Brier score. The two-step averaging is thus a weighted aver-

age of daily Brier scores, because each daily score’s weight

depends on the number of days that the associated question

was active.

Formally, say that there are J resolved questions, with

each question being open for nj days and having Mj alter-

natives (j = 1, . . . , J). Then, for a given forecasting system

(competitor), we can represent a “Mean Daily Error” (MDE)

for question j as

MDEj =
1

nj

nj
∑

i=1

Mj
∑

m=1

(fijm − djm)2,

where fijm is the system’s probability for alternative m on

day i of question j, and djm is the outcome of alternative

m on question j (1 if realized, 0 otherwise). We can then

represent a “Mean of Mean Daily Errors” (MMDE) across

questions as

MMDE =
1

J

J
∑

j=1

1

nj

nj
∑

i=1

Mj
∑

m=1

(fijm − djm)2. (1)

The above summation shows that each question’s MDE is

weighted equally, which means that each daily forecast is

weighted unequally: daily forecasts associated with a long-

term question receive low weight, as compared to daily fore-

casts associated with a short-term question. Although it has

the advantage of simplicity (as compared to model-based al-

ternatives such as, e.g., Bo et al., 2017; Budescu and Chen,

2015; Budescu and Johnson, 2011; Merkle et al., 2016;

Satop 2014a, b; Steyvers et al., 2014), this high-level Brier

score metric is not readily amenable to traditional Brier de-

compositions.
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Along with the fact that Brier scores are weighted, Equa-

tion (1) allows each question to have a different number of

alternatives (i.e., question j has Mj alternatives), as was

needed in the ACE tournament. However, to use Brier de-

compositions, we require that all questions have the same

number of alternatives. To fulfill this requirement, we can

add “phantom alternatives” to questions that do not have the

maximum possible number of alternatives. Specifically, let

M∗ = max(Mj), j = 1, . . . , J . For each question j with

fewer than M∗ alternatives, we create new alternatives that

increase the number to M∗. These new alternatives always

receive forecasts/probabilities of 0, and the new alternatives’

outcomes are also coded as 0. These new alternatives have

no influence on the Brier score or on MMDE, though they

do influence the base rates that go into the uncertainty com-

ponent of the Brier decompositions. However, because the

phantom alternatives are the same across all competitors (we

require all systems to respond to the same questions), the

uncertainty term will also be the same across all forecasting

systems. Individual differences between systems will stem

from differences in other Brier components.

From a technical perspective, the phantom alternatives al-

low us to remove the j subscript from the upper bound of the

third summation:

MMDE =
1

J

J
∑

j=1

1

nj

nj
∑

i=1

M∗

∑

m=1

(fijm − djm)2. (2)

These phantom alternatives can be generally applied to

questions with differing numbers of alternatives, though

they may introduce excessive noise if there is a large imbal-

ance in the number of alternatives. For example, if a ques-

tion with 10 alternatives is added to a set of questions with

2 alternatives, then each two-alternative question requires

four times as many phantom alternatives as real alternatives.

This is less problematic for the ACE data considered here,

where questions vary from two to five alternatives.

3.2 Weighted Brier score decomposition

Below, we describe analytic results for a Murphy decom-

position of weighted Brier scores, and we also extend the

results to the Yates decomposition. These results yield

Murphy and Yates components that are specifically tied to

MMDE or to other weighted Brier scores.

Just like the original Murphy decomposition, the Murphy

decomposition described here requires that forecast proba-

bilities be grouped into a limited number of discrete bins of

rounded forecast probability values. For example, probabil-

ities between 0 and .1 might be recoded and grouped as .05,

probabilities between .1 and .2 might be recoded as .15, and

so on, resulting in 10 discrete probability ranges, from .05 to

.95. Although straightforward for binary forecast questions,

multinomial questions complicate matters, and we provide

further detail on possible approaches in Appendix B (along

with sensitivity analyses in the Example section). For now,

we simply assume that exhaustive subsets of probability bins

have already been defined for Brier score decomposition

purposes. We also apply the Yates decomposition to these

discrete bins for uniformity, though discretization is not re-

quired for the Yates decomposition.

The theorem below assumes that we are computing a

weighted average Brier score across N forecasts. Its ap-

plication to ACE is facilitated by the fact that Equation (2)

can be rewritten as

MMDE =
J
∑

j=1

nj
∑

i=1

1

J × nj

M∗

∑

m=1

(fijm − djm)2 (3)

=
N
∑

ℓ=1

wℓ

M∗

∑

m=1

(fℓm − dℓm)2, (4)

where N =
∑J

j=1
nj is the total number forecasts reported,

across all questions. As verbally described earlier, the above

equation shows that the MMDE is a sum of weighted Brier

scores across all questions and days, where a particular fore-

cast’s weight wℓ is based on the number of days that its cor-

responding question was open (nj) as well as the number of

questions J . Note also that, based on the way that MMDE

is defined, these weights will always sum to 1, i.e.,

N
∑

ℓ=1

wℓ = 1.

We now proceed with the Murphy decomposition theorem.

Theorem. (Weighted Murphy decomposition) Assume that

a forecasting system reports N forecasts, each of which has

M∗ alternatives and each of which has a particular weight

(with the weights across questions summing to 1, corre-

sponding to a weighted average). Further assume that the

reported forecasts have been grouped into K subsets, so that

all forecasts within subset k (k = 1, . . . ,K) are given the

same value (fk1 fk2 . . . fkM∗). Then the forecasting sys-

tem’s weighted average Brier score can be written as

Brierw =
M∗

∑

m=1

dm(1− dm) +
K
∑

k=1

w∗

k

M∗

∑

m=1

(fkm − dkm)2

−

K
∑

k=1

w∗

k

M∗

∑

m=1

(dkm − dm)2 (5)

= Unc + Miscalib − Discrim, (6)
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where

w∗

k =
∑

ℓ∈bin k

wℓ (7)

dkm =
1

w∗

k

∑

ℓ∈bin k

wℓdℓm (8)

dm =
1

N

N
∑

j=1

djm. (9)

For a proof, see Appendix A.

The first term of (5) corresponds to uncertainty, the sec-

ond term corresponds to (mis)calibration, and the third term

corresponds to discrimination. This decomposition is sim-

ilar to that of Young (2010), except that we explicitly con-

sider questions with more than two alternatives (which, as

described later, allows for inclusion of a Brier score for or-

dered alternatives). We also extend the results to the Yates

decomposition, presented below.

Lemma. (Weighted Yates decomposition) Under the con-

ditions set forth above, the forecasting system’s weighted

average Brier score can also be written as

Brierw =

M∗

∑

m=1

dm(1− dm) +

M∗

∑

m=1

N
∑

ℓ=1

wℓ(fℓm − fm)2

+

M∗

∑

m=1

(fm − dm)2

−2

M∗

∑

m=1

N
∑

ℓ=1

wℓ(fℓm − fm)(dℓm − dm) (10)

= Uncertainty + Varf +

Miscal-in-the-large − 2Covfd. (11)

where

fm =
N
∑

ℓ=1

wℓfℓm. (12)

Further detail on this derivation also appears in Appendix A.

Equation (11) shows the specific components, which mir-

ror the traditional Yates components. We first see the

weighted variance of outcomes (Vard; using weights as-

sociated with each daily forecast) and the weighted vari-

ance of forecasts (Varf ). The third term is “calibration-in-

the-large,” the gross measure of miscalibration. We dub it

“miscalibration-in-the-large” throughout this paper. Finally,

the fourth term gets at discrimination, assessing the extent

to which forecasts and outcomes covary with one another.

As mentioned earlier, we can further decompose Varf
into two parts: (i) the minimum possible variance of fore-

casts, given the observed outcome base rate and covari-

ance between forecasts and outcomes, and (ii) the excess

(“noise”) variance of forecasts, over and above the mini-

mum. This additional decomposition can be represented by

Varf = MinVarf +∆Varf , (13)

where

MinVarf =

M∗

∑

m=1

(f
1m − f

0m)2dm(1− dm) (14)

∆Varf = Varf − MinVarf , (15)

and f
1m and f

0m are the weighted average forecasts when

alternative m occurs and does not occur, respectively. The

∆Varf term can be an informative performance metric,

where better forecasters have values closer to 0 (i.e., better

forecasters have less excess variance).

A summary of equations for the various weighted Brier

components appears in Table 1, where the equations make

use of terms from Equations (7) to (9) along with Equa-

tion (12). In the sections below, we describe how these com-

ponents can be further extended to diverse questions.

3.3 Inconsistent alternative labels

The above results require us to compute weighted base rates

for each outcome alternative, a computation that implic-

itly assumes consistently interpretable outcome alternatives

over all questions—for example, that all forecast questions

concern daily chances of rain or monthly chances of regime

change. This requirement does not hold in the IARPA ACE

tournament or elsewhere, where the set of question topics

and outcome alternatives under consideration is highly het-

erogeneous. For example, it is intuitive to compute a base

rate of rainy days or of months with military conflict over

a set of questions focused on a single topic. However, it

is less meaningful to compute a base rate of occurrences

of “alternative A,” where this is simply an arbitrary label

for “the first listed outcome alternative for each question,”

and where the underlying forecast question topics may range

from stock index values to disease counts to occurrence or

non-occurrence of military events, and so on. Across di-

verse forecast questions, such a set of “alternative A” out-

comes will not share a substantive interpretation to differ-

entiate them from the corresponding “B” and “C” outcome

alternatives. Further, depending on exactly which alterna-

tives count as “A” (and as “B,” “C,” etc.), we will obtain

different calibration and discrimination values because each

alternative’s base rate will change. This is problematic for

drawing substantive conclusions about forecasting system

performance.

One partial solution here involves coding alternatives in

terms of whether or not a “status quo” alternative is main-

tained (see, e.g., Turner et al., 2014). That is, instead of

maintaining the original alternatives, each question could be
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Table 1: Weighted Brier components and their expressions.

Component Expression

Miscalibration

K
∑

k=1

w∗

k

M∗

∑

m=1

(fkm − dkm)2

Discrimination

K
∑

k=1

w∗

k

M∗

∑

m=1

(dkm − dm)2

∆Varf

M∗

∑

m=1

N
∑

ℓ=1

wℓ(fℓm − fm)2 −

M∗

∑

m=1

(f
1m − f

0m)2dm(1− dm)

Miscalibration-in-the-large

M∗

∑

m=1

(fm − dm)2

Covfd

M∗

∑

m=1

N
∑

ℓ=1

wℓ(fℓm − fm)(dℓm − dm)

Uncertainty

M∗

∑

m=1

dm(1− dm)

converted to having the two alternatives of “status quo main-

tained” and “status quo overturned.” For example, when

forecasting whether or not a conflict will occur between two

countries, the status quo is “conflict does not occur.” Sim-

ilarly, in forecasting rainy days, the status quo is typically

“no rain” (though this may depend on the geographical loca-

tion). While helpful for event-oriented questions where one

outcome can be framed as the status quo, this approach is

not a complete solution to question diversity in applied fore-

cast evaluation. For example, questions whose categories

concern continuous quantities do not readily conform to any

obvious status quo interpretation, so they would ostensibly

need to be dropped from such analyses. To derive discrim-

ination and calibration values for all forecast questions that

contribute to a system MMDE score, we require a more gen-

eral decomposition approach.

Our solution here involves averaging over all possible al-

ternative orderings via resampling. At each iteration of the

resampling algorithm, we reorder each question’s alterna-

tives and apply the weighted Brier decompositions to obtain

the Murphy and Yates components. This is similar to ran-

domly choosing a single alternative from each question, then

decomposing the forecasts from these randomly-chosen al-

ternatives. Each system’s overall component values are then

the averages across many iterations. This resampling algo-

rithm maintains the same daily Brier scores across all it-

erations, allowing us to examine Brier components across

the inconsistent alternative labels while holding the Brier

score constant. With a “large enough” number of resam-

ples (see sensitivity analyses below), all possible orderings

of question alternatives are given equal representation, en-

suring that the Brier components converge towards stable

values.

These ideas are conceptualized in the following algo-

rithm:

• Loop for B iterations:

– Randomly determine an ordering of alternatives

for each question.

– Compute the weighted Brier decompositions un-

der the ordering from the first step.

• Compute the average component values over the com-

ponent distributions produced by the B iterations.

The reordering step could be modified to handle “status

quo” questions so that, e.g., all “status quo overturned” al-

ternatives count towards the base rate for one specific alter-

native. This effectively removes noise from systems’ over-

all component values, leading to fewer possibilities for how

alternatives can be ordered. However, the resampling ap-

proach also works without status quo information, and it is

a judgment call as to whether or not we should use status

quo coding. In the example below, we do not use status quo

information.

3.4 Ordinal questions

So far, we have derived weighted Brier score decomposi-

tions and described a resampling algorithm for handling

questions with diverse alternatives. We now handle ques-

tions with ordered alternatives. To address the fact that

some, but not all, forecast questions in a corpus will include

meaningfully ordered outcome alternatives, we can compute

an ordered variant of the Brier score involving cumulative

forecasts (see Jose, Nau and Winkler, 2009). This allows us

https://doi.org/10.1017/S1930297500007099 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500007099


Judgment and Decision Making, Vol. 13, No. 2, March 2018 Weighted Brier decompositions 191

to handle ordinal questions using a scoring rule that is very

similar to the usual Brier score.

For a specific question j with Mj alternatives, the ordered

Brier score is of the form:

1

Mj − 1

Mj−1
∑

m=1

(Fjm −Djm)2,

where Fjm is the cumulative forecast (probability assigned

to alternative m and below) and Djm is the “cumulative”

outcome (equals 1 if alternative m or below was realized, 0

otherwise) associated with alternative m of question j.

To include these ordinal Brier scores in the decomposi-

tion, we treat each of the (Mj − 1) terms in the sum above

as new Brier scores. For each of these new Brier scores, we

add phantom alternatives to the binary forecasts Fjm and

outcomes Djm. These cumulative forecast alternatives are

reordered in the same way across all ordinal questions, in

order to maintain the “partial credit” aspect of the ordered

Brier score. The weight for each of these Brier scores is

then 1/(J ×nj × (Mj − 1)), with these weights being used

in the decomposition. The weights are constructed so that,

each ordinal question receives equal weight, as compared to

each unordered question.

In practical terms, the ordinal Brier score rewards fore-

casts where the probability mass is more heavily concen-

trated around the true outcome alternative. For example, two

systems may assign the same probability to the true outcome

of a set of questions with ordered alternatives. If one of

these systems consistently assigns more of its probability to

the alternatives immediately adjacent to the true outcome al-

ternative, then this latter system will generally be identified

as having the better Brier components (potentially across all

components that the system can influence).

3.5 Summary

In this section, we first derived general Murphy and Yates

decompositions for weighted average Brier scores, of which

the ACE MMDE is a special case. We then proposed a re-

sampling algorithm for handling heterogeneous questions,

whereby the decomposition is applied across multiple re-

orderings of question alternatives. We showed how ordinal

Brier scores could be included in this procedure, and we also

addressed two remaining issues: the inclusion of phantom

alternatives when not all questions have the same number of

alternatives, and the creation of forecast bins for the Murphy

decomposition (with further bin detail in Appendix B). We

now turn to an application.

4 Example

To illustrate these procedures, we evaluate forecasts from

four competing systems in the IARPA ACE tournament. We

show how the decompositions provide finer-grained infor-

mation for system comparison (as opposed to the overall

MMDE metric), as well as information about the metrics’

uncertainty.

4.1 Method

In this dataset, each of the four forecasting systems reported

daily forecasts on each of 76 questions, with questions be-

ing open an average of 118 days (leading to 8,968 unique

forecasts for each of the four systems). About 70% of the

questions had two alternatives, 21% had four alternatives,

and the remainder had either three or five alternatives. Ad-

ditionally, 21% of the questions had ordered alternatives.

We ran the resampling procedure for 100 iterations,

where forecasts were binned by rounding to the nearest

multiple of .1 (with “round the lowest” handling of multi-

category questions, to ensure that each forecast summed to

1; see Appendix B). At each iteration of resampling, each

question’s alternatives were rearranged and weighted Brier

decompositions calculated (with weights corresponding to

the MMDE metric described previously). The average com-

ponents and associated uncertainty intervals were then com-

puted based on the resamples.

4.2 Results

The four systems’ original MMDE values were 0.353,

0.320, 0.333, and 0.349. Because lower Brier scores are

better than higher Brier scores, we might assign System 2

as the best. However, this overall score does not provide in-

formation about specific aspects of performance for which

System 2 excelled or exhibited mediocrity; this is where the

proposed decompositions become helpful. Table 2 shows

the decompositions for the four systems, including the Mur-

phy discrimination and miscalibration metrics; the Yates ex-

cess variance (∆Varf), miscalibration-in-the-large, and co-

variance metrics; and the uncertainty metric that appears in

both decompositions. Finally, the last two rows show the

systems’ MMDEs, both before and after binning the fore-

casts.

Examining Table 2, we can see that the rounding had

little impact on each system’s MMDE, because the two

MMDE rows are similar to one another. We further see,

e.g., that System 1 has the best (largest) discrimination and

lowest excess variance, but it also has the worst miscalibra-

tion, covariance, and MMDE. System 2, which had the best

MMDE, is not the best on all the Brier components, but it

continues to look good: it has the best MMDE, its discrim-

ination is close to that of System 1, and its remaining com-

ponents are generally close to the best.

To reinforce these results and further compare pairs of

systems to one another, we can construct interval estimates

of component differences across the resamples. We focus
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Table 2: Brier components for four ACE forecasting systems.

System 1 System 2 System 3 System 4

Discrimination 0.607 0.597 0.573 0.553

Miscalibration 0.198 0.149 0.138 0.136

∆Varf 0.161 0.199 0.237 0.205

Miscalibration-in-the-large 0.006 0.004 0.004 0.004

Covfd 0.387 0.472 0.508 0.442

Uncertainty 0.769 0.769 0.769 0.769

MMDE (binned) 0.359 0.321 0.334 0.351

MMDE 0.353 0.32 0.333 0.349

on comparing System 2 to System 3 here, because these

two systems had the best MMDE values. The intervals are

shown in Table 3, along with the intervals for individual

System 2 and System 3 components. While there is over-

lap between some individual system components (seen in

the “System 2” and “System 3” columns), these compo-

nents are correlated across resamples. Thus, when we ex-

amine the intervals of component differences, we may still

observe intervals that fail to overlap with zero. In this case,

we observe that the intervals for discrimination, excess vari-

ance (∆Varf), and the covariance metric fail to overlap with

zero. The discrimination and excess variance metrics favor

System 2, whereas the covariance metric favors System 3.

While these results generally support our favoring of Sys-

tem 2, they also suggest that System 3 is not too far behind

System 2: the discrimination interval nearly overlaps with

zero, and System 3’s reported forecasts have a stronger co-

variance with the question outcomes.

4.3 Sensitivity Analyses

Finally, we examine how the number of resamples and the

binning procedure influence results. These both represent

subjective judgments on the part of the researcher, so it is

worthwhile to study the sensitivity of our results to these

judgments. We study four possible binning procedures: bin

resolutions (forecast rounding) of .05 or .1, crossed with two

methods for ensuring that probabilities sum to 1 (modifying

the smallest forecast or modifying the furthest forecast, as

discussed in Appendix B). For each binning procedure, we

obtain 50,000 resamples. We then examine how point es-

timates vary under each of the four binning procedures, as

well as how subsets of the resamples (50, 100, or 500 at a

time) vary within any one binning procedure: while larger

numbers of resamples are obviously preferable, computa-

tion time is an issue for the resampling algorithm, with each

iteration taking about 2 seconds on our computers. We focus

on System 2 for simplicity, though we also examine differ-

ences between Systems 2 and 3 (the top two systems).

Figure 1 shows how the estimated means of System 2 dis-

crimination and miscalibration vary across the factors from

the previous paragraph. It is seen for both metrics that, while

increased numbers of resamples lead to less variability in the

estimates, the “50 resample” results generally agree with the

“500 resample” results to two decimal places. Additionally,

bin resolutions of .1 lead to lower discrimination and miscal-

ibration metrics as compared to bin resolutions of .05, with

the differences being about .02 points in each case. Finally,

rounding strategies had a smaller influence on the results,

with differences of less than .005 on both metrics. It is un-

likely that any of these differences are large enough to influ-

ence substantive conclusions, at least for the data examined

here (and other datasets may well lead to larger differences).

Figure 2 reinforces these results, illustrating how the

mean “System 2 vs System 3” differences in discrimination

and miscalibration vary across the same factors. We see that

the differences are nearly always greater than 0, with the

only occasional exceptions occurring on miscalibration at

50 resamples. This suggests that we would nearly always

observe the System 2 means as being larger than the System

3 means, regardless of the specific factors chosen. Interest-

ingly, we observe larger system differences for bin resolu-

tions of .1 as compared to bin resolutions of .05. This sug-

gests that coarse bins impact systems differentially, where

systems with worse Brier scores are potentially penalized

more heavily than systems with better Brier scores. It is ad-

ditionally clear that, if computation time is not an issue, 500

resamples provides more precision than smaller numbers of

resamples. While none of the differences are large (differ-

ences of less than .01 on both metrics), the differences will

vary by the characteristics of each dataset. This warrants

similar sensitivity analyses when the methods are applied

to other datasets. R package scoring (Merkle and Steyvers,

2013) is intended to ease such analyses, and the accompa-

nying replication code illustrates how this can be accom-

plished.
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Figure 1: Variability in the estimated mean of System 2’s Murphy Brier components (discrimination and miscalibration),

by number of resamples (50, 100, or 500), bin resolution (.05 or .1), and strategy for ensuring that the rounded forecasts

sum to 1 (round the lowest value or round the farthest value).

Figure 2: Variability in the estimated mean of Brier component differences between Systems 2 and 3, by number of resam-

ples (50, 100, or 500), bin resolution (.05 or .1), and strategy for ensuring that the rounded forecasts sum to 1 (round the

lowest value or round the farthest value).
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Table 3: 90% interval estimates of differences between components and of individual components, Systems 2 and 3. Dif-

ferences are taken as System 2 minus System 3.

Difference System 2 System 3

Discrimination (0.0034, 0.0503) (0.5638, 0.6348) (0.5459, 0.6056)

Miscalibration (−0.0090, 0.0379) (0.1237, 0.1770) (0.1154, 0.1646)

∆Varf (−0.0429,−0.0330) (0.1918, 0.2048) (0.2295, 0.2415)

Miscalibration-in-the-large (−0.0041, 0.0032) (0.0007, 0.0081) (0.0010, 0.0089)

Covfd (−0.0382,−0.0322) (0.4555, 0.4872) (0.4915, 0.5229)

5 Discussion

The methods proposed in this paper broaden Brier score de-

compositions, making them applicable to real data for which

the original decompositions were not applicable. We ex-

tended the original decompositions to handle weighted av-

erage Brier scores, of which the Brier metric used in the

IARPA ACE tournament is a special case. The weighted

Brier decompositions are presented in Equations (5) and

(10) and summarized in Table 1; these decompositions work

for any weighted average, so they are generally useful to

researchers who may wish to use weighted average Brier

scores. To handle differing numbers of alternatives for dif-

ferent forecast questions, we added “phantom” alternatives

to questions with fewer than the maximum number of alter-

natives. These phantom alternatives have no impact on the

Brier score; they are simply tools to facilitate the decompo-

sitions of the Brier score.

Beyond phantom alternatives, we handle inconsistently-

labeled alternatives via a resampling algorithm. At each

iteration of the algorithm, we reorder each question’s out-

come alternatives and compute the weighted Brier decom-

position. This approach allows us to examine calibration

and discrimination metrics across inconsistently-labeled al-

ternatives while holding the Brier score constant. Each sys-

tem’s overall metrics are its stabilized averages across many

iterations. Finally, where applicable, we directly incorpo-

rate ordinal outcome information in the decomposition by

making use of the fact that the ordered Brier score is a series

of binary Brier scores applied to cumulative forecasts.

It is important to highlight that, in generalizing the Brier

score decompositions in these ways, we are generalizing the

very definitions of “calibration” and “discrimination.” In

traditional Brier decompositions, these concepts are defined

directly with respect to a specific substantive event class

of interest. For example, in forecasting military conflicts,

calibration involves the extent to which a forecaster’s re-

ported “conflict” probabilities reflect the proportion of re-

alized conflicts, and discrimination involves the extent to

which forecasted conflict probabilities differ across realized

“conflict” cases vs. “no conflict” cases. Finally, the base

rate refers specifically to the proportion of realized conflicts

over all analyzed opportunities for such conflict (i.e., the rel-

ative frequency of “positive” cases among all cases). In con-

trast, when we attempt to characterize more general calibra-

tion and discrimination properties of forecasts over hetero-

geneous question sets, our conceptual definitions also take

on a more general, topic-agnostic interpretation. A rough

verbal description of the calibration and discrimination met-

rics we have proposed is as follows:

• Being well-calibrated means that, if we were to ran-

domly select a single alternative from each question,

the probabilities assigned to the selected alternatives

would match the proportion of those alternatives that

are realized.

• Being highly discriminating means that, if we were to

randomly select a single alternative from each ques-

tion, the probabilities assigned to realized alternatives

would consistently differ from (be larger than) the

probabilities assigned to unrealized alternatives.

The base rate, then, is artificial and is defined as the pro-

portion of randomly selected alternatives that were realized.

For example, if we have only binary questions, then this

base rate will tend toward 0.5, because each question has

two outcomes, one of which is realized and one of which

is not. Although it lacks a substantive interpretation, this

artificial base rate is held constant across forecasters, be-

cause all forecasters are being evaluated against a common

set of forecast questions. Additionally, if some subsets of

questions all have the same alternatives, we can elect to spe-

cially treat those questions so that the base rate of that subset

is preserved.

Future work may extend these developments beyond the

Brier score, though computation will be more difficult be-

cause closed-form, analytic results are unlikely to be avail-

able. Some useful prior work here includes Bröcker (2009),

who presents results related to decompositions of general

proper scoring rules, and Gneiting, Balabdaoui and Raftery

(2007), who discuss alternative metrics that are related to

the traditional decompositions.

While the developments proposed here all helped us com-

pute Brier decompositions in the IARPA ACE data, each de-

velopment may also be useful on its own. For example, if
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one were computing a weighted average Brier score across

homogeneous questions, the analytic derivations here could

be used without resampling. Conversely, if one were com-

puting a simple average Brier score across heterogeneous

questions, the resampling methods described here could be

used without weights. As a result, the methods should be

generally useful across a variety of datasets. They aim at

providing a principled compromise between simple metrics

that cannot accommodate applied data and complex models

that may require considerable expertise for their use.

Computational Details

All results were obtained using the R system for statistical

computing (R Core Team, 2017), version 3.4.3, with the

add-on package scoring version 0.6 for Brier decomposi-

tion metrics. Data and code for replication of our results is

available at https://osf.io/jvhwp/.
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A Proofs of weighted Brier score decompositions

In this appendix, we prove the theorem about the Murphy decomposition of the weighted mean Brier score and the lemma

about the Yates decomposition. We focus on the decomposition for a single alternative (corresponding to, e.g., the (0, 1)

Brier score for a two-alternative question), with immediate generalization to multiple alternatives.

Focusing on the Murphy decomposition theorem, we first write and expand MMDE, where J is the number of questions,

nj is the number of forecasts for question j, and N is the total number of reported forecasts across questions:

MMDE =
J
∑

j=1

nj
∑

i=1

1

J × nj

(fij − dj)
2

=
N
∑

ℓ=1

wℓ(fℓ − dℓ)
2

=
∑

ℓ

wℓf
2

ℓ − 2
∑

ℓ

wℓfℓdℓ +
∑

ℓ

wℓd
2

ℓ

=
∑

ℓ

wℓf
2

ℓ − 2
∑

ℓ

wℓfℓdℓ +
∑

ℓ

wℓdℓ,

with the last equality following because dℓ can only equal 0 or 1, so squaring it does not matter.

Now we make use of the fact that forecast probabilities are binned into intervals, so that all the fℓ in each bin are equal to

fk. This allows us to expand MMDE as below:

K
∑

k=1

(

f2

k

∑

ℓ∈bin k

wℓ − 2fk
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(16)

where the first equality is obtained by completing the square, where K is the number of forecast bins, and

dk =
1

w∗

k

∑

ℓ∈bin k

wℓdℓ (17)

w∗

k =
∑

ℓ∈bin k

wℓ. (18)
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We now focus on expanding the second term (with curly brackets) from Equation (16):
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∑
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,

where d is obtained based on the fact that we are computing a weighted proportion of event occurrences across all days and

all questions. When the weights are designed so that each question is weighted equally, this weighted proportion is equal to

the simple proportion of event occurrences across all questions. However, we can more generally take

d =

N
∑

ℓ=1

wℓdℓ.

Completing the square and rearranging, we then obtain
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= d(1− d)−

K
∑

k=1

(

∑

ℓ∈bin k

wℓ

)













(

∑

ℓ∈bin k

wℓdℓ

)

∑

ℓ∈bin k

wℓ

− d













2

= d(1− d)−

K
∑

k=1

w∗

k(dk − d)2 (19)

We can now insert Equation (19) in place of the second term from Equation (16) and rearrange, obtaining

d(1− d) +

K
∑

k=1

w∗

k(fk − dk)
2
−

K
∑

k=1

w∗

k(dk − d)2. (20)

�

We now consider the lemma involving the Yates decomposition. Equation (10) of Yates (1982) shows that there is a

direct correspondence between the Murphy “calibration” component and the Yates components. This correspondence can

be roughly depicted as

Miscalib = Varf + (f − d)2 − 2Covfd + Discrim. (21)

Weighted Yates components are facilitated by entering the “weighted” version of Murphy calibration into the above equa-

tion. The Yates components then arise from the fact that the terms on the right-hand side all involve summations, so that

weights from the Murphy calibration metric can be distributed across each of the components. This leads to the metrics

from Equation (10) of the text, as well as the expressions in Table 1. �

B Defining forecast bins/subsets

The Murphy (but not Yates) decomposition requires us to define forecast subsets/bins, such that all forecasts within a bin

are treated equivalently. In the case of binary questions, bin definition is simple: we focus on a single alternative, then, e.g.,

round forecasts to the nearest .05. Thus, we have one bin extending from 0 to .1, another from .1 to .2, and so on up to .9 to

1. Each forecast is coded as its bin midpoint, leading to forecasts of .05, .15, . . ., .95.

The binning becomes more complicated when we have multinomial questions because we must simultaneously consider

all the alternatives. For example, in the case of three alternatives, one bin might be “0 to .1 for Alternative A, 0 to .1 for

Alternative B, .8 to .9 for Alternative C,” which we could abbreviate as (0 − .1, 0 − .1, .8 − .9). However, if we took the

midpoint of each bin, we would obtain the forecast (.05, .05, .85), which does not sum to 1. This causes problems with use

of the Brier score, which requires that forecasts sum to 1.

To address this problem, we first round all probabilities to the nearest multiple of .1, .05, or some other number. This

rounding automatically creates the bins, because many forecasts will now be equal to one another. There is one caveat here:

the rounding can lead to probabilities that do not sum to 1. To make the forecasts sum to 1 (while maintaining rounded

probabilities), we focus on two strategies. First, we can find the smallest nonzero forecast and define it to be 1 minus the

sum of other rounded forecasts. Second, we can find the individual probability that is furthest from its rounded probability,

and define that to be 1 minus the sum of other rounded forecasts (we thank a reviewer for suggesting this second approach).

For example, consider the forecast (.17, .26, .58). When we round, this forecast becomes (.2, .3, .6) and does not sum to

1. Under the first strategy, we would identify .17 as the smallest forecast and set it equal to .1, yielding a rounded forecast of

(.1, .3, .6). Under the second strategy, we would identify .26 as being furthest away from a multiple of .1, yielding a rounded

forecast of (.2, .2, .6). The rounding is applied to both the Murphy and Yates decompositions for uniformity (though, as

mentioned before, the Yates decomposition does not require this). Importantly, due to rounding, no binning solutions will

lead to a mean Brier score that is exactly equal to the mean Brier score of the original forecasts; this is true of both the

original Murphy decomposition and its extensions here.
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Figure 3: Variability in the estimated 95th percentile for the discrimination and miscalibration metrics, by number of

resamples (50, 100, or 500), bin resolution (.05 or .1), and strategy for ensuring that rounded forecasts sum to 1 (round the

lowest value or round the farthest value).

C Further sensitivity analyses

This appendix contains further results of the sensitivity analyses from the Example section, focusing on System 2 (the

system with the best overall Brier score). Figure 3 displays resamples of the 95th percentile on both the discrimination

and miscalibration metrics. We see that the 95th percentile exhibits more variability across all numbers of resamples, as

compared to the means displayed in Figure 1. This is to be expected, because extreme percentiles are more difficult to

estimate precisely.

Figure 4 displays resamples of the remaining Brier components’ means, including uncertainty, ∆Varf , miscalibration in

the large, and covariance between forecast and outcome (with the latter three stemming from the Yates decomposition). We

see that, while precision of the estimates increases with resamples, these components are minimally impacted by the various

rounded strategies. The only exception is the ∆Varf metric, which is lower for the “.05” rounding as compared to the “.1”

rounding. Because this metric measures “excess forecast noise,” the results correctly suggest that rounding the forecasts to

the nearest .1 introduces extra noise in the data, as compared to rounding forecasts to the nearest .05.

Figure 5 displays resamples of the remaining Brier components’ mean differences (System 2 minus System 3). We

observe that the bin resolutions lead to small differences in the covariance and excess variance metrics, a finding that is

similar to the Murphy component results from Figure 2. We also see little influence of rounding method (“round farthest”

vs “round lowest”), which is also similar to the Murphy component results.
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Figure 4: Variability in the estimated means of other Brier components, by number of resamples (50, 100, or 500), bin

resolution (.05 or .1), and strategy for ensuring that the rounded forecasts sum to 1 (round the lowest value or round the

farthest value).
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Figure 5: Variability in the estimated mean differences of other Brier components, by number of resamples (50, 100, or

500), bin resolution (.05 or .1), and strategy for ensuring that the rounded forecasts sum to 1 (round the lowest value or

round the farthest value).
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