# THE POSITIVE PART OF A FOURIER TRANSFORM 

AUGUSTO LOGLI

(Received 11 August 1983)

Communicated by G. Brown


#### Abstract

We consider the function $u$ whose Fourier transform is the positive part of the Fourier transform of a function $f$ on $\mathbf{R}^{n}$. If $n \leqslant 2$ and $f$ satisfies simple regularity conditions (in particular if $f$ is in the Schwartz space $\mathscr{S}\left(\mathbf{R}^{n}\right)$, then $u$ lies in $L^{1}\left(\mathbf{R}^{n}\right)$. If $n \geqslant 3$, then simple counterexamples exist; for example, if $f(x)=|x|^{2} \exp \left(-|x|^{2}\right)$, then $u$ does not lie in $L^{1}\left(\mathbf{R}^{n}\right)$.


1980 Mathematics subject classification (Amer. Math. Soc.): 42 B 10.
Let $\mathscr{F}$ denote the Fourier transformation; for $f \in L^{1}\left(\mathbb{R}^{n}\right)$,

$$
\hat{f}(\xi)=\mathscr{F} f(\xi)=\int_{\mathbf{R}^{n}} f(x) e^{-2 \pi i x \xi} d x, \quad \xi \in \mathbb{R}^{n} .
$$

Under appropriate hypotheses on $\hat{f}, f$ can be recovered from $\hat{f}$ by the inverse transformation $\mathscr{F}^{-1}:\left(\mathscr{F}^{-1} g\right)(x)=\mathscr{F} g(-x)$. On the other hand, $\hat{f}$ may be decomposed: $\hat{f}(\xi)=r^{+}(\xi)-r^{-}(\xi)+i j^{+}(\xi)-i j^{-}(\xi)$ where, for instance, $r^{+}=\operatorname{Re}(\hat{f})_{+}$.

Such a decomposition is natural in many contexts; for instance, if we think of $\hat{f}$ as a measure, or if $f$ acts as an operator on (say) $L^{2}\left(\mathbb{R}^{n}\right)$ by convolution. Here we consider $\mathscr{F}^{-1}\left(r^{+}\right)$and ask if $\mathscr{F}^{-1}\left(r^{+}\right) \in L^{1}\left(\mathbb{R}^{n}\right)$ provided $f$ lies in some nice sub-class of $L^{1}\left(\mathbb{R}^{n}\right)$, for instance $\mathscr{\mathscr { L }}\left(\mathbf{R}^{n}\right)$ or $\mathscr{D}\left(\mathbb{R}^{n}\right)$.

The answer depends on $n$ : if $n \leqslant 2$ then mild conditions on $f$ assure that $\mathscr{F}^{-1}\left(r^{+}\right) \in L^{1}\left(\mathbf{R}^{n}\right)$, while if $n \geqslant 3 \mathscr{F}^{-1}\left(r^{+}\right) \notin L^{1}\left(\mathbb{R}^{n}\right)$ unless rather odd conditions are imposed (the zeroes of $\operatorname{Re}(\hat{f}$ ) have to be of order greater than 1 (roughly speaking) and it is not obvious how this can be read off from $f$ ).

In what follows we maintain the notation $r^{+}$for the positive part of $\hat{f}$; also $r$ will be the real part of $\hat{f}$.

[^0]Case 1. The case $n \geqslant 3$.

If $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $f$ is radial then ([1], page 35) $\hat{f}$ is continuously differentiable on $\mathbb{R}^{n} \backslash\{0\} ; r^{+}$will be continuously differentiable only if $r \geqslant 0$ or if the zeroes of $r$ are of order $\geqslant 2$ and so, in general, $\mathscr{F}^{-1}\left(r^{+}\right) \notin L^{1}\left(\mathbb{R}^{n}\right)$.

Case 2. The case $n \leqslant 2$.

This case is somewhat subtler. We enunciate and prove our theorem after establishing a preliminary lemma, due to Michael Cowling.

Lemma. Suppose that $r: \mathbb{R} \rightarrow \mathbb{R}$ is twice continuously differentiable and that $r, r^{\prime} \in C_{0}(\mathbb{R})$. If $u(x)=\int_{\mathbb{R}} d \xi r^{+}(\xi) e^{2 \pi i x \xi}$, then

$$
|u(x)| \leqslant \frac{3}{8 \pi^{2} x^{2}} \int_{\mathbf{R}} d \xi\left|r^{\prime \prime}(\xi)\right|
$$

Proof. Let $D=\{\xi \in \mathbb{R}: r(\xi)>0\}$. Then

$$
u(x)=\int_{D} d \xi r(\xi) e^{2 \pi i x \xi}
$$

We may break up $D$ into a countable union of disjoint open intervals $I_{n}=\left(a_{n}, b_{n}\right)$ which we assume are all finite for the moment. Then

$$
u(x)=\sum_{n} \int_{I_{n}} d \xi r(\xi) e^{2 \pi i x \xi}
$$

Integration by parts, together with the fact that $r\left(a_{n}\right)=r\left(b_{n}\right)=0$, shows that

$$
\begin{aligned}
u(x) & =-\sum_{n}(2 \pi i x)^{-1} \int_{I_{n}} d \xi r^{\prime}(\xi) e^{2 \pi i x \xi} \\
& =-\sum_{n}(2 \pi i x \xi)^{-2} \int_{I_{n}} d \xi r^{\prime}(\xi)\left(e^{2 \pi i x \xi}\right)^{\prime} \\
& =\sum_{n}(2 \pi x)^{-2}\left[r^{\prime}\left(b_{n}\right)-r^{\prime}\left(a_{n}\right)-\int_{I_{n}} d \xi r^{\prime \prime}(\xi) e^{2 \pi i x \xi}\right] .
\end{aligned}
$$

So

$$
|u(x)| \leqslant \sum_{n}(2 \pi x)^{-2}\left[\left|r^{\prime}\left(b_{n}\right)\right|+\left|r^{\prime}\left(a_{n}\right)\right|+\int_{I_{n}} d \xi\left|r^{\prime \prime}(\xi)\right|\right]
$$

It is enough to show that

$$
\sum_{n}\left[\left|r^{\prime}\left(b_{n}\right)\right|+\left|r^{\prime}\left(a_{n}\right)\right|\right] \leqslant \frac{1}{2} \int_{I_{n}} d \xi\left|r^{\prime \prime}(\xi)\right|
$$

to conclude the proof.
Since $r\left(a_{n}\right)=0$ and $r\left(a_{n}+\varepsilon\right)>0$ for small $\varepsilon, r^{\prime}\left(a_{n}\right) \geqslant 0$. Similarly $r^{\prime}\left(b_{n}\right) \leqslant 0$. If $r^{\prime}\left(a_{n}\right)=0$, put $a_{n}^{\prime}=a_{n}$ and otherwise let $a_{n}^{\prime}=\sup \left\{\xi \in \mathbb{R}: \xi<a_{n}, r^{\prime}(\xi)=0\right\}$.

Similarly if $r^{\prime}\left(b_{n}\right)=0$, put $b_{n}^{\prime}=b_{n}$, and otherwise let $b_{n}^{\prime}=\inf \left\{\xi \in \mathbb{R}: \xi>b_{n}\right.$, $\left.r^{\prime}(\xi)=0\right\}$. Further, by Rolle's theorem, there exists $c_{n}$ in $\left(a_{n}, b_{n}\right)$ such that $r^{\prime}\left(c_{n}\right)=0$. Let $I_{n}^{\prime}\left(a_{n}^{\prime}, b_{n}^{\prime}\right)$. By construction the intervals $I_{n}^{\prime}$ are disjoint, and so it will suffice to show that

$$
\left|r^{\prime}\left(a_{n}\right)\right|+\left|r^{\prime}\left(b_{n}\right)\right| \leqslant \frac{1}{2} \int_{I_{n}^{\prime}} d \xi\left|r^{\prime \prime}(\xi)\right|
$$

This is easy:

$$
r^{\prime}\left(a_{n}\right)=\int_{a_{n}^{\prime}}^{a_{n}} d \xi r^{\prime \prime}(\xi)=-\int_{a_{n}}^{c_{n}} d \xi r^{\prime \prime}(\xi)
$$

so

$$
2\left|r^{\prime}\left(a_{n}\right)\right| \leqslant \int_{a_{n}^{\prime}}^{a_{n}} d \xi\left|r^{\prime \prime}(\xi)\right|+\int_{a_{n}}^{c_{n}} d \xi\left|r^{\prime \prime}(\xi)\right|
$$

and

$$
2\left|r^{\prime}\left(b_{n}\right)\right| \leqslant \int_{c_{n}}^{b_{n}} d \xi\left|r^{\prime \prime}(\xi)\right|+\int_{b_{n}}^{b_{n}^{\prime}} d \xi\left|r^{\prime \prime}(\xi)\right|
$$

analogously. If some $I_{n}$ is infinite, the above arguments no longer make sense but the necessary modifications are easy.

Now we can prove our theorems.
THEOREM 1. If the function $x \rightarrow(1+|x|) f(x)$ is in $L^{2}(\mathbb{R})$ and if $\hat{f}(\xi)=r^{+}(\xi)-$ $r^{-}(\xi)+i j^{+}(\xi)-i j^{-}(\xi)$ is the decomposition of $f$ into positive and negative real and imaginary parts, then $\mathscr{F}^{-1}\left(r^{+}\right)$is in $L^{1}(\mathbb{R})$ and

$$
\left\|\mathscr{F}^{-1}\left(r^{+}\right)\right\|_{1} \leqslant 2^{-1 / 2}\left[\int_{-\infty}^{\infty} d x\left(1+4 \pi^{2} x^{2}\right)|f(x)|^{2}\right]^{1 / 2}
$$

Proof. Let $D=\{\xi \in \mathbb{R}: r(\xi)>0\}$, where $r=\operatorname{Re}(\hat{f})$. Distributionally, $r^{+}=$ $\chi_{D} r$ and $\left(r^{+}\right)^{\prime}=\left(\chi_{D}\right)^{\prime} r+\chi_{D} r^{\prime}$. Now $f \in L^{1}(\mathbb{R})$ (by Cauchy-Schwarz) so $r$ is continuous and, in particular, $r=0$ where $\chi_{D}^{\prime} \neq 0$. Thus $\left(r^{+}\right)^{\prime}=\chi_{D} r^{\prime}$. Now

$$
\begin{aligned}
\int_{\mathbf{R}} d x\left|\mathscr{F}^{-1}\left(r^{+}\right)\right| \leqslant & {\left[\int_{\mathbf{R}} d x\left(1+4 \pi^{2} x^{2}\right)^{-1}\right]^{1 / 2} } \\
& \cdot\left[\int_{\mathbf{R}} d x\left(1+4 \pi^{2} x^{2}\right)\left|\mathscr{F}^{-1}\left(r^{+}\right)(x)\right|^{2}\right] \\
\leqslant & \left(\frac{1}{2}\right)^{1 / 2}\left[\int_{\mathbf{R}} d \xi\left|r^{+}(\xi)\right|^{2}+\left|\left(r^{+}\right)^{\prime}(\xi)\right|^{2}\right]^{1 / 2} \\
\leqslant & 2^{-1 / 2}\left[\int_{\mathbf{R}} d \xi|r(\xi)|^{2}+\left|r^{\prime}(\xi)\right|^{2}\right]^{1 / 2} \\
\leqslant & 2^{-1 / 2}\left[\int_{\mathbf{R}} d \xi|f(\xi)|^{2}+\left|f^{\prime}(\xi)\right|^{2}\right]^{1 / 2} \\
= & 2^{-1 / 2}\left[\int_{\mathbf{R}} d x\left(1+4 \pi^{2} x^{2}\right)|f(x)|^{2}\right]^{1 / 2}
\end{aligned}
$$

by Cauchy-Schwarz' and Plancherel's theorems.

Theorem 2. Suppose that the functions $(x, y) \rightarrow\left(1+x^{2}+y^{2}\right) f(x, y)$, $(\partial / \partial x) x^{2} f(x, y)$ and $(\partial / \partial y) y^{2} f(x, y)$ are in $L^{2}\left(\mathbb{R}^{2}\right)$ and that $\hat{f}(\xi, \eta)=r^{+}(\xi, \eta)$ $-r(\xi, \eta)+i j^{+}(\xi, \eta)-i j^{-}(\xi, \eta)$ is the decomposition of $\hat{f}$ into positive and negative real and imaginary parts. Then $\mathscr{F}^{-1}\left(r^{+}\right) \in L^{1}\left(\mathbb{R}^{2}\right)$ and

$$
\left\|\mathscr{F}^{-1}\left(r^{+}\right)\right\|_{1} \leqslant 2\|f\|_{2}+6\left\|x^{2} f+\frac{\partial}{\partial x}\left(x^{2} f\right)\right\|_{2}+6\left\|y^{2} f+\frac{\partial}{\partial y}\left(y^{2} f\right)\right\|_{2} .
$$

Proof. It is obvious that

$$
\begin{aligned}
\int_{-1}^{+1} d x \int_{-1}^{+1} d y\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right| & \leqslant 2\left[\int_{-1}^{+1} d x \int_{-1}^{+1} d y\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right|^{2}\right]^{1 / 2} \\
& \leqslant 2\left\|\mathscr{F}^{-1}\left(r^{+}\right)\right\|_{2}=2\left\|r^{+}\right\|_{2} \leqslant 2\|\hat{f}\|_{2}=2\|f\|_{2}
\end{aligned}
$$

We shall show now that

$$
\int_{1}^{\infty} d x \int_{-x}^{x} d y\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right| \leqslant 3\left\|x^{2} f+\frac{\partial}{\partial x}\left(x^{2} f\right)\right\|_{2}
$$

By symmetry, analogous estimates hold for the three integrals

$$
\int_{-\infty}^{-1} d x \int_{x}^{-x} d y\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right|, \quad \int_{1}^{\infty} d y \int_{-y}^{y} d x\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right|
$$

and

$$
\int_{-\infty}^{-1} d y \int_{y}^{-y} d x\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right|
$$

whence the theorem follows.

Observe that

$$
\begin{aligned}
\int_{1}^{\infty} d x \int_{-x}^{x} d y\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right| & \leqslant \int_{1}^{\infty} d x(2 x)^{1 / 2}\left[\int_{-x}^{x} d y\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right|^{2}\right]^{1 / 2} \\
& \leqslant \int_{1}^{\infty} d x(2 x)^{1 / 2}\left[\int_{-\infty}^{\infty} d y\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right|^{2}\right]^{1 / 2} \\
& =\int_{1}^{\infty} d x(2 x)^{1 / 2}\left[\int_{-\infty}^{\infty} d \eta|u(x, \eta)|^{2}\right]^{1 / 2}
\end{aligned}
$$

where $u(x, \eta)=\int_{-\infty}^{\infty} d \xi r^{+}(\xi, \eta) e^{2 \pi i x \xi}$. The hypotheses of the theorem imply that $x f \in L^{1}\left(\mathbb{R}^{2}\right)$ and that $f \in L^{1}\left(\mathbb{R}^{2}\right)$, so $\hat{f}$ and $\partial / \partial \xi(\hat{f}) \in C_{0}\left(\mathbb{R}^{2}\right)$. By the lemma

$$
|u(x, \eta)| \leqslant \frac{3}{8 \pi^{2} x^{2}} \int_{\mathbf{R}} d \xi\left|\frac{\partial^{2}}{\partial \xi^{2}} r(\xi, \eta)\right|
$$

so

$$
\begin{aligned}
\int_{1}^{\infty} & d x \int_{-x}^{x} d y\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right| \\
& \leqslant \int_{1}^{\infty} d x \frac{3 \sqrt{2}}{8 \pi^{2}} x^{-3 / 2}\left[\int_{-\infty}^{\infty} d \eta\left\{\int_{-\infty}^{\infty} d \xi\left|\frac{\partial^{2}}{\partial \xi^{2}} r(\xi, \eta)\right|\right\}^{2}\right]^{1 / 2} \\
& \leqslant \frac{3 \sqrt{2}}{4 \pi^{2}}\left[\int_{-\infty}^{\infty} d \eta\left(\frac{1}{2}\right)\left\{\int_{-\infty}^{\infty} d \xi\left|1+4 \pi^{2} \xi^{2}\right|\left|\frac{\partial^{2}}{\partial \xi^{2}} r(\xi, \eta)\right|^{2}\right\}\right]^{1 / 2}
\end{aligned}
$$

by the Cauchy-Schwarz inequality and the explicit result that

$$
\int_{-\infty}^{\infty} d \xi\left|1+4 \pi^{2} \xi^{2}\right|^{-1}=\frac{1}{2}
$$

Thus

$$
\begin{aligned}
\int_{1}^{\infty} & d x \int_{-x}^{x} d y\left|\mathscr{F}^{-1}\left(r^{+}\right)(x, y)\right| \\
& \leqslant \frac{3}{4 \pi^{2}}\left[\int_{-\infty}^{\infty} d \eta \int_{-\infty}^{\infty} d \xi\left|(1-2 \pi i \xi) \frac{\partial^{2}}{\partial \xi^{2}} \hat{f}(\xi, \eta)\right|^{2}\right]^{1 / 2} \\
& =3\left[\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y\left|\left(1+\frac{\partial}{\partial x}\right) x^{2} f(x, y)\right|^{2}\right]^{1 / 2}
\end{aligned}
$$

as required.

## References

[1] H. Reiter, Classical harmonic analysis and locally compact groups (Oxford University Press, Oxford, 1968).

Istituto di Matematica
Universita di Genova
Via L.B. Alberti 4
16132, Genova
Italy


[^0]:    © 1985 Australian Mathematical Society 0263-6115/85 \$A2.00 +0.00

