SO$_2$ and CO$_2$ IR line lists for atmospheric modeling on Venus and Exoplanets

Xinchuan Huang1, David W. Schwenke2 and Timothy J. Lee2

1SETI Institute, 189 Bernardo Ave, Suite 100, Mountain View, CA 94043, USA
e-mail: Xinchuan.Huang-1@nasa.gov

2NASA Ames Research Center
e-mails: David.W.Schwenke@nasa.gov, Timothy.J.Lee@nasa.gov

Abstract. Highly accurate IR line lists are ready for 13 CO$_2$ isotopologues and 7 SO$_2$ isotopologues. Ames-296K IR lists carry 0.01 - 0.03 cm$^{-1}$ accuracy up to 13,000 cm$^{-1}$ for CO$_2$ and 5500 cm$^{-1}$ for SO$_2$, and 90-95% intensity agreement for most observable bands. Good for atmospheric modeling on Venus and Exoplanets.

Keywords. CO$_2$, SO$_2$, isotopologue, Infrared, line list, ab initio, highly accurate, modeling

Existing high-resolution IR databases are far from complete for many CO$_2$ minor isotopologues and all SO$_2$ isotopologues. Recently we presented Ames-296K line lists for 5 SO$_2$ symmetric isotopologues: 626, 636, 646, 666 and 828. For CO$_2$, we have reported Ames-296K and Ames-1000K IR line lists for 13 isotopologues, including symmetric species 626, 636, 646, 727, 737, 828, 838, and asymmetric species 627, 628, 637, 638, 728, 738. CO$_2$ line shape parameters were also determined for four different temperature ranges: Mars, Earth, Venus, and Higher temperature. General line position prediction accuracy is 0.01-0.03 cm$^{-1}$ for wavenumber range up to 5500 cm$^{-1}$ (for SO$_2$) or 13,000 cm$^{-1}$ (for CO$_2$). Predicted transition intensities usually agree with experimental measurements to 85-95% or better. With such prediction accuracies, these SO$_2$ and CO$_2$ IR line lists are the best available alternatives for those spectra gaps missing from spectroscopic databases such as HITRAN and CDMS. See DOI:10.1016/j.jqsrt.2014.05.015 and 10.1016/j.jms.2015.01.010 and references therein for details. Size-reduced line lists are available upon request or at http://huang.seti.org.

Figure 1. Ames-296K Line lists for 12 CO$_2$ isotopologues (red) vs. HITRAN2012 (black).