URSCM OR BI-URSCM FOR p-ADIC ANALYTIC OR MEROMORPHIC FUNCTIONS INSIDE A DISK

ABDELBAKI BOUTABAA and ALAIN ESCASSUT
Laboratoire de Mathématiques Pures, Université Blaise Pascal (Clermont-Ferrand), Les Cézeaux, 63177 Aubiere Cedex, France e-mail: Abdelbaki.Boutabaa@math.univ-bpclermont.fr
Alain.Escassut@math.univ-bpclermont.fr

(Received 27 April, 2006; revised 18 September, 2006; accepted 29 September, 2006)

Abstract

Let K be an algebraically closed field of characteristic zero, complete with respect to an ultrametric absolute value. In a previous paper, we had found URSCM of 7 points for the whole set of unbounded analytic functions inside an open disk. Here we show the existence of URSCM of 5 points for the same set of functions. We notice a characterization of BI-URSCM of 4 points (and infinity) for meromorphic functions in K and can find BI-URSCM for unbounded meromorphic functions with 9 points (and infinity). The method is based on the p-Adic Nevanlinna Second Main Theorem on 3 Small Functions applied to unbounded analytic and meromorphic functions inside an open disk and we show a more general result based upon the hypothesis of a finite symmetric difference on sets of zeros, counting multiplicities.

2000 Mathematics Subject Classification. 12J25, 46S10.

Introduction and theorems.

Definitions and notation. The concept of unique range sets counting multiplicities for a family of meromorphic functions was first introduced by F. Gross and C. C. Yang in the eighties [12]. Many papers were published on this topic and on closely related topics involving uniqueness, on complex and p-adic meromorphic functions [1], [3], [4], [5], [6], [7], [8], [10], [11], [13], [14], [16], [17].

We denote by K an algebraically closed field of characteristic zero, complete with respect to an ultrametric absolute value. Let $\mathcal{A}(K)$ be the K-algebra of entire functions in K and let $\mathcal{M}(K)$ be the field of meromorphic functions in K, i.e. the field of fractions of $\mathcal{A}(K)$. Given $a \in K$ and $r>0$, we denote by $d(a, r)$ the disk $\{x \in K||x-a| \leq r\}$ and by $d\left(a, r^{-}\right)$the disk $\left\{x \in K||x-a|<r\}\right.$. In the same way, we denote by $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$the K-algebra of analytic functions in $d\left(a, r^{-}\right)$, i.e. the set of power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ converging in $d\left(a, r^{-}\right)$and by $\mathcal{M}\left(d\left(a, r^{-}\right)\right)$the field of meromorphic functions inside $d\left(a, r^{-}\right)$, i.e. the field of fractions of $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.

We will denote by $\mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$the K-subalgebra of $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$consisting of the analytic functions $f \in \mathcal{A}\left(d\left(a, R^{-}\right)\right)$which are bounded in $d\left(a, R^{-}\right)$and by $\mathcal{M}_{b}\left(d\left(a, R^{-}\right)\right)$ the field of fractions of $\mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$. Next, we will denote by $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$the set $\mathcal{A}\left(d\left(a, R^{-}\right)\right) \backslash \mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$and, similarly, we set $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)=\mathcal{M}\left(d\left(a, R^{-}\right)\right) \backslash$ $\mathcal{M}_{b}\left(d\left(a, R^{-}\right)\right)$. The Nevanlinna Theory applies to functions in $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$. This is why we may look for problems of uniqueness in this set of functions.

For a subset S of K and $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$we denote by $E(f, S)$ the set in $\left(d\left(a, R^{-}\right)\right) \times \mathbb{N}^{*}: \bigcup_{a \in S}\left\{(z, q) \in\left(d\left(a, R^{-}\right)\right) \times \mathbf{N}^{*} \mid z\right.$ a zero of order q of $\left.f(x)-a\right\}$.

Let \mathcal{F} be a non-empty subset of $\mathcal{M}\left(d\left(a, R^{-}\right)\right)$. A subset S of K is called a unique range set counting multiplicities (an URSCM in brief) for \mathcal{F} if for any non-constant $f, g \in \mathcal{F}$ such that $E(f, S)=E(g, S)$, we have $f=g$.

It is known that the algebra of complex entire functions admits URSCM of 7 points and that the field of complex meromorphic functions admits URSCM of 11 points [10].

For the field K, it is known that the USRCM for $\mathcal{A}(K)$ are the URSCM for polynomials which actually are the sets which are preserved by no affine mapping but the identity [3], [4]. So, there exist URSCM for $\mathcal{A}(K)$ having just 3 points.

In [5] we proved the existence of URSCM and URSIM for functions in $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$and in $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$: there exist URSCM of 7 points for $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$. We also found smaller URSCM for subsets of $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$consisting of functions with "a small derivative" by using a method due to Frank and Reinders, also developed by H. Fujimoto [11]. Here we shall use a more simple method based upon the p-adic Second Main Theorem on Three Small Functions [15], [17] in order to show the existence of URSCM of 5 points for $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$, without assuming any additional hypotheses on the functions.

By the same method, we will also show the existence of BI-URSCM for $\mathcal{M}_{u}\left(d\left(a, r^{-}\right)\right)$of the form $\left(\left\{a_{1}, \ldots, a_{9}\right\},\{\infty\}\right)$. A set of the form $(S,\{\infty\})$ with $S \subset K$ (or $(S,\{b\})$ with $b \in K$) is called a BI-URSCM for a subset \mathcal{F} of $\mathcal{M}\left(d\left(a, R^{-}\right)\right)$if, given $f, g \in$ \mathcal{F} such that $E(f, S)=E(g, S)$ and $E(f,\{\infty\})=E(g,\{\infty\})$ (or $E(f,\{b\})=E(g,\{b\})$), we have $f=g$. Currently, when S is finite, the cardinal of S is called the number of points of the BI-URSCM. As a consequence of [8, Theorem 2], BI-URSCM are easily seen to have at least 4 points. In [4] we showed the existence of BI-URSM of 5 points for $\mathcal{M}(K)$. In [13] T.T.H. An and H.H. Khoai showed the existence of BI-URSCM for $\mathcal{M}(K)$ having only 4 points and showed the role of Condition (2) in Theorem 1 below. As a corollary of [9 , Theorem 3.7], BI-URSCM of 4 points for $\mathcal{M}(K)$ of the form ($S,\{\infty\}$) may be characterized in the following way (which was not mentioned in [9]).

Proposition. Let $S=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \subset K$ with $a_{i} \neq a_{j} \forall i \neq j$ and let $T(x)=\prod_{j=1}^{4}\left(x-a_{j}\right)$. Then $(S,\{\infty\})$ is a BI-URSCM for $\mathcal{M}(K)$ if and only if T^{\prime} admits 3 distinct zeros c_{1}, c_{2}, c_{3} satisfying the two following conditions:
(i) $T\left(c_{i}\right) \neq T\left(c_{j}\right) \forall i \neq j$;
(ii) the equality $\frac{T\left(c_{1}\right)}{T\left(c_{2}\right)}=\frac{T\left(c_{2}\right)}{T\left(c_{3}\right)}=\frac{T\left(c_{3}\right)}{T\left(c_{1}\right)}$ is not true.

Remark. If (ii) is violated in the Proposition, then $\frac{T\left(c_{1}\right)}{T\left(c_{2}\right)}$ is a number λ such that $\lambda^{2}+\lambda+1=0$.

Here we shall show the existence of BI-URSCM for $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$having 9 points.
Notation. Throughout the paper, we shall denote by P a polynomial of the form $P(x)=x^{n}-\alpha x^{m}+1$ with m, n relatively prime such that $2 \leq m \leq n-1$ and such that $\alpha^{n} \neq \frac{n^{n}}{m^{m}(n-m)^{n-m}}$. We shall denote by $S(n, m, \alpha)$ its set of zeros.

We denote by Δ the symmetric difference on subsets of a set.
Remark. Since $\alpha^{n} \neq \frac{n^{n}}{m^{m}(n-m)^{n-m}}, P$ has n distinct zeros.

Theorem 1. Let $f, g \in \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$be two different non-constant functions satisfying $\#(E(f, S(n, m, \alpha)) \Delta E(g, S(n, m, \alpha)))<\infty$. Then $2 m-n \leq 2$.

Corollary 1.1. Suppose that $2 m>n+2$. Then $S(n, m, \alpha)$ is an URSCM for $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$.

Remark. In particular, Corollary 1.1 holds with $n \geq 5$ and $m=n-1$.
Theorem 2. Let $f, g \in \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$be two different non-constant functions satisfying $\#(E(f, S(n, m, \alpha)) \Delta E(g, S(n, m, \alpha)))<\infty$ and $\#(E(f,\{\infty\}) \Delta E(g,\{\infty\}))<$ ∞. Then $2 m-n \leq 3$.

Corollary 2.1. Suppose $m \leq n-2$ and $2 m>n+3$. Then $S(n, m, \alpha)$ is a BI$U R S C M$ for $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$.

The proofs. Let \log be the real logarithm function of base $p>1$. Let $R \in] 0,+\infty[$ and let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$such that 0 is neither a zero nor a pole of f. Let $\left.r \in\right] \rho, R[$.

We denote by $Z(r, f)$ and $\bar{Z}(r, f)$ the counting functions of zeros of f in $d(0, R) \backslash\{0\}$, (counting multiplicities or not) i.e. if $\left(a_{n}\right)$ is the finite or infinite sequence of zeros of f in $d\left(0, R^{-}\right) \backslash\{0\}$, with respective multiplicity order s_{n}, we put

$$
Z(r, f)=\sum_{\left|a_{n}\right| \leq r} s_{n}\left(\log r-\log \left|a_{n}\right|\right) \quad \text { and } \quad \bar{Z}(r, f)=\sum_{\left|a_{n}\right| \leq r}\left(\log r-\log \left|a_{n}\right|\right) .
$$

In the same way, we denote by $N(r, f)$ and by $\bar{N}(r, f)$ the counting functions of poles of f : considering the sequence $\left(b_{n}\right)$ of poles of f in $d(0, r) \backslash\{0\}$, with respective multiplicity order t_{n}, we put

$$
N(r, f)=\sum_{\left|b_{n}\right| \leq r} t_{n}\left(\log r-\log \left|b_{n}\right|\right) \quad \text { and } \quad \bar{N}(r, f)=\sum_{\left|b_{n}\right| \leq r}\left(\log r-\log \left|b_{n}\right|\right) .
$$

For a function f having no zero and no pole at 0 , the Nevanlinna function $T(r, f)$ is defined by $T(r, f)=\max (Z(r, f)+\log |f(0)|, N(r, f))$.

In order to prove the Theorems, we must recall the Nevanlinna Second Main Theorem on 3 small functions showed in $\mathcal{M}(K)$ in [15] which actually also holds in $\mathcal{M}\left(d\left(0, R^{-}\right)\right)[17]$.

Theorem A. Let $f, u_{1}, u_{2}, u_{3} \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$have no zero and no pole at 0 and let $S(r)=\max _{j=1,2,3}\left(T\left(r, u_{j}\right)\right)$. Then $\left.T(r, f) \leq \sum_{j=1}^{3} \bar{Z}\left(r, f-u_{j}\right)+S(r), r \in\right] \rho, \mathrm{R}[$.

By Replacing f by $\frac{1}{f}$ and taking $u_{3}=0$, we obtain Corollary A1 [17]:
Corollary A.1. Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$and $u_{1}, u_{2}, \in \mathcal{M}_{b}\left(d\left(0, R^{-}\right)\right)$have no zero and no pole at 0 and let $S(r)=\max _{j=1,2}\left(T\left(r, u_{j}\right)\right)$.

Then $\left.T(r, f) \leq \sum_{j=1}^{2} \bar{Z}\left(r, f-u_{j}\right)+\bar{N}(r, f)+O(1), r \in\right] \rho, R[$.
We shall also use the following Lemma B which is classical [2], [3].

Lemma B. Let $f, g \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$.
(1) Then $T(r, f g)=T(r, f)+T(r, g)$.
(2) Let $P \in K[x]$. Then $T(r, P \circ f)=\operatorname{deg}(P) T(r, f)+O(1)$.

Proof of Theorems 1 and 2. Without loss of generality we may obviously assume that $a=0$. By hypothesies, in both Theorems 1 and $2 \#(E(f, S(n, m, \alpha))$ $\Delta E(g, S(n, m, \alpha))$) and $\#(E(f,\{\infty\}) \Delta E(g,\{\infty\}))$ are finite (whereas $E(f,\{\infty\})=$ $E(g,\{\infty\})=\emptyset$ in Theorem 1). Since all zeros of P are of order 1, we see that $P \circ f$ and $P \circ g$ have the same zeros and the same poles, counting multiplicities, except maybe finitely many. Consequently, the function $u(x)=\frac{P \circ f}{P \circ g}$ which obviously lies in $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$, has finitely many zeros and finitely many poles in $d\left(0, R^{-}\right)$. Hence, $u \in \mathcal{M}_{b}\left(d\left(0, R^{-}\right)\right)$.

Without loss of generality we may obviously assume that 0 is neither a zero nor a pole for all functions we have to consider in Theorems 1 and 2.

On the other hand, we notice that

$$
\begin{aligned}
& T(r, P \circ f)=n T(r, f)+O(1), \\
& T(r, P \circ g)=n T(r, g)+O(1)
\end{aligned}
$$

But since u belongs to $\mathcal{M}_{b}\left(d\left(0, R^{-}\right)\right), T(r, u)$ is bounded, hence $T(r, P \circ f)=$ $T(r, P \circ g)+O(1)$ and therefore

$$
\begin{equation*}
T(r, f)=T(r, g)+O(1) \tag{1}
\end{equation*}
$$

Now, let $F(x)=f^{n}-\alpha f^{m}$, let $G(x)=u(x)-\left(g^{n}-\alpha g^{m}\right)$ and let $w(x)=1-u(x)$. Thus, we have $F(x)=u(x)\left(g^{n}-\alpha g^{m}\right)+u(x)-1$.

Suppose that u is not identically 1. By Corollary A. 1 we have

$$
\begin{equation*}
T(r, F) \leq \bar{Z}(r, F)+\bar{Z}(r, F-w)+\bar{N}(r, f)+O(1) \tag{2}
\end{equation*}
$$

But

$$
\begin{align*}
\bar{Z}(r, F) & =\bar{Z}\left(r, f^{m}\left(f^{n-m}-\alpha\right)\right)=\bar{Z}(r, f)+\bar{Z}\left(r, f^{n-m}-\alpha\right) \\
& \leq(n-m+1) T(r, f)+O(1) . \tag{3}
\end{align*}
$$

Similarly:

$$
\begin{aligned}
\bar{Z}(r, F-w)= & \bar{Z}\left(r, u(x)\left(g^{n}-\alpha g^{m}\right)\right)=\bar{Z}(r, g) \\
& +\bar{Z}\left(r, g^{n-m}-\alpha\right)+\bar{Z}(r, u)=\leq(n-m+1) T(r, g)+O(1)
\end{aligned}
$$

hence by (1), we have

$$
\begin{equation*}
\bar{Z}(r, F-w) \leq(n-m+1) T(r, f)+O(1) . \tag{4}
\end{equation*}
$$

On the other hand, obviously

$$
\begin{equation*}
\bar{N}(r, F)=\bar{N}(r, f) \leq T(r, f) \tag{5}
\end{equation*}
$$

Now, by Lemma B we have $T(r, F)=n T(r, f)+O(1)$ hence by (1), (2), (3), (4) we obtain

$$
\begin{equation*}
n T(r, f) \leq 2(n-m+1) T(r, f)+\bar{N}(r, f)+O(1) \tag{6}
\end{equation*}
$$

Thus, in the hypotheses of Theorem 1, we have $n T(r, f) \leq 2(n-m+1) T(r, f)+$ $O(1)$. And since $T(r, f)$ is unbounded when r tends to R, we see that $2 m-n \leq 2$. Now, in the hypotheses of Theorem 2, by (5) and (6) we obtain $2 m-n \leq 3$.

We can now assume that u is identically 1 , hence $f^{n}-\alpha f^{m}=g^{n}-\alpha g^{m}$. Putting $h=\frac{f}{g}$, we obtain $g^{n-m}\left(h^{n}-1\right)=\alpha\left(h^{m}-1\right)$. Since m, n are relatively prime, we notice that $\left(h^{n}-1\right)$ and $\left(h^{m}-1\right)$ may not be both identically zero, hence we have

$$
\begin{equation*}
g^{n-m}=\alpha \frac{h^{m}-1}{h^{n}-1} . \tag{7}
\end{equation*}
$$

Let $\xi_{k}, 1 \leq k \leq n$ be the n-th roots of 1 with $\xi_{1}=1$ and let $\zeta_{j}, 1 \leq j \leq m$ be the m-th roots of 1 with $\zeta_{1}=1$. Since $m<n$ there exists $k \in[2, n]$ such that $\xi_{k} \neq \zeta_{j} \forall j=1, \ldots, m$ and therefore, each zero of $h-\xi_{k}$ is a pole of g^{n-m}, a contradiction to the hypothesis of Theorem 1. Thus, in the hypothesis of Theorem $1, u$ is not identically 1 which completes the proof.

Assume now the hypothesis of Theorem 2. Since $\mathcal{M}_{b}\left(d\left(0, r^{-}\right)\right)$is a field, by (7) h does not belong to $\mathcal{M}_{b}\left(d\left(0, r^{-}\right)\right)$because if it belonged to $\mathcal{M}_{b}\left(d\left(0, r^{-}\right)\right)$then g should also lie in $\mathcal{M}_{b}\left(d\left(0, r^{-}\right)\right)$. Thus, since $n-m \geq 2$, for every $j=2, \ldots, m$ we have $\bar{Z}\left(r, h-\xi_{j}\right) \leq \frac{1}{2} Z\left(r, h-\xi_{j}\right)$ and for every $k=2, \ldots, n$ we have $\bar{Z}\left(r, h-\zeta_{k}\right) \leq$ $\frac{1}{2} Z\left(r, h-\xi_{j}\right)$.

Since m, n are relatively prime, we notice that $\xi_{k} \neq \zeta_{j} \forall k=2, \ldots, n j=2, \ldots, m$. Consequently, each zero of $h-\xi_{k}$ is a pole of g^{n-m} (and hence is a zero of order at least $n-m$ of $h-\xi_{k}$). And similarly, each zero of $h-\zeta_{j}$ is zero of g^{n-m} (and hence is a zero of order at least $n-m$ of $h-\zeta_{j}$). Consequently,

$$
\begin{equation*}
\bar{Z}\left(r, h-\xi_{k}\right) \leq \frac{1}{n-m} Z\left(r, h-\xi_{k}\right), \quad \forall k=2, \ldots, n \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{Z}\left(r, h-\zeta_{j}\right) \leq \frac{1}{n-m} Z\left(r, h-\zeta_{j}\right), \quad \forall j=2, \ldots, m \tag{9}
\end{equation*}
$$

Now, since $h \in \mathcal{M}_{u}\left(d\left(0, r^{-}\right)\right)$, we may apply to h the classical p-adic Second Main Theorem in $\mathcal{M}_{u}\left(d\left(0, r^{-}\right)\right)$. We have $(n+m-3) T(r, h) \leq \sum_{j=2}^{n} \bar{Z}\left(r, h-\xi_{j}\right)+$ $\sum_{k=2}^{m} \bar{Z}\left(r, h-\zeta_{k}\right)+\bar{N}(r, h)+O(1)$ and therefore, by (8) and (9), we obtain $(n+m-3) T(r, h) \leq \frac{1}{2}\left(\sum_{j=2}^{n} Z\left(r, h-\xi_{j}\right)+\sum_{k=2}^{m} Z\left(r, h-\zeta_{k}\right)\right)+N(r, h)+O(1) \leq$ $\left(\frac{m-1+n-1}{2}+1\right) T(r, h)+O(1)$. Thus we check that $m+n \leq 6$. In fact, we can easily see that $m+n \leq 6$ is incompatible with $2 m-n \geq 4$, consequently, the hypotheses of Theorem 2 led to $2 m-n \leq 3$ in all cases. This completes the proof of Theorem 2.

Remark. In [4], we neglected the fact that when m, n are not relatively prime, $h^{m}-1$ and $h^{n}-1$ may have common zeros different from 1 . This is why Theorem 4 in [4] is not correct: when $P(x)=x^{6}-\alpha x^{4}+1$, any function f satisfy $P \circ f=P \circ(-f)$.

Acknowledgment. We are grateful to the referee for pointing out to us misprints and abstraction mistakes in a first version of this paper.

REFERENCES

1. W. W. Adams and E. G. Straus, Non archimedian analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971) 418-424.
2. A. Boutabaa, Théorie de Nevanlinna p-adique, Manuscripta Math. 67 (1990), 251-269.
3. A. Boutabaa, A. Escassut and L. Haddad, On uniqueness of p-adic entire functions, Indag. Math. 8 (1997), 145-155.
4. A. Boutabaa and A. Escassut, On uniqueness of p-adic meromorphic functions, Proc. Amer. Math. Soc. 126 (1998), 2557-2568.
5. A. Boutabaa and A. Escassut, Urs and ursim for p-adic meromorphic functions inside a p-adic disk, Proc. Edinburgh Math. Soc. 44 (2001), 485-504.
6. W. Cherry and C. C. Yang, Uniqueness of non-archimedean entire functions sharing sets of values counting multiplicities, Proc. Amer. Math. Soc. 127 (1998), 967-971.
7. A. Boutabaa and A. Escassut, URS' for Weierstrass products without exponential factors, Complex Var. Theory Appl. 47 (2002), 409-415.
8. A. Escassut, L. Haddad and R. Vidal, Urs, ursim and non-urs for p-adic functions and polynomials, J. Number Theory 75 (1999), 133-144.
9. A. Escassut and C. C. Yang, The functional equation $P(f)=Q(g)$ in a p-adic field, J. Number Theory 105 (2004), 344-360.
10. G. Frank and M. Reinders, A unique range set for meromorphic functions with 11 elements, Complex Variable Theory Appl. 37 (1998), 185-193.
11. H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math. 122 (2000), 1175-1203.
12. F. Gross and C. C. Yang, On preimage and range sets of meromorphic functions, Proc. Japan Acad. 58 (1982), 17-20.
13. Ha Huy Khoai and Ta Thi Hoai An, On uniqueness polynomials and bi-URs for p-adic meromorphic functions, J. Number Theory 87 (2001), 211-221.
14. P. C. Hu and C. C. Yang, A unique range set of p-adic functions meromorphic functions with 10 elements, Acta Math. Vietnam. 24 (1999), 95-108.
15. P. C. Hu and C. C. Yang, Meromorphic functions over non archimedean fields, Mathematics and its applications, vol. 522 (Kluwer, 2000).
16. P. Li and C. C. Yang, On the unique range set of meromorphic functions, Proc. Amer. Math. Soc. 124 (1996), 177-185.
17. J. Ojeda, Applications of the p-adic Nevanlinna theory to problems of uniqueness, preprint.
