Identification and Quantification of Boron Dopant Sites in Antiferromagnetic Cr₂O₃ Films by Electron Energy Loss Spectroscopy

Congli Sun¹, Michael Street², Ryan Jacobs¹, Dane Morgan¹, Paul M. Voyles¹ and Christian Binek²

^{1.} Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA

^{2.} Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska, USA

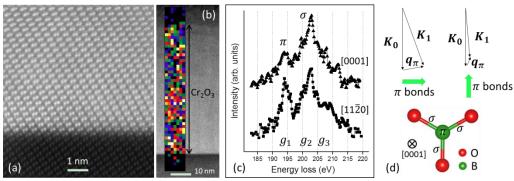
 Cr_2O_3 is antiferromagnetic in bulk but ferromagnetic on the (0001) surface. Bulk Cr_2O_3 has two degenerate antiferromagnetic states that can be switched by an electric field, which also switches the (0001) surface magnetism [1], creating the potential for voltage-controlled magnetic data storage and spintronic data processing. However, the magnetic ordering (Néel) temperature of pure Cr_2O_3 is too low for microelectronic applications. Boron substituting for oxygen in Cr_2O_3 to form BCr₄ tetrahedra increases the exchange energy of neighboring Cr atoms from the favorable hybridization geometry [2], increasing the Néel temperature.

We have combined electron energy loss spectroscopy (EELS) fine structure and density functional theory (DFT) calculations to determine the structure of B dopants in Cr_2O_3 thin films. EELS is highly sensitive to the nature of chemical bonds and to an atom's coordination environment. Especially for doped oxides when the dopant is surrounded by strong backscattering O atoms, EELS is dominated by scattering events within the local neighbours that can be explained by a molecular approach [3]. We find B in BCr₄ tetrahedra, but also in distorted BO₃ triangles. The BO₃ triangles can be identified by manipulating the electron momentum transfer (*q*) in EELS, which changes the differential cross sections for the 1s- π^* and 1s- σ^* transitions. BCr₄ tetrahedra can be identified and also quantified by linear combination of simulated B K edges to reproduce the experimental π / σ ratios.

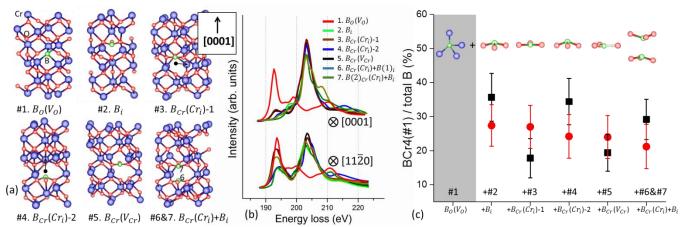
Figure 1(a) is a HAADF STEM image of a 2.5% B doped Cr_2O_3 film on Al₂O₃ substrate. Both the B and O atoms are invisible due to relatively weak high-angle scattering cross section. Figure 1(b) is a map of the B K edge intensity, showing a uniform distribution of B in the Cr_2O_3 film. Figure 1(c) is the B K edges acquired from plan view (top) and cross section (bottom) zone axes. The 194 eV peak corresponds to the 1s- π^* transition and the 203 eV peak corresponds to the 1s- σ^* transition [4]. The typical geometry of the B sp² hybridization forms BO₃ triangles with σ bonds parallel to the BO plane and π bonds normal to the BO plane [3]. The B K edges show clear orientation dependence because of the significant directionality of unoccupied 2p states of the BO₃ sp² structure. As illustrated in Figure 1(d), with the large EELS collection angles used in this experiment, the π intensity is proportional to the BO₃ plane is normal to the [0001] direction.

Figure 2(a) is the possible B dopant structures, relaxed by DFT. All the structures shown have relatively low formation energies (± 2 eV) calculated by Zhang-Northrup formalism [5] under film growth conditions, so they are thermodynamically accessible. The simulated BO₃ structures are either planar or slightly distorted, but all of them are normal to the [0001] directions, which matches with the EELS results in Figure 1(d). The existence of BCr₄ can be confirmed by the distinct π / σ ratios from multiplescattering EELS simulation in Figure 2(b), especially on the plan view zone. The bounds of the functional BCr₄ out of the total B can be probed by linear combination of simulated BCr₄ K edges with each BO₃ K edge to reproduce experimental π / σ ratios, which is shown in Figure 2(c). Only 12%-43% B dopants form BCr₄ tetrahedra and increases Néel temperature. Further calculation shows that the other BO₃ structures can frustrate the bulk antiferromagnetic order and suppress the interface exchange bias. To make B doping more efficient, posting annealing under low oxygen partial pressure will favor the formation of BCr₄, and co-doping is also a promising approach to stabilize BCr₄ [5].

References:


[1] X. He et al, Nat. Mater. 9 (2010) p. 579.

[2] S. Mu, A.L. Wysocki, K.D. Belashchenko, Phys. Rev. B 87 (2013) p. 1.


[3] H. Sauer et al, Ultramicroscopy. 49 (1993) p. 198.

[4] C. Souche et al, Micron. 29 (1998) p. 419.

[5] This work was supported in part by C-SPIN, one of the six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

Figure 1. (a) HAADF STEM image of a B doped Cr_2O_3 film on Al_2O_3 substrate. (b) EEL spectrum guide image showing the whole 80 nm thick Cr_2O_3 film with B K edge intensity map superimposed. (c) B K edges from plan view and cross section zone axis. (d) Schematic illustration of EELS momentum transfer and the suggested orientation of BO₃ triangles.

Figure 2. (a, and b) Calculated B dopant structures and corresponding EELS from multiple scattering simulations. (c) Quantification of the functional BCr₄ tetrahedra (#1. $B_0(V_0)$) / total B by linear combination of simulated BCr₄ K edges with each BO₃ triangles K edges to reproduce the experiment π / σ ratio. Black symbols are from the cross section data, and red symbols are from plan view data.