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A NEW IDENTITY A N D SOME APPLICATIONS 

BY 

W. O. J. MOSER1 AND RICHARD POLLACK2 

ABSTRACT. Let (n\k) denote the number of k-choices l < x a < 
x2< • • • < xk ^ n satisfying x{ -xt_x > 2, i = 2 , . . . , k, n + xx -xk >2; 
let (m, n | k) = XH-,=k (^ I 00* I /)• Several elementary proofs of the 
new identity (m, n \ k) = (m + n | k) if 0 ̂  k < m < n and 

(m, n | k) = (m + n | k) + ( - l ) m (n-m | k - m ) 

if 0 ̂  m ^ n, m^k, are given. Generalizations and applications are 
considered. 

1. For non-negative integers n, k, w (n, k not both 0), let (n \ k)w denote the 
number of k -choices (k-subsets) 

(1) l<X!<x 2 <- • -<x k <n 

satisfying the conditions 

(2) x . -x . - i^w + l, i = 2 , . . . , k 

and 

(3) X! + n - x k > w + l. 

These conditions are best visualized by displaying 1, 2 , . . . , n in a circle (rising 
order clockwise) and conditions (2) and (3) are then: every chosen integer is 
followed (clockwise) by at least w non-chosen integers. Equivalently, such a 
fc-choice can be described by a display of k l's and n-k 0's in a circle with 
one of the n entries capped. For example, the choice {2, 5, 9,12} counted in 
(13 14)2 is described by 

l 
0 0 

0 0 

1 1 

0 0 

0 0 
0 1 
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(The cap tells you where to start!) It is well known [1, p. 222, problem 2] and 
easy to deduce [2, formula 17] that 

(4) (n|fc)w = 

_n (n-wk 
n — wk\ k 

lo, 

) • " w + 1 
, ( n , k ) * (0,0), 

0<-
"w + 1 -<k. 

Taking (0 | 0)w = w + 1 permits (n | k)w to be determined by the recurrence 

(n\ fc)w=(n-1 | k ) w + ( r c - w - 1 | fc-l)w, n > w + l, fc>l, 
(5) 

(0 | 0)w = w + 1 , (n | 0)w = 1 for n > 1, (n | fc)w = 0 for 0 < n < w, k > 1. 

Indeed, (n — 1 | k)w counts the choices (1) (satisfying (2) and (3)) for which 
xk-xk_1>w + l, while (n —w —l|fc — l)w counts the choices for which xk -
Xk_! = W + l . 

When w = 0, (n | k)0 is simply the number of k-subsets of a set of size n, i.e., 

(n | k)0 = < 
n\ 

kl(n-k)\ 
, 0 < k < n, 

,0, 0 < n < k. 

The obvious identity 

k 

X (m | i)0(n \k-i)0 = (m + n\ k)0, m,n,k> 0, 
i=0 

or equivalently, 

|0(T)( t- ,wmr) . — « • 
is the well known Vandermonde Convolution. 

When w = 1, we conveniently suppress the subscript 1, so 

(n|k) = (n|k)1=J 

2, if n = fc = 0, 

Defining 

-< 

(m 

n (n-k\ .„ n , n 

0, if 0 < ^ < k . 
L 2 

, n 1 fc)w= Z ( m I0w(n l/)w, 
i + j = k 

(n,k)ï (0,0), 
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the identity we establish is: 

(6) (m, n | fc) = 
(m + n | k ) , if 0 < l c < m < n , 

(m + n | k) + (—l)m(n — m | k — m), if 0 < m < n , m < k . 

The combinatorial meaning of (m, n | k)w is this. It is the number of k-choices 
from {1, 2 , . . . , m + n} such that in the display of {1, 2 , . . . , m} in one circle and 
{m + 1 , . . . , m + n} in another circle each chosen integer is followed (in the 
circle it appears) by w non-chosen integers. 

After providing several proofs of (6), thus illustrating different techniques, 
we will describe an application to counting 3 x n Latin rectangles, a generaliza
tion and its relation to an identity of Rothe ([9]; see [3] and [4]). 

2. When w = 1, recurrence (5) is 

(n|fc) = ( n - l | k ) + ( n - 2 | k - l ) , n > 2 , k > l , 

(0 | 0) = 2, (n | 0) = 1 for n > 1, (n | fc) = 0 for n = 0, 1, k > 1, 

and this leads to the generating function which we "partial fraction": 

X (n\k)xnzk=-^-\- = ——+—— = I (aï+«S)x", 
n,k>0 L X X Z 1 atX 1 QL2X n > 0 

where au a2 are power series in z satisfying 

a 1 + a2
 = l5 a1a2 = -z, a? + a£ = Z (n I k)zk. 

k>0 

Now 

2—x 2 - y 
(7) X ( m , n | k ) x m y " z k = — 

n,n,fcaO '• x-x2z l - y - y 2 z 

= I («r + «Dxm I (aï+«S)y", 

and equating coefficients of xmyn yields for all O ^ m S i i 

X ( m , n | f c ) z k = ( o r + a3 ' ) (oî+«2) 

= a r + n + a™+" + ( a i a 2 ) m ( « r m + « r m ) 

= X (m + n | k ) z k + ( -z) m I (n-m\k)zk 

lc>0 kaO 

= X (m + n\k)zk+ X ( - l ) m ( n - m | k - m ) z k . 
k > 0 k > m 

Equating coefficients of zk establishes identity (6). 
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We can get by without partial fractioning. First note that 

(8) £ (m + n|k)xmynzk = £ (r | fc)zk £ xmyn 

m,n,k>0 r ,k>0 m+n=r 

= Z (r I fc) 
r,k>o * y 

_ x 2LZ2L—+—1 2 —y 
x - y l — x — x2z y-x 1 —y —y2z 

Furthermore, letting 

f ( - l ) m ( n - m | f c - m ) , if 0 < m < n , m<fc, 
( - l ) n ( m - n | k - n ) , if 0 < n < m , rc<fc, 

I 0 if k<min(m, n), 
a little manipulation yields 

a(m, n | fc) = < 

(9) I a(m,tt|fc)x"y"zk= — J — f 2 * 2 + 2 y
2 - 2 I . 

i,n,k>o 1 + xyz 11 - x - xzx 1 - y - y zz J 

Identity (6) now follows because the sum of functions (8) and (9) is identically 
equal to function (7). 

We proceed to outline an elementary proof of (6) which uses recurrences but 
not generating functions. Details are left to the reader. First note that 

(m,n | fc) = ( m - l , n | fc) + ( m - 2 , n | fc-1), m>2, n>0 , fc>l, 

= ( m , n - l |fc) + ( m , n - 2 | f c - l ) , m>0, n > 2 , fc>l, 

(cf. (5) with w = 1). Next, taking 

g(m, n, fc) = (m, n \ k)-(m + n | fc) + ( m - l , n-1 | fc-1)-(m + n - 2 | fc-1) 

for m, n, fc > 1, it follows that 

(10) g(m, n, k) = g(m —1, n —1, fc) + g(m —1, n - 2 , k —1) 

+ g(m-2, n - l , f c - l ) + g(m-2, rc-2, k - 2 ) 

for m, n, fc>3. Now 

(11) g(m, n, fc) = 0 if m,n,k>0, m, n, k not all >3, 

easily follows, and induction (using (10) and (11)) implies 

g(m, n, k) = 0 for m, n, k > l , 
or 

(12) (m,n|k)-(m4-n|fc) = - { ( m - l , n - l | f c - l ) - ( m + n - 2 | f c - l ) } 

for m, n, k > l . Repeated application of (12) leads to (6). 
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The last proof we now give of (6) is strictly combinatorial, by means of one-
to-one correspondences. Let S(m, n \ k) denote the set of fc-choices counted by 
(m, n | fc). Each such choice can be represented by a display 

/ ^ ^ x « 1 « 2 « 3 ' ' ' Urn 

(13) * 2 3 m , 0 < m < n , 
010203 • • • 0m0m + l • • • 0n 

of fc l 's and m + n — k 0's. In each of the two rows no two l's are adjacent, with 
am, « ! and 0n, 0! adjacent pairs. (These displays really should be in two circles, 
but that would make the typesetting difficult.) 

The identity (6) is easy to prove when 0 < fc < m < n. In this case there is a q, 
1 < q < m, such that aq = 0q = 0 while ah 0* are not both 0 when i < q. Consider 
the following mapping of a fc-choice in S(m, n | fc) to a fc-choice in S(m + n \ fc) 
(the set counted by (m + n | fc)): 

(14) axa2 • • • aq_!0aq+1 • • • am 

0i02 * ' • 0q-iO0q+1 • • ' 0m ' • ' 0n 

^ a ! a 2 • • • aq_iO0q+1 • • • 0n0x • • • 0q_!Oaq+1 • • • am. 

This is a one-to-one mapping from S(m, n \ k) to S(m + n \ fc) when 0 < k < 
m<n. Furthermore, this map is onto S(m + n \ fc). Indeed, if, 

(15) YlY2 * * ' Tm+n 

is a sequence of fc l 's and m 4- n — fc 0's representing a choice in S (m + n | fc) 
(so that no two l's are adjacent, ym+n and yx being adjacent) then, because 
k<m, there is a t, 1 < f < m, such that 7t = 7 t+n = 0, while yh yi+n are not both 
0 for i<t. Clearly the map takes the fc-choice 

YlY2 * * ' Yt-lOYn+t+l * * • Yn-fm 

Yl+n2+n Yt+n-lOYt+1 • • ' Yn 

of S(m,n\k) onto the k-choice (15), and hence (m, n \ fc) = (m + n | k) if 
0<fc<m<n. 

Several examples should make this correspondence clear. Thus for fc = 3, 
m = 4 , n = 6: 

{5,7,9} or i Q l O l O ^ 0 0 1 0 1 0 1 0 0 0 ° r { 3 ' 5 ' ? } 

{1,6,9} or Q I O O I O ^ 1 0 0 0 1 0 0 1 0 0 ° r { 1 , 5 , 8 } 

{2,5,7} or i Q l O O O ^ 0 1 0 0 0 0 1 0 1 0 ° r { 2 ' ? ? 9 } 

When 0 < m < n and m<k, the situation is slightly complicated. If m = n< 
k, (6) is obviously correct. Hence we may take m<n. Consider first the case m 
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even. Partition the set S(m, n \ fc) into three disjoint subsets S l5 S2, S3 as 
follows. S t consists of choices (13) for which there is a q e{ l , 2 , . . . , m} such 
that aq = |3q = 0 while at, ft are not both 0 for i < q. If there is no such q then 
«i + ft^l, l < j < m , and the fc-choice (13) belongs to S2 if /3m = j3m + 1=0, 
otherwise to S3. The fc-choices in S1 are mapped by (14) to k-choices in 
S(m + n | fc); the fc-choice (13) in S2 is mapped to the k-choice 

«l<^2 * * ' a m P m + l P m + 2 ft.^02 • • • 0m 

in S(m + n | k); the k-choice (13) in S3 is mapped onto the (k-m)-choice 

+ l P m + 2 * 

of S(n-m\k-m). Illustrated below is a typical element of S2 and two 
elements of S3 and the mapping of each: 

0 1 0 1 - - - 0 1 0 1 

^ O l O - ' - l O l O O f t ^ - ' - f t ^ O 

- + 0 1 0 1 - - - 0 1 0 1 0 0 m + 2 • • • pn_t 0 1 0 1 0 - - - 1 0 1 0 

in S(m + n | k); 

0 1 0 1 • - - O l O l 

^ l O l O — l O l O l f t ^ — ft^O 

-> 1 |3 m + 2 • • • p n_! 0 in S ( r c - m | f c - m ) ; 

1 0 1 0 - - - 1 0 1 0 
3 : 0 1 0 1 - - - 0 1 0 1 0 | 8 m + 2 - - - i 8 n 

^ 0 j 8 m + 2 - • • |8n in S(n-m\k-m). 

It is easy to see that S1 U S2 is mapped one-to-one onto S(m + n\k) while S3 is 
mapped one-to-one onto S(n-m\k — m), thus proving (6) for 0 < m < r c , 
m<k, m even. 

There remains the case k>m, m odd. Now split S(m, n | fc) into two sets, S1 

as already described in the case of even m, and S2 consisting of the fc-choices 
(13) for which 

«i«2- • • a m = 0 1 0 1 0 - - - 0 1 0 

and 

j 3 i 0 2 - " 0 m = l O l O l - - - l O l 

As before, the fc-choices of Sx are mapped by (14) to elements of S(m + n\k) 
and the fc choice (13) in S2 is mapped to the fc-choice 

«1«2 ' ' ' «m|3m + l/3m+2 * ' ' PnPl ' • • 0m. 

Note that Sx U S2 is mapped one-to-one into S(m + n | fc), and the elements of 
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S(m + n | fc) which are not images are the fc-choices having one of the forms 

0 1 0 1 0 - - - 0 1 0 1 0 ym+3 • • • yn_! 0 1 0 1 0 1 • • • 1 0 1 

1 0 1 0 • • • 1 0 1 0 ym+2 • • • yn 0 1 0 1 0 • • • 0 1 0. 

The total number of these excluded fc-choices inS(m + n | f c ) i s ( n - m | f c - m ) , 
and the proof of (6) is complete. 

There is an obvious generalization of (6) to any number of circles e.g., 

(10,4,17 |15) = (10 + 4 + 1 7 | l l ) + ( - l ) l o ( -10 + 4 + 1 7 | 15-10) 

+ ( - l ) 4 ( 1 0 - 4 + 1 7 | 1 5 - 4 ) + ( - l ) l o + 4 ( - 1 0 - 4 + 1 7 | 1 5 - 1 0 - 4 ) . 

3. Two permutations al9..., an and bl9...,bn of { 1 , 2 , . . . , n} are called 
discordant if a{^bi9 i = l , . . . , n . The Problème des Ménages asks for the 
number t^, n > 2, of permutations discordant with the two permutations 

12 3 • • • n — 1 n 
n 1 2 - • • n—2 n —1. 

Using [i,/] to denote "the integer i is in the /th place", we seek permu
tations with none of the properties 

[1,1][1, 2][2, 212, 3] - • • [n -1, n - l][n - 1 , n][n, n][n, 1]. 

Since two of these properties are consistent if and only if they 
are not adjacent when the 2n properties are arranged in a circle (so that [1,1] 
follows [n, 1]), the Principles of Inclusion and Exclusion yields 

un= t ( -D k (2n | k ) (n - f c ) ! , n > 2 . 
k=0 

This is of course well known [5, p. 14]. 
Now let umn, 2 < m < n , denote the number of permutations of 1 ,2 , . . . , 

m + n discordant with the two permutations 

1 2 3 • • • m — 1 m m + l m + 2 - * - m + n - l m + n 
m 1 2 ••• m—2 m — 1 m + n m + 1 ••• m + n —2 m + n —1. 

We seek permutations of degree m + n having none of the properties 

[1, 111, 2][2, 212, 3] • • • [m - 1 , m - l][m - 1 , m][m, mjm, 1] 
[m + 1 , m + l][m + 1 , m + 2][m + 2, m + 2][m + 2, m + 3] 

• • • [m + n - 1 , m + n][m + n,m + n][m + n, 1]. 

Clearly there are (2m, 2n | k) ways of choosing, from these 2(m + n) properties, 
k consistent ones. Hence 

m+n 

um,n= I ( - l ) f c(2m,2n|k)(m + n - k ) ! 
k=0 
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(and by (6)) 

m+n 

= £ ( - l ) k ( 2 m + 2 n | k ) ( m + n-fc)! + 

m+n 

+ X (-l)k(2n-2m | k - 2 m ) ( n + m - f c ) ! 
k = 2 m 

n—in 

= urn+n+ X ( - l ) i ( 2 n - 2 m | 0 ( n - m - 0 ! 
i =0 

This formula also is well known ([1. p. 205], [8], [11, p. 15]), though our proof 
seems to be the first completely elementary one. It and its obvious generaliza
tion was used by Riordan to deduce a particularly elegant formula for the 
number of 3-line Latin rectangles [1, p. 205]. 

4. Although we have not been able to obtain a full generalization of (6) 
when w > l w e can prove that 

(16) (m, n | fc)w =(m + n | fc)w, 0 < k < - , - . 
w w 

Let S(m, n \ fc)w denote the set of k-choices counted by (m, n | k)w. Each 
such choice can be described by a display 

0 i 0 2 " - 0 m f t n + i - - - f t i , 0 < m < n , 

of k l 's and m + n — k 0's and each 1 is followed by w 0's where we consider 
am, |3n to be followed by al9 /3x respectively. 

We consider two cases according to whether or not one of the m - w + 1 
"rectangles" 

r> a i + l ' ' ' ai+w n _ . _ 

• R i = fl , 0<i<m-w, 
Pi + 1 ' ' ' Pi+w 

has all entries 0. We say such a rectangle is identically zero. If some Rt is 
identically zero, choose q so that Rq is identically zero while for each 0 < i <q 
some entry in Rt is 1. Then 

(18) * * * 0n£i ' * * 0q+waq 

is in S(n + m \ k)w. 
If none of the rectangles Rh 0 < i < m - w , is identically zero, then none of 

the disjoint rectangles R^w, 0 < ^ < [ m / w ] - l , is identically zero and therefore 
each such R€w contains at least one 1. Hence [m/w] = k and each rectangle 
contains exactly one 1. Thus aj9 jS, = 0 if / > kw. Because k < (m/vv) and no Rh 

i = 1 , . . . , m — w, is identically zero, a simple count shows that one of the w 
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rectangles 

aj + l ' ' ' amal ' ' ' a j - m + w _ . ^ 

' m-w<]<m, 
ft + 1 * ' ' PmPl * * * Pj-m+w 

is identically zero, and we see that (17) looks like 

0 0 - - - 0 a t + 1 a t + 2 - - - a t + m _ w 0 0 - - - 0 0 
0 0 • • • 0 ft+1ft+2 • • • ft+m_w 0 0 • • • 0 0 0m+1 • • • j8n, 

for some 1 < t < w. Thus 

(19) ata2 • • • aU3i • • • ft» 

is in S(m + n | fc)w. 
Now we map display (17) to (18) in the first case and we map (17) to (19) in 

the second case. It is a simple matter to check that this mapping is one-to-one 
from S(m, n \ k)w onto S(m + n | k)w, and (16) is proved. 

Several examples should make the above correspondence clear. Thus, for 
w = 3, m = 10, n = 12, fc = 3: 

{11,15,19} or 0 0 0 0 0 0 0 0 0 0 
100010001000 

^0000100010001000000000 or {5,9,13}; 

{2,8,15} or 0100000100 
000010000000 

^0100000100000010000000 or {2,8,15}; 

{2,13,16} or 0100000000 
001001000000 

^0100000000000010010000 or {2,15,18}. 

5. For integral k > 0 w e define the polynomials of degree fc: 

f l , if fc = 0, 
x(x-l)- • -(x-fc + 1) 0- fc! 

if k>0, 

and 

A * ( ^ ) = ^ ( fc } 
The well known identity of Rothe [9] (see also [3], [4]) states: 

X A((a, p)A,(y,P) = Ak(a + y, 0). 
i+j = k 

It is an immediate consequence of (16). Indeed if n, fc, w are non-negative 
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integers, 0<fc<(n/w), then by (4) Ak(n, w) = (n | k)w. Thus the polynomial 

X A i ( a , 0 ) A j ( 7 , 0 ) - A k ( a + 7,0) 

is 0 whenever a, 7, |3 are positive integers satisfying l < k < 
min(a/|3 + 1 , y/j3 +1), and this surely implies Rothe's identity when k > 1. For 
related material in a much more general setting, see [10]; for this and other 
identities proved by counting lattice paths see [6] and [7]. 
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