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ABSTRACT. Numerical modeling is crucial for quantifying the evolution of
cryospheric processes. At the same time, uncertainties hamper process un-
derstanding and predictive accuracy. Here, we suggest improving glacier sur-
face mass balance simulations for the Kongsvegen glacier in Svalbard through
the application of Bayesian data assimilation techniques in a set of large en-
semble twin experiments. Noisy synthetic observations of albedo and snow
depth, generated using the multilayer CryoGrid community model with a full
energy balance, are assimilated using two ensemble-based data assimilation
schemes: the particle batch smoother and the ensemble smoother. A compre-
hensive evaluation exercise demonstrates that the joint assimilation of albedo
and snow depth improves the simulation skill by up to 86% relative to the prior
in specific glacier regions. The particle batch smoother excels in representing
albedo dynamics, while the ensemble smoother is marginally more effective for
snow depth under low snowfall conditions in the ablation area. By combining
the strengths of both observations, the joint assimilation achieves improved
surface mass balance simulations across different glacier zones using either as-
similation scheme. This work underscores the potential of ensemble-based data
assimilation methods for refining glacier models by offering a robust frame-
work to enhance predictive accuracy and reduce uncertainties in cryospheric
simulations. Further advances in glacier data assimilation research with both
synthetic and real observations will be critical to better understanding the
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fate and role of Arctic glaciers in a changing climate.

INTRODUCTION

Glaciers are regarded as key indicators of climate change. Over the past three decades, global glacier ice loss

has contributed nearly 1 mm annually to sea level rise (Zemp and others, 2019; [PCC, 2022). At the same

time, glaciers serve as a critical component of mountain water towers, helping to provide a more consistent

and reliable water supply to downstream regions (Immerzeel and ofhers, PITY; Zhang and others, P023).

Arctic glaciers are experiencing an accelerated mass loss (Dstby and others, 2017; Van Pelf_and ofhers,

2019; Rounce and ofherd, 2023; Schmidf_and ofherd, P023) because warming is amplified in the Arctic at

two to four times the global average through various positive feedback mechanisms (e.g. [Lind_and ofhers,

2018; Ranfanen and ofhers, 2022). Freshwater runoff from melting Arctic glaciers can have considerable

impacts on ocean circulation and ocean-atmosphere interaction globally (Devilliers and others, 2024; Pontes

and Menviel, 2024; Schiller-Weiss and ofhers, 2074; Malles and otherd, 2075), as well as on regional marine

biogeochemistry and productivity (Hopwood and others, 2020; Ezaf and ofhers, 2024). Thus, accurate

knowledge of glacier surface mass balance is vital for understanding, detecting, and predicting the impacts
of climate change.
Numerical modeling is the main method to reconstruct past or project future glacier surface mass bal-

ance at sites with scarce in situ observations. Glacier surface mass balance models forced by meteorological

data include temperature-index models (e.g. Hock, 2003; Marzeion and others, PT2) and energy balance

models (e.g. Hock and Holmgren, 2005; Wesfermann and ofhers, 2023). Temperature-index models approx-

imate the melt rate based on air temperature (Huss'and Hock, 2015), while physically-based energy balance
models explicitly calculate the energy fluxes on the glacier surface and therefore provide a more detailed

representation of the processes controlling the surface mass balance. The accuracy of glacier models is

limited by uncertainties related to meteorological forcing (Marzeion and otherd, 2020), incomplete model

physics (Schmidf and ofhers, P023), and parameter uncertainty (Rounce and others, P020; Schuster_and
bthers, 2023). Constraining each uncertainty source remains a significant challenge.

Data assimilation methods can incorporate observations into modeling to improve accuracy and con-

strain simulation uncertainty (Evensen and ofhers, 2022, , Chapter 2). In situ and remotely sensed ob-

servations can be individually or jointly assimilated into glacier models, leading to a reduction of the
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aforementioned uncertainties (Gillef=Chaulefl, 2020; Choi_and ofhers, 2023). The assimilation of ground-
based glaciological measurements into surface mass balance models is gradually becoming a recognized
approach for updating glacier model parameters or initial states (Landmann and ofhers, 2021; Sjursen and
ofhers, 2023). Despite this recognition, there are still relatively few studies that have implemented data
assimilation in surface mass balance modeling. Moreover, in situ measurements are available for only a
minority of glaciers worldwide, which presents a significant challenge to transfer information to the unmea-
sured majority of glaciers. In addition to the direct assimilation of surface mass balance measurements,
other quantities that can directly influence surface mass balance changes, such as remotely sensed albedo
or snow depth, can also be ingested within a data assimilation framework. Satellite-derived observations of
albedo and snow depth offer greater spatial and temporal coverage, enabling broader applicability despite
their susceptibility to factors such as cloud cover, sensor resolution, and atmospheric interference, which can
012; Pstby and others, 20

impact data quality and availability (Vionneft and ofhers, 2 I4d; Deschamps-Berger

and_otherd, 2023).

Albedo, defined as the reflectivity of the Earth’s surface to shortwave insolation, is a controlling variable
in the surface energy balance of glaciers. It significantly impacts the radiation budget, thereby influencing
the rate of melt and overall surface mass balance of glaciers (e.g. Budykd, [969; Ye and others, 2024). In a
pioneering study, a variational assimilation scheme was used to incorporate Moderate Resolution Imaging
Spectroradiometer (MODIS) derived albedo into a snowpack model to reconstruct the spatial surface mass
balance distribution for an Alpine glacier (Dumonf and ofhers, 20012). More recently, Sentinel-2 albedo
estimates were assimilated into a glacio-hydrological model to improve the simulation of streamflow in two
glacierized basins in the Canadian Rockies (Berfoncini and others, 2024).

Snowfall is another major driver of the surface mass balance, as it is the primary source of glacier mass
gain (HocK, 2003; Pramanik and ofhers, P019). Satellite-based snow depth retrievals, such as from the
ICESat-2 laser altimeter, are a potentially globally available constraint on uncertainties in snowfall forcing
which is being explored for seasonal snow data assimilation (Mazzolini_ and oftherd, P074). However, to the
best of our knowledge, no experiment has explored the joint assimilation of remotely sensed albedo and snow
depth into an energy balance model for surface mass balance simulation. Moreover, the current state of the
art in using Bayesian data assimilation to infer surface mass balance has focused on static parameters in
temperature index models using relatively costly Markov chain Monte Carlo methods (Rounce and ofhers,

2020; Sjursen and otherd, 2023). This stands in contrast to other recent cryospheric work on glacier flow
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(Brinkerhoff, 2022), ice sheet (Navariand ofherd, 2021)), seasonal snow (Alonso-Gonzalez and ofhers, P027),
and permafrost (Groenke and ofhers, P023), which employ a greater diversity of modern Bayesian data
assimilation (also known as inversion) schemes that allow for the use of more complex models.

In this study, we performed twin experiments (Arnold and Deyi, T986; Masutani and ofherd, 2010), also
known as synthetic experiments or Observing System Simulation Experiments, to explore the benefits of
assimilating albedo and snow depth on surface mass balance simulations. This allowed us to test the data
assimilation workflow in a series of targeted experiments while avoiding challenges of real observations and
model discrepancies (Masufani and ofhers, 2010). In particular, as satellite-based measurements of albedo
and snow depth and their associated error characteristics are not always available or consistent due to vari-
able weather conditions and observational limitations. Here, synthetic observations are instead generated
using synthetic truth (also known as nature) runs of the energy balance model CryoGrid (Schmidf and
ofhers, 2023; Westermann and ofhers, 2023). It should be noted from the title of our study that it revolves
entirely around conducting twin experiments using synthetic truth runs and noisy synthetic observations
thereof. For brevity, we will henceforth often simply refer to these as truth and observations. These syn-
thetic observations serve as idealized representations of satellite measurements, with their spatiotemporal
resolution designed to mirror that of actual satellite data, forming the foundation for observing system
simulation. While these synthetic observations currently facilitate controlled testing of our methodology,
the ultimate objective is to assimilate actual satellite observations in future applications. To assimilate the
synthetic observations, we employed and compared two Bayesian data assimilation schemes, namely the
Particle Batch Smoother (PBS; Margulis and others, 2015) and the Ensemble Smoother (ES; van Leeuwen
and FEvensen, [996). The synthetic observations were derived from synthetic truth runs for four distinct
scenarios, each representing different climatic conditions. These four scenarios were selected to better cap-
ture the varying information content of the assimilated observations. They are represented by four different
climatic conditions generated by four different parameter settings (TableB). The simulations were driven
by reanalysis data from the Copernicus Arctic Regional Reanalysis (CARRA) dataset over 12 hydrolog-
ical years from September 2010 to September 2022. Kongsvegen glacier, one of the best studied glaciers
in High Arctic Svalbard, was selected as the study area due to the availability of data and its extensive
size, encompassing diverse glacier zones that offer a comprehensive basis for representing a broad range of
Arctic glaciers. By conducting a large number of twin experiments, we compared the effectiveness of the

particle-based PBS scheme to the ensemble Kalman-based ES in improving simulated glacier surface mass
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balance across different glacier zones and climatic scenarios. The sensitivity of the surface mass balance
estimates to ensemble size was also tested in terms of both accuracy and precision via bootstrap resampling
experiments using the PBS at essentially no extra cost since (unlike the ES) no costly model reruns were
required in this PBS sensitivity analysis. Synthetic observations of albedo and snow depth with synthetic
truth surface mass balance enabled us to perform a robust evaluation of a novel glacier data assimilation
framework in CryoGrid through a large ensemble of twin experiments that allowed us to control for both

observation and model error.

DATA AND METHODS

Study Site

The Svalbard archipelago is one of the most climatically sensitive regions in the world (Noél and ofhers,

2020; Geyman and others, 2022). For example, it is the region in Europe that has experienced the greatest
warming in the past three decades (Nordliand ofhers, P014; Isaksen and ofherd, 2016). Kongsvegen is a
marine-terminating glacier, located on the northwestern coast of Svalbard close to the research station of
Ny-Alesund (Fig. ). The glacier has an area of around 100 km? and a length of 26 km, with slopes ranging

from 0.5 to 2.5° (Karnerand ofhers, 2013). The ice flows towards the northwest from its ice-divide at about
800 m a.s.l. down to sea level at the head of Kongsfjorden (Hagen and otherd, 1T999; Karner_and ofhers,
2013). The three grid cells used in this study are shown in Fig. @ and we used these grids to represent

different glacier zones, namely the ablation area, equilibrium line altitude (ELA), and accumulation area.

Forcing Data

This study uses the Copernicus Arctic Regional Reanalysis (CARRA) dataset (Copernicus Climate Change
Service (C3S) Climate Data Store (CDS), 2024) as meteorological forcing data. The CARRA forcing fields
considered are the 2 m air temperature, 2 m specific humidity, 10 m windspeed, incoming longwave and
shortwave radiation, precipitation, and atmospheric pressure. CARRA is derived from the HARMONIE-
AROME numerical weather prediction system (Bengtsson and others, 2017). This regional reanalysis
covers two domains in the European sector of the Arctic, CARRA-West and CARRA-East, employing
ERAD reanalysis as boundary conditions ([Yang and others, 2021). The CARRA output has a horizontal
resolution of 2.5 km and a 3-hour temporal resolution covering the period from 1991 to present. Following

Schmidfand ofhers (2023), this study employs meteorological data from the CARRA-East domain over
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Kongsvegen Sentinel-2B 25.08.2020

* Ny-Alesufid

Fig. 1. Atmospherically corrected shortwave infrared false color image over the area surrounding Kongsvegen
glacier near Ny-Alesund in the Svalbard archipelago captured by the Sentinel-2B satellite at 13:07 UTC on the 25"
of August 2020. The image shows the locations of Ny-Alesund (yellow star) and the Kongsvegen glacier outline from
RGI 7.0 (white) as well as the locations of 2.5 by 2.5 km grid cells that were extracted from CARRA to represent
the ablation zone (ABL, red), Equilibrium Line Altitude (ELA, purple), and the accumulation zone (ACC, blue) of
Kongsvegen. The inset shows the location of Ny-Alesund (yellow star) in the Arctic (here roughly defined as latitudes

above 60°N) on a polar stereographic map using open Gray Earth data from Natural Earth.
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12 hydrological years from the 16™ of September 2010 to the 15" of September 2022.

Surface mass balance model
Model description

The CryoGrid community model is an open-source model developed for climate-driven multiphysics simula-
tions of the terrestrial cryosphere (Westermann and otherd, 2023), which uses a full surface energy-balance
scheme that can be coupled to different multilayer subsurface modules of varying complexity. We used the

glacier surface mass balance configuration of CryoGrid with a snow and firn module that was first employed

by Schmidf and ofherd (2023). The model calculates the full energy balance at the surface Ej:

Es = (1 — Oé)Sin + Lin - Lout - Qh - Qe (1)

where S, is the incoming shortwave radiation, « is the surface albedo, L;, and Lgy is the incoming and
outgoing longwave radiation, @)y, is the sensible heat flux and Q. is the latent heat flux. The surface albedo
of snow is calculated in three spectral bands following Vionnef_and ofhers (2012). In the UV and visible

range (0.3-0.8 um), the albedo is calculated as:

a = max(0.6,a; — 15A), (2)

where «; is the albedo contribution from snow microstructure, represented by the optical diameter, 7,
is the albedo decay rate, and A is the snow age in days. The albedo in the near-infrared bands ([0.81.5]
and [1.52.8] pm) only depend on snow microstructure. The albedo of ice is given a constant value of 0.4.

The outgoing longwave radiation is calculated as

Lout = €0T* — (1 — €) Ly, (3)

where € is the surface emissivity, o is the Stefan Boltzmann constant and T is the 2m air temperature in
Kelvin.

Finally, the turbulent fluxes are calculated using the Monin-Obukhov similarity theory (Monin and
Obukhov, [954), and depend on the surface pressure and wind speed. The sensible heat flux is further
calculated using the temperature gradient between the 2m temperature and the surface, while the latent

heat flux is calculated from the gradient in specific humidity.
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Parameter Description Default value Reference

Ta albedo decay rate 0.0033 day ! Vionnef_and ofhers (2012)
Qice ice albedo 0.4 e.g. Schmidf_and ofhers (2023)
zgnow roughness length of snow 1 mm e.g. Schmidf_and ofhers (2023)
zice roughness length of ice 1 mm e.g. Schmidf and ofhers (2023)

0 field capacity of snow/firn 0.05 e.g. Wesfermann_and ofhers (20123)

Bs snow factor 1

By rain factor 1

Table 1. Tuneable parameters within glacier and snow modules of the CryoGrid model

If the energy balance is positive Es > 0, the excess energy can either be used to warm up or melt the
glacier surface. If the surface consists of pure ice, the melt will immediately run off. If a layer of snow
is present, the water will percolate down the snowpack and, depending on the snow conditions, either be
retained, refrozen, or run off.

While glacier ablation is calculated through the energy balance, the accumulation is taken directly
from the CARRA reanalysis. The precipitation is divided into rainfall and snowfall using a temperature
threshold. CryoGrid has the option of a relative bias correction for snowfall and rainfall using multiplicative

factors Bs and (., respectively.

Uncertain parameters

In this study, we added ensemble-based data assimilation methods to the glacier surface mass balance
simulations, thereby creating a comprehensive probabilistic modeling package. Through data assimilation,
we aim to improve simulated glacier surface mass balance. The most important physical parameters which
are currently tunable within the CryoGrid model are given in Table .

In numerical weather forecasting and climate modeling, precipitation, particularly snowfall, is associated
with significant uncertainties that can contribute to considerable errors in Arctic surface mass balance
models (e.g. Forbes and ofhers, 2011; Schmidf and ofhers, 2017; Van Pelf_and ofhers, P2019; Lenaerts and
ofhers, P020). Albedo is a controlling variable of the surface energy balance, and therefore accurately
simulating albedo is important for modeling the surface mass balance (e.g Schmidf and ofhers, DOT7;

Gunnarsson and ofherd, 2073). We therefore determine that the parameters in Table M which control these

variables (fs and 7,) are the most uncertain and will have the largest impact on the surface mass balance
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simulations. Our ensemble assimilation approach thus involved constraining these uncertain parameters,
to enhance the accuracy of the simulated snowfall, the snow albedo evolution, and the associated surface

mass balance.

Model initialization

We initialized the model using a 5-year spin-up from 2006 to 2010, using a snow albedo evolution rate
of 7, = 0.005 day~! and no bias correction of the snowfall, i.e. Bs = 1. This allows the near-surface ice
temperatures to respond to the model forcing and the buildup of a small firn layer of 3 m w.e. in the
accumulation zone and improves the physical consistency of the subsequent experiments, particularly in
the accumulation area. The primary objective of the spin-up phase is to achieve model relaxation, allowing
the glacier system to reach a quasi-equilibrium state that aligns with realistic initial conditions consistent
with climatological data and available observations. This ensures that subsequent simulations start from
a physically consistent baseline, minimizing artifacts from arbitrary initializations and better reflecting
natural variability in snow and ice dynamics. Regarding the zonal differences, in the accumulation area,
where perennial snow cover predominates, the spin-up is crucial for building a stable snowpack and ensuring
that processes like firn densification and albedo evolution are initialized correctly, as these areas are less

likely to complete melt-out.

Synthetic observations

In this study, synthetic albedo and snow depth observations were assimilated to constrain simulations of
glacier surface mass balance using the CryoGrid model. We generated albedo and snow depth time series
for each of the three grid cells, selected to represent the ablation area, ELA, and accumulation area of
Kongsvegen. By prescribing true parameters and running the model for these three grid cells, we obtained
a synthetic truth from which synthetic observations have been generated. Fig. B shows the workflow in
our experimental design. We primarily divided the workflow into three steps. First, the generation of
synthetic truth data was achieved by prescribing ‘true’ parameters representing different conditions. To
mimic realistic observational data that is inherently noisy, we added Gaussian noise to both the albedo
and snow depth truth to represent observation error. For the albedo, this noise has a mean of 0 and an
observation error standard deviation of o, = 0.1. This standard deviation is chosen based on the upper

limit values of the reported root mean square error, which is an average of 0.7, obtained by comparing
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MODIS albedo retrievals to in situ measurements (Stroeve and ofhers, P005). The noise added to snow
depth has a mean of 0 m and a standard deviation of gs = 0.5 m, which is based on the findings of
Deschamps-Berger and otherg (2023) for ICESat2 snow depth retrievals on low slopes that the median
residual is up to 0.65m. The synthetic albedo observations were sampled based on the effective temporal
resolution of MODIS onboard the Terra and Aqua satellites. We simulated the impact of polar night on
the availability of optical albedo retrievals in our research area by removing the values of synthetic albedo
during this time (November to February). In addition, the occluding impact of cloud cover is considered
in this study. According to findings by Marshall'and ofherd (T993), statistically only 22% to 24% of days
between April and September in Svalbard are classified as clear-sky conditions, making MODIS albedo
products usable only for those days. Also, @Pstby and otherd (2004) found that only 26% of MODIS
products are acquired under clear sky conditions on Austfonna, Svalbard. Thus, we use 30 daily albedo
observations that were randomly distributed in time excluding polar night, representing approximately
20% of the total days of each year between mid of April to mid of October. In our analysis of snow
depth data, we considered the temporal resolution provided by the ICESat-2 satellite in the Arctic region.
Typically, ICESat-2 operates on a 91-day revisit cycle at the equator. However, due to its high-inclination
orbit, the ground tracks of the satellite converge towards the poles, significantly enhancing the frequency
of overpasses in polar regions. Consequently, in the Arctic, the temporal resolution increases, with revisit
intervals reduced to approximately 1 to 2 weeks (Markus and ofherd, 2007). This enhancement in revisit

frequency was utilized to simulate the temporal resolution in our synthetic snow depth data, providing a

more accurate representation of snow accumulation and change over time in this region.

Data assimilation

In this section we describe the data assimilation methods used and their implementation in CryoGrid to
infer glacier surface mass balance. For a more comprehensive treatment of Bayesian data assimilation
methods we refer to the extensive work of Evensen and ofherd (2022, , Chapter 2 and 6) and Sanz

ATonso_and ofhers (2023) and the overview in [Alonso-Gonzalez and ofhers (2022) for details pertinent to
cryospheric applications. Data assimilation is loosely defined as the fusion of data and models that can be
mathematically formalized using the probabilistic framework of Bayesian inference.

There are multiple sources of model uncertainty related to the choice of model parameters, forcing,

initial conditions, and model structure. Here, we are primarily concerned with the two first sources of
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Fig. 2. Workflow in the twin experiments involving the sequential generation of: synthetic truth runs (orange),
noisy synthetic observations (green), and data assimilation experiments (blue) followed by the evaluation of each

experiment (purple).

Table 2. Truth parameter value settings used to generate the synthetic truth for each scenario . The selection of
these ‘extreme’ parameter values was based on the values corresponding to three standard deviations away from the

prior mean after applying a logit transformation to the respective parameter ensembles.

Truth parameter Albedo evolution rate 7,  Snowfall factor S

Rapid albedo evolution rate and 0.03 1.7
high snowfall factor
Slow albedo evolution rate and 0.0003 0.7
low snowfall factor
Rapid albedo evolution rate and 0.03 0.7
low snowfall factor
Slow albedo evolution rate and 0.0003 1.7

high snowfall factor
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uncertainty which we lump into an uncertain input parameter vector 8 with N, = 2 elements, namely [
and 7,. By using the synthetic truth generated by the same underlying model, CryoGrid in this case, we
avoid model structural uncertainty by confining ourselves to so-called identical twin experiments (Arnold
and Deyl, 1986). Within these identical twin experiments, we are thus by construction justified in restricting
ourselves to solving the strong constraint data assimilation problem that assumes a perfect data generating
model (CryoGrid) that can map perfectly onto reality if the true input vector 8* were known (Exvensen and
ofhers, 2022, | Chapter 2). Note that the strong assumption has been widely and successfully adopted in
atmospheric (Hersbach and ofherd, P020), land (Keefz and ofhers, 2075), and cryospheric (Alonso-Gonzalez
and ofhers, P022) data assimilation even if the underlying perfect model assumption is always violated to
some extent. Moreover, research in snow hydrology points to forcing, particularly precipitation, as being
the dominant source of uncertainty (Gimmther_and ofhers, P0TY; [Tang and others, 2023). Translating this
into glacier surface mass balance modeling helps further justifies our use of the strong constraint assumption
by encoding the forcing uncertainty into the parameter vector € in line with common practice in snow data
assimilation (Alonso-Gonzalez_and ofherd, PU27).

In this strong constraint setting, we can model the observation vector y containing N, noisy observations

for a given temporal data assimilation window using the following data generating process:

y=G(0") +e€. (4)

where G(-) denotes the data generating model, 6* is the aforementioned true parameter vector, and e
is a noise term representing observation error. Given some observations, the task at hand is to invert
G(-) to recover 8*. This task is challenging since G(-) is often a nonlinear and relatively computationally
costly model instantiated in a long piece of typically non-differentiable code, namely CryoGrid in our case
(Wesfermann and ofhers, 2023). To complicate matters further, it is also a fundamentally ill-posed inverse
problem since the solution is not unique due to the presence of irreducible noise in the form of observation
error € (Sanz-Alonso and ofhers, 2023). As such, we abandon the ill-conceived notion of a single optimal
solution 6* and instead adopt a probabilistic perspective where we seek a distribution over solutions 6 that
are compatible with the noisy data y that we are given. Adopting a probabilistic perspective naturally leads
to casting this ill-posed inverse problem in terms of Bayesian inference (Sanz-Alonso and otherd, 2023), and

the computational challenge motivates the adoption of efficient ensemble-based data assimilation algorithms

to make inference tractable ([Evensen and ofhers, 2027, , Chapter 8). Formally the entire exercise of data
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assimilation can now be boiled down to using Bayes’ rule as follows

p(y|0)p(0)

p(Oly) = o)

) ()

to infer the posterior probability distribution p(@|y) over parameters 6 given data y. The likelihood quanti-
fies how well the model predictions with parameters 0 fit the noisy observations y, the prior regularizes the
problem using background information about 6, and the evidence p(y) is a normalizing constant (MacKay,
2003).

Once prior and likelihood are defined, Bayesian inference is theoretically straightforward and is just a
matter of applying (8) to a grid of parameter vectors 6. Practical geophysical applications of Bayesian
inference for data assimilation tend to require more efficient methods than computationally expensive
grid approximations. The current state-of-the-art data assimilation approaches can generally be split into
ensemble-based (Monte Carlo) and variational methods (Evensen and others, 2027, , Chapter 2). The latter
requires a differentiable model which is often, as is the case with this CryoGrid version (Wesfermann and
ofhers, 2023), not available. As such, we use ensemble-based data assimilation methods that are widely
used in cryospheric applications (e.g. Navari and ofherd, 2021; [ATonso-Gonzalez and others, 2027; Groenke
and ofherd, 2023), but have not been widely applied to glacier surface mass balance modeling. In particular,
we adopt both the PBS and the ES to compare their performance for a large ensemble of twin experiments.
In addition to being used in the literature (Alonso-Gonzalez and ofherd, P2027), these methods are relatively
straightforward to implement and can serve as kernels for more sophisticated schemes, such as the hybrid

particle-adjusted iterative ensemble smoother (Pirk_and ofhers, 2027), which remain too costly for large

ensemble twin experiments.

Prior and likelihood

In this study, we focus on two uncertain parameters within the glacier configuration of CryoGrid, namely
the albedo evolution rate 7, and the snowfall factor 85. The former factor 7, is an inverse timescale that
controls the rate at which the visible albedo in the Crocus albedo parametrization decays (Vionnef and
ofhers, DOT7), with larger (smaller) values indicating a faster (slower) decay rate. Here, we are not trying to
be within the bounds given by Mionnef and ofhers (200%), but rather to find a value that better represents
the albedo evolution due to snow age for Svalbard. The latter multiplier 85 explicitly accounts for biases

in the snowfall (solid precipitation) forcing from the CARRA reanalysis while also implicitly accounting
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for unresolved processes in this instantiation of CryoGrid in the form of wind-driven snow redistribution.
Both parameters are treated as fixed (time-invariant) within a given mass balance year which is used as
the data assimilation window. As such, the Bayesian inference step in (8) can be carried out independently
for each such mass balance year window using the same prior p(€) but different observations y and thus
varying likelihood p(y|@) resulting in a posterior p(@|y) that varies from (balance) year to year. In this
study, the parameter vector 8 has N,, = 2 elements so we consider a 2D parameter space. On the one hand,
this is quite a low-dimensional parameter space. On the other hand, CryoGrid which we use as the data
generating model is relatively expensive to evaluate. Moreover, these IV, = 2 parameters were selected
based on several modeling studies of surface mass balance where related parameters were deemed among
the most uncertain yet sensitive parameters (e.g. Schmidf and ofherd, 2017; Van Pelf_and otherd, DOTY;
Lenaerfs and ofhers, 2009; Raoulf_and ofherd, P023; Schmidf and ofhers, 2023).

To encode uncertainty in these parameters we need to specify a prior distribution p(@) that reflects our
prior knowledge concerning possible values for these parameters. Herein, building on several related studies
(Aarlst.ad and otherd, DUTR; Guidicelli and otherd, P024; Mazzolini and others, 2024; Keefz and others, '2(]‘25),
we use the generalized logit-normal prior distribution that is a double bounded transformed version of a
normal distribution allowing for upper and lower bounds (a,b), a central location parameter g, and a
scale parameter o reflecting the spread in possible values. Following Keefz and ofherd (2025), this prior

is defined as follows for a scalar parameter 0

2
p(Ol1i0, 00, a,8) = —71 exp (—“”‘“‘”) , (6)

ooV 2T 208

where |J| = (b—a)/(0 —a)(b—0) is a Jacobian term and ¢ is the generalized logit transform of ¢

¢:w(9,a,b)=ln(i_a>—ln<2_9), (7)

—a —a
with corresponding inverse transform

b—a

9:¢_1(¢7a,b) :a+1+Tp(_d))‘

(8)

The generalized logit normal distribution in (B) has an associated normal distribution, namely the dis-
tribution of the logit transformed parameter ¢ with mean pg and standard deviation oyg. We use the

oo parameter to define the scale (spread) of the logit-normal prior for a bounded parameter 6. For the
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Table 3. The hyperparameters for the independent logit-normal priors used for each of the N, = 2 uncertain
parameters in the parameter vector 6 considered in this study. The hyperparameters are the lower bound a, the
upper bound b, the location parameter which is the median g, and the scale (spread) which is the dimensionless

standard deviation o of the associated normal distribution.

Parameter name Symbol  Units Lower bound ¢ Upper bound b Location pf  Scale og
Albedo evolution rate Ta day™* 0.0001 0.05 0.005 1
Snowfall factor Bs - 0.5 2 1 1

location parameter of the logit normal we use the median of the logit normal distribution s that can be
transformed to the mean of the associated normal distribution through po = ¥(ug, a, b) and vice versa.
The generalized logit prior in (B) is specified independently for each of the parameters 7, and 35 using the
hyperparameters in Table B resulting in a weakly informative prior (Banner_and otherd, 2020). Assuming
independence, the joint prior p(@) is simply given by the product of the marginal priors p(6) = p(7,)p(Bs).
It is possible to relax this prior independence assumption by adding non-zero correlations to a multivariate

logit-normal distribution (Mazzolini and ofhers, 2024). More generally, adding dependence structure to the
joint prior using background knowledge can improve inference (Pirk_and ofherd, 2022). At the same time,
adding this kind of structure requires that such background knowledge is available, and here, we had no
prior reasons to suspect a general dependence between the albedo aging factor and the snowfall multiplier.
Crucially, prior independence does not imply posterior independence since via the likelihood the data allow
us to infer the posterior dependence structure between parameters. To sample from the generalized logit
normal distribution (@), we apply the generalized logit transform (@) to the prior median ug to obtain
the mean of the associated normal pg then add N, samples of randomly generated Gaussian noise with
standard deviation o to pg and apply the inverse transform (8) to obtain prior samples 6; ~ p(6) for the
parameter 0 € 0 (i.e., either 7, or f5) in question. After having done this for both parameters, we are left
with an ensemble of N, particles from the joint prior 8; ~ p(8).

As is commonly done in data assimilation (Carrassi_and ofhers, 201R), we use a simple additive zero-
mean Gaussian observation error model of the form € ~ N(0,R) where R is an N, x N, observation
error covariance matrix. This can be justified as a useful default first-order error model using both the
central limit theorem and maximum entropy arguments (Jaynes, 2003). Using this error model, allows us

to formulate the likelihood p(y|@). By definition, this is the probability density of the (fixed) observations

y given that the parameter set 6 is true. By inspection of (#) conditional on 8 = 6* the observation error
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becomes € = y—G(0) and by inserting this into the Gaussian observation error model we obtain a Gaussian
likelihood p(y|0) = N(y|G(0),R) of the form

p10) = cexp (5 by - 9" R [y - 91) Q

where ¢, = det(2rR)~Y? is a constant and § = G(@) denotes the predicted observations from the data
generating model given a particular parameter set 8. Following the likelihood principle in Bayesian inference
(Jaynes, P003), the likelihood should be viewed as a function of the uncertain parameters @ (here through
y = G(0)) rather than a distribution over the fixed (albeit noisy) observations y that we are assimilating.
Although the likelihood in (8) is Gaussian, our data generating model y = G(60) makes it nonlinear.

To further simplify the likelihood () we also make a standard assumption that the observation errors

are conditionally independent (Carrassi and ofhers, 2018; Sarkka and Svensson, 2023). As such, our N, x N,

observation error covariance matrix R becomes diagonal with entries corresponding to the observation error

2

m associated with each of the m = 1,..., N, observations y,, in the observation vector y. When

variance o
we only assimilate one type of observation, these entries are constant and equal to the observation error
variance of either snow depth (02) or albedo (Jg). For joint assimilation, where both types of observation

are assimilated, both error variances appear along the diagonal of R in accordance with the entries in y.

Particle batch smoother

The Particle Batch Smoother was introduced in the snow literature by Margulis and others (201H) as a
batch smoother version of the widely used particle filter (see Chopin and Papaspiliopoulos, 2020; Sarkka
and_Svensson, 2023). Algorithmically, the PBS boils down to performing basic sequential importance

sampling (van Leenwen, 2009) which effectively represents the posterior through a particle approximation

Ne
p(Bly) = > wid (0 —6;) (10)
i=1
where w; are the weights associated with each of the i = 1,..., N, particles (samples) 8; in parameter space.

These particles weights are self-normalized such that Zﬁel w; = 1. The §(-) in () denotes the Dirac delta
which is a generalized function with properties {6(68 — 0;)d0 = 1 and {g(0)6(0 — 6;) d6 = ¢(0;) for some
function of the parameters g(€). Thereby, the particle approximation represents the continuous posterior

probability density function as a sum of discrete particles with probability mass given by their weights
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wj. Posterior expectations become straightforward to compute, for example setting (@) = 6 we recover
the particle approximation to the posterior mean of the parameters as the weighted sum over particles
0;. The corresponding posterior expectations in state space are obtained analogously. With minimal loss
of accuracy, simpler unweighted posterior statistics are computed by first resampling particles based on
the weights (Alonso-Gonzalez and ofhers, 2022). The weights w; in the PBS are obtained through basic
importance sampling approach using the prior as a proposal distribution to sample particles 8; ~ p(0) so

that the weights effectively become the likelihood ratio

p(y|0:)

_ __P%) 11
She p(yl0k) )

(3

which when we insert for our Gaussian likelihood becomes (Aalstad and ofhers, POTR)

ep (<3 ly -5 "R [y - 5.])

) S exp (—% [y —9:] "R [y — }A’k])

w; ; (12)
where y; = G(6;) denotes the vector of N, predicted observables from CryoGrid for particle i with associated
parameter vector 6;, []T denotes the transpose, and R~ is the inverse of the N, x N, observation error
covariance matrix. In practice, we first compute the logarithm of the PBS weights in (I2) to ensure
numerical stability as described in ATonso-Gonzalez_and others (2027). Both the PBS and ES are batch
smoothers in the sense that they assimilate a single batch of observations in a long data assimilation
window, unlike a filter which updates sequentially as observations become available. The length of the
window is typically defined by a typical timescale of the system being modeled, which we here take to be
one mass balance year. This smoothing property is crucial since it allows the future to update the past:
observations in the accumulation season can inform model states in the preceding accumulation season
(Margulis_and others, P15h; Aalstad_and ofherd, POTR). A computational advantage of the PBS is that
it only requires running a single ensemble model integration of N, particles sampled from the parameter
prior. A particle approximation of the posterior for model parameters and state variables can then be
obtained solely using the weights in () followed by a resampling step. As such, the computational cost
of the PBS is incurred almost entirely by the need to run N, forward simulations of the data generating
model G. It is this feature that helped motivate our design of a large ensemble of twin experiments, in that
it is straightforward to test a large number of observation types and parameter scenarios based on a single

large ensemble run by using a (fixed) prior distribution p(€) as the proposal.
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Ensemble smoother

We also test the ensemble smoother (ES) scheme that was originally proposed by kan Leeuwen and Evenserl
(I996) as a batch smoother version of the widely used ensemble Kalman filter (EnKF, Evensen and ofhers,
2022, , Chapter 6). Here we use the classic stochastic version of the ES with perturbed observations
to avoid underestimating ensemble covariances (van Leeuwenl, 2020). The general framework of ensemble
Kalman methods, which the ES falls under, extends the domain of applicability of classical Kalman filtering
methods (Sarkka and Svenssonl, 2023), that require Gaussian linear data generating models, to Gaussian
nonlinear models (Evensen _and ofhers, 2027). The Gaussian assumption in the prior and likelihood can
also be relaxed through transformations using Gaussian anamorphosis functions (Berfino and ofhers, 2003).
Herein we use an analytical approach to Gaussian anamorphosis using the generalized logit transform in
(@). Among the ensemble Kalman methods, the ES is most widely used for parameter estimation such as
the strong constraint problem that we are tackling here.

(0)

The ES is initialized by sampling an ensemble of N, parameter vectors 8, from the prior 02(0) ~ p(0).
Using this prior parameter ensemble, following Aalstad and ofhers (2018) the stochastic ES with analytical

anamorphosis proceeds in the following steps while looping over ensemble members ¢ = 1,..., N,:

1. Generate an ensemble of prior predicted observables by running the parameters through the data gener-
ating model §/§0) =g (02(0)) which implicitly also involves generating an ensemble of prior model state

0 T . . .
vectors xg ) for the whole data assimilation window (i.e., mass balance year in our case).

2. Transform the prior parameter ensemble to Gaussian space using Gaussian anamorphosis ¢Z(0) = \II(HZ(O))

in the form of the generalized logit transform ({@).

3. Perform the ensemble Kalman analysis step to update the parameters

o) = 6" + KO (y+ e -3 (13)

where the ensemble Kalman gain K(©) is obtained using ensemble covariance matrices together with R
as outlined in [Aalstad and ofherd (20IR) while realizations of Gaussian observation noise €¢; ~ N(0,R)

are used to perturb the observations y in this stochastic scheme (van Leeuwen, 2020).

4. Apply the inverse transformations using (8) to recover the posterior parameter ensemble in the original

model parameter space 051) = \Il_l(cﬁl(l)).
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5. Rerun the data generating model to obtain an ensemble of posterior predicted observables §f(1) =

o)

g <0£1)> which also implicitly yields an ensemble of posterior model state vectors x;
Note that the parameters 8 are updated directly while the model state x are updated indirectly. As such,
to recover the posterior state x with the ES it is necessary to run the data generating model twice for

(0)

each ensemble member, first with the prior parameters 8, in step 1 and subsequently with the posterior

(1

parameters ;" in step 5. Thereby, for posterior state estimation the ES is twice as costly as the PBS in

that it requires running the data generating model 2N, times.

Twin experiments

The conceptual diagram in Fig. B shows the structure of the twin experiments where we generated synthetic
truth scenarios along with synthetic noisy observations. We constructed four different scenarios by using
different true parameter vectors 8* with different values for the true snow albedo evolution rate 7; and
true snowfall factor 8. These true parameter vector scenarios include combinations of high and low
values for each of the two parameters. The true parameter vector scenarios are then used in CryoGrid
to generate synthetic true state x* scenarios including the true observables y* = G(0*). These diverse
true parameter scenarios are used to effectively mimic the variability of meteorological conditions and
location-specific characteristics under differnet climatic scenarios. The synthetic albedo and snow depth
obtained under these four different climatic scenarios were generated and perturbed with Gaussian noise
that was scaled with the appropriate variances (02 and o3) to mimic observation error. These noisy
synthetic observations are then assimilated to constrain the prior CryoGrid simulations. Note that in
this assimilation exercise, the model has no access to the hidden synthetic truth (6*, x*, ¥*) other than
through the corrupted information present in the noisy synthetic observations. This is the standard setup
for widely used identical twin experiments where the same model is used to generate the observations
and in the subsequent assimilation experiments (Arnold and Deyl, T986; Masufani and ofhers, 2010). The
generated synthetic observations, albedo and snow depth, can be assimilated either individually or jointly,
amounting to a total of three assimilated observation scenarios. All experiments are applied in three
different glacier zones, namely the ablation, ELA, and accumulation areas. In total, we conducted 864,000
unique forward model realizations by using 4 scenarios x 3 glacier zones x 3 combinations of assimilated
observations x 2 assimilation methods x 12 years x 1000 ensemble members.

The prior ensemble of CryoGrid simulations consists of N, = 1000 ensemble members that were gener-
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Fig. 3. Structure of the large ensemble twin experiments based on permutations of four parameter scenarios, three
types of assimilated observation vectors, and three experimental areas generating a total of 36 twin experiments.
The scenarios combine either a rapid or slow albedo evolution rate with either a high or low snowfall factor. The
assimilated observation vectors are either albedo only, snow depth only, or joint assimilation of albedo and snow
depth. The experimental areas are either the ablation (ABL), equilibrium line altitude (ELA), and accumulation

(ACC) areas depicted in Fig. .

ated by perturbing albedo evolution rate and snowfall factor. We implemented the prior simulation with the
same initial conditions for all data assimilation experiments. When initiating the model, we performed a 5
years spin-up to eliminate initialization shocks. Two different ensemble-based data assimilation methods,

the PBS and ES, were compared in the twin experiments.

Evaluation of the experiments

To evaluate the performance of all experiments, we use the Continuous Ranked Probability Score (CRPS)
to compare the posterior surface mass balance distribution to the synthetic truth surface mass balance.
As outlined in Hershach (2000), the CRPS is a statistical metric that compares probabilistic ensemble
predictions to deterministic ground-truth values. Compared with Root Mean Square Error (RMSE) which is

mainly used for deterministic forecasts, the CRPS is designed for probabilistic forecasts, which can evaluate
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the entire predictive distribution and provide a comprehensive assessment of the quality of predictions
that include uncertainty quantification. The CRPS evaluates both the accuracy and the precision of the
ensemble. The precision is a gauge of how well calibrated the ensemble is by punishing ensembles that
are overconfident (too narrow) and underconfident (too wide). The CRPS is a negatively oriented score
where a score of zero means that the probabilistic prediction is perfect, which only occurs for deterministic
forecasts centered on the truth, while a larger CRPS entails a lower score. The CRPS is given by (Gneiting
and ofhers, 2005)

CRPS(P,2*) — J C(Pla) - Hz— 2*)? da (14)

-0

where P(x) is the cumulative distribution function of the ensemble prediction for variable x, z* is the
reference value which can be a synthetic truth or an observation, and H(x — x*) is the Heaviside function,
which is 1 if z > 2* and 0 otherwise. The CRPS inherits the same units as the variable  whose ensemble

prediction is being evaluated.

RESULTS

Influence of observations on surface mass balance modeling by PBS

Here, we present the results of surface mass balance (SMB) simulations in several twin experiments achieved
by assimilating two observational datasets, albedo and snow depth, using the PBS scheme on an ensemble
with N = 1000 members. Fig. B shows the posterior annual SMB for the ablation area for the four
different scenarios. The prior and posterior CRPS are calculated by comparing the prior and posterior
SMB estimates with the synthetic truth over a 12-year period across these scenarios. Since this is the
ablation area, the effect of the snow albedo evolution rate on the SMB (compare panels b to ¢ and panels a
to d) is clearly negligible because the surface albedo is mostly that of bare ice in either scenario. As such,
snow depth is a stronger constraint on the SMB than albedo in this case. After assimilation, the average
CRPS values (Fig. B) for the posterior SMB estimates are 0.05 m for albedo assimilation, 0.03 for snow
depth assimilation, and 0.02 m for jointly assimilating both observations. For all assimilated observation
scenarios this is a marked improvement from the prior CRPS of 0.16 m. These improvements represent
CRPS reductions of 69%, 80%, and 86%, respectively, compared to the prior, showing the enhanced skill
of the posterior estimates obtained after data assimilation. On the one hand, snow depth assimilation is

particularly effective in bringing the posterior ensemble median SMB closer to the truth. On the other
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hand, the 95" percentile of the posterior ensemble after albedo assimilation often scarcely encompassed the
true values. A comparison of error reduction demonstrates (Fig. @) that joint assimilation of albedo and
snow depth provides the most substantial improvements in the performance of posterior SMB simulations
in the ablation area. When comparing the four scenarios, it becomes evident that snow depth assimilation
performs better under high snowfall conditions, yielding a CRPS of 0.03 m compared to 0.04 m in low
snowfall conditions. Conversely, albedo assimilation performs better in low snowfall scenarios, with a CRPS
of 0.04 m compared to 0.06 m under high snowfall conditions.

Fig. B provides a comprehensive evaluation of the experiments using the PBS assimilation scheme
across all scenarios and areas. In both the ablation and equilibrium line altitude areas, the assimilation
of either albedo or snow depth substantially reduces CRPS compared to the prior estimates. The average
CRPS reduction is 71% and 74%, respectively, when albedo and snow depth are assimilated individually.
The difference in performance improvement in terms of CRPS between albedo and snow depth assimi-
lation is particularly notable, ranging from a 10% to 19% difference, especially under the high snowfall
scenario. In most experiments, joint assimilation of albedo and snow depth consistently yields the lowest
CRPS values. However, in the accumulation area, results indicate an increase in CRPS following snow
depth assimilation under low snowfall scenarios, relative to the prior. In contrast, albedo assimilation still
improves performance, though the improvements are less pronounced than in the ablation and equilibrium
line altitude areas, especially under high snowfall conditions. Similarly, joint assimilation of albedo and
snow depth exhibits behavior similar to snow depth assimilation alone in the accumulation area.

The results indicate that the assimilation of joint albedo and snow depth observations within the PBS
framework improves the skill of surface mass balance simulations, particularly in scenarios with high snow-
fall. The results show that snow depth assimilation tends to perform better under high snowfall conditions
in the ablation area, while albedo assimilation is more effective under low snowfall scenarios in the ablation
and accumulation areas. In the ELA area, albedo assimilation outperforms snow depth assimilation under
high snowfall scenarios, while the two methods yield comparable results in low snowfall conditions. More-
over, joint assimilation tends to yield the best (including ties) results across the majority of experiments
(10 out of 12) in Fig. B, providing the greatest improvements both in terms of reducing uncertainty and
bringing the posterior closer to the truth. These findings highlight the importance of selecting appropriate
observations to assimilate based on specific climatic conditions to optimize the performance of SMB simu-

lations. In particular, the most robust choice is generally joint data assimilation which can automatically
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handle trade-offs in the information content of different types of observations.

The ES scheme overall exhibits performance similar to that of the PBS scheme after assimilating albedo
and snow depth (Fig.S1 and Fig.S2). Joint assimilation yields the best results, while the assimilation
of albedo and snow depth individually shows varying outcomes across different scenarios. A detailed

comparison of the two assimilation schemes follows in the next section.

Comparison of two data assimilation schemes

We evaluated both the PBS and ES schemes against synthetic truth using an ensemble size of 1000 mem-
bers for all experiments. Table @ presents the improvement in CRPS performance in terms of surface mass
balance achieved by the two data assimilation schemes relative to the prior. The values represent the aver-
age improvement across four truth scenarios, calculated by comparing the posterior results with the prior.
For albedo assimilation, PBS shows a significantly better overall performance compared to ES across all
glacier zones. However, for snow depth assimilation, ES performs slightly better than PBS, except in the
accumulation zone. Joint assimilation of both albedo and snow depth yields the best performance, regard-
less of the assimilation method used. In terms of different glacier zones, the performance in the ablation
area is generally the best across both data assimilation schemes. In the ELA region, the results slightly
underperform those in the ablation area, considering the average performance of three distinct assimilated
observation scenarios. The accumulation zone yields the lowest accuracy improvement among the glacier
zones for both schemes. Nonetheless, the posterior always improved over the prior in terms of surface mass
balance CRPS. Note that these results represent averages across four scenarios and considerable differences
exist between individual scenarios, particularly when assimilating snow depth generated under different
snowfall factors.

Fig. B presents statistical properties of the posterior annual surface mass balance results derived from
the two data assimilation schemes in the ELA region under a scenario of rapid snow albedo evolution
and high snowfall. Joint assimilation under the ES scheme demonstrates the best overall performance,
achieving the lowest RMSE and standard deviation compared to other configurations. While the PBS
scheme also performs well with joint assimilation, but the variability in standard deviation across years is
notably higher than in the ES results. For albedo assimilation, both methods considerably enhance the
accuracy and reduce uncertainty compared to the prior. However, the PBS scheme yields slightly lower

RMSE and standard deviation than the ES scheme but exhibits higher interannual variability. In contrast,
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Fig. 4. Comparison of prior, posterior, and true surface mass balance in the ablation area when using the PBS to
assimilate albedo only, snow depth only, and both observations jointly. The figure presents four scenarios based on
the snow albedo evolution rates and snowfall factors: a) Rapid snow albedo evolution with high snowfall. b) Slow
snow albedo evolution with low snowfall. c¢) Rapid snow albedo evolution with low snowfall. d) Slow snow albedo
evolution with high snowfall. Error bars represent the 95" central percentile range of the ensemble with the points

indicating the median value for surface mass balance estimates.
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Fig. 5. Continuous ranked probability score (CRPS) for the prior and posterior surface mass balance after assim-
ilating albedo, snow depth, and both observations jointly using the PBS, for all scenarios: a) rapid albedo evolution
rate & high snowfall factor, b) slow albedo evolution rate & low snowfall factor, c¢) rapid albedo evolution rate &
slow snowfall factor, d) slow albedo evolution rate & high snowfall factor, and three different areas of interest (AOI):
ablation area (ABL), equilibrium-line area (ELA), accumulation area (ACC), compared to synthetic true surface

mass balance.
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Table 4. Comparison of two data assimilation methods in improving the average CRPS of surface mass balance
simulations by assimilating different observations for various glacier zones. The values in the table represent the
average CRPS improvement, calculated by comparing the percentage improvement of the posterior CRPS results to

that of the prior CRPS results, across all four scenarios.

Albedo Snow depth Joint

PBS | ABL  68.4% 77.8% 85.4%
ELA 72.2% 66.9% 79.5%

ACC 31.0% 19.9% 25.5%

ES ABL  48.3% 79.0% 85.6%
ELA 47.9% 67.4% 76.7%

ACC 241% 11.6% 25.4%

the ES scheme demonstrates a more stable annual performance. Regarding snow depth assimilation, the
posterior results from the PBS scheme reveal overconfidence, characterized by an ensemble spread near
zero and high annual variability, along with a higher average RMSE than the ES scheme. In comparison,
the ES scheme produces a smaller standard deviation and maintains stable annual performance after snow
depth assimilation, with no marked interannual fluctuations. However, this disadvantage of the results
from PBS may partially stem from the bias introduced by overconfidence, especially influenced by snow
depth assimilation. In PBS, particles are weighted based on their likelihood given the observations. If
the observations strongly favor one particle, that particle’s weight approaches 1 (Margulis and others,
2015). During resampling, particles with low weights are discarded, and the dominant particle is replicated
multiple times. This reduces the effective number of particles, collapsing the posterior to a single point or
a very narrow range (Aalstad and ofhers, 201R). It is also unclear if the higher computational cost of 21V,
CryoGrid running with the ES, compared to just N, with the PBS, justifies the slight gain in performance
in this case. If the prior ensemble is so biased that it does not encompass the observations, the PBS is
incapable of correcting the posterior towards the observations outside the bounds of the prior (Aalsfad and
ofhers, 2018), while ES can address this problem by re-run the model with updated parameters and higher

computational cost.
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Fig. 6. Comparison of the performance of two assimilation schemes applied to the ELA area under rapid albedo
evolution and high snowfall scenario in terms of RMSE (top row) and ensemble standard deviation (bottom row) for
the Particle Batch Smoother (left panels a and c¢) and the Ensemble Smoother (right panels b and d). Dashed lines

represent the mean value of RMSE and ensemble standard deviation of the simulation performance.
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Fig. 7. Sensitivity of the posterior surface mass balance CRPS to ensemble size following joint assimilation of
albedo and snow depth using the PBS scheme under the scenario of rapid albedo evolution rate and high snowfall
factor in the ablation area. For each ensemble size (N.) the CRPS statistics were estimated by resampling with
replacement (i.e., bootstrapping) an ensemble of N, particles from the complete large ensemble (1000 members)
100 times, evaluating the CRPS for each of these 100 bootstrapped ensembles, and subsequently computing sample

statistics.

Sensitivity of data assimilation performance to the ensemble size

In this section, we present the results of analysing the sensitivity of data assimilation performance to the
number of ensemble members N.. The range of ensemble sizes N, investigated was selected to be regular
on a logarithmic scale, generating a vector of seven logarithmically spaced values between 10' and 103
ensemble members. Fig. @ illustrates the mean and variance of CRPS values obtained from 100 iterations
of bootstrapping (resampling with replacement) prior ensembles of variable size N, from the original large
ensemble of 1000 prior parameters (used in the rest of the study) followed by the assimilation of joint
albedo and snow depth under the PBS scheme. The results indicate that, across all experiments, both the
average CRPS and its Monte Carlo variance decrease as the ensemble size increases. This replicates the
improvement in performance, both in terms of mean and variance, with increased ensemble size as expected
from Monte Carlo methods. Moreover, as expected, the rate of error reduction diminishes considerably,
particularly after the ensemble size reaches 100, the mean CRPS starts to show clear convergent behavior
towards an asymptote around 0.025 (m w.e.) with a steadily decreasing variance. However, unlike the
Monte Carlo variance, interannual variability remains relatively stable and does not exhibit any clear

dependence on ensemble size.
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Fig. 8. Comparison of the prior, posterior, and true annual surface mass balance in the accumulation area when
assimilating different types of observations with the PBS (a) and the ES (b) under a low snowfall factor and slow

albedo evolution rate scenario.

DISCUSSION

Influence of observations on surface mass balance modeling

Across all scenarios and regions, the assimilation of albedo consistently brings the ensemble median of the
SMB simulations closer to the true values while effectively reducing the ensemble spread. This improvement
is consistent with the findings of Dumont and ofhers (2017), which demonstrated that assimilating MODIS-
derived albedo in a snowpack model improves the accuracy of the SMB simulation for an alpine glacier
in the French Alps through variational assimilation. Despite claims to this effect, [Dumont and ofhers
(2012) did not show how their variational data assimilation scheme constrained uncertainty. In contrast,
our ensemble-based data assimilation results show that both the PBS and ES schemes effectively constrain
the ensemble, leading to significant reductions in uncertainty. Moreover, unlike variational methods, the
ensemble-based schemes pursued herein do not require a differentiable data-generating model and are thus
more widely applicable. Fig. B highlights the improvement in accuracy and the reduction in uncertainty
achieved by albedo assimilation, with PBS outperforming ES in both metrics.

The impact of snow depth assimilation on SMB simulations exhibits some spatial variability, but overall,
snow depth assimilation generally enhances SMB accuracy, with more consistent improvements observed

outside the accumulation area. Under high snowfall factor scenarios, snow depth assimilation markedly

improves SMB simulation accuracy across all regions, aligning with the general findings by Landmann and
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ofhers (2021) for surface mass balance and Magnusson and others (2017) for seasonal snow.

Our results show a substantial impact of snow depth assimilation on model performance in terms of
SMB , with an average improvement of 74% in SMB accuracy in both the ablation and ELA regions.
This demonstrates similar performance gains to previous studies. For example, Landmann and ofhers
(2021)) reported a relatively low CRPS of 0.012 m w.e. surface mass balance compared with cumulative
observations, while Magnusson and others (2017) observed a 64% reduction in SWE error from snow depth
assimilation across 40 sites in Switzerland. Unlike these studies that use particle filtering techniques, we
apply the smoothing-based PBS and ES schemes that allow information from the observations to propagate
backward in time which has been shown to be advantageous for retrospective snow data assimilation
(ATonso-Gonzalez and ofhers, 2022).

Under low snowfall scenarios, snow depth assimilation alone yields less favorable results, particularly in
the accumulation area. As illustrated in Fig. B, posterior estimates in PBS collapse to a single particle with
snow depth assimilation in this scenario. This phenomenon is likely due to limitations inherent in the PBS
scheme (Robinson and ofhers, 20T8; Pirk and others, P022) and the nature of the low snowfall setting, which
produces some SMB truth values that fall outside the prior ensemble range. This discrepancy prevents
the posterior from fully encompassing true values, and, when coupled with the ensembles overconfidence,
results in an increased CRPS due to bias and overconfident predictions. Under the same conditions, ES out-

performs PBS due to fundamental differences in both the assumptions and updates steps in these methods

(Margulis and others, P0TH; Aalstad and ofhers, POTR; [Alonso-Gonzalez and ofhers, 2027). Additionally,
synthetic snow depth data were perturbed with Gaussian noise, maintaining a uniform standard deviation
of 50 cm across all glacier zones. In practice, the RMSE of in situ snow depth measurements in Svalbard
is around 5cm, particularly in accumulation zones with rare rainfall, which is substantially lower than the
applied noise level (An"and ofhers, 2020). Assimilation of lower-quality observational data into the model
may compromise the posterior estimates, resulting in suboptimal performance.

To address data availability challenges, we generated synthetic observational data for albedo and snow
depth, potentially providing daily coverage over a full year. Subsequently, we applied the specific meth-
ods mentioned above to select data points that mimic the temporal availability of ICESat-2 and MODIS
measurements. This approach enabled us to control the experimental environment under conditions of pa-

rameter uncertainty, thereby facilitating the execution of large ensemble experiments. While this approach

theoretically fulfilled continuous data requirements, achieving similar completeness with real observational
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data remains challenging (Gabarra_and ofhers, P023; Sandven_and others, 2023). Satellite-based mea-
surements, such as those from ICESat-2 and MODIS, face limitations due to cloud contamination, which
degrades data quality and restricts data acquisition ((stby and others, 2014; Nenenschwander and Mad
oruder, 2019; Kofarba, 2022). Additionally, optical satellites that provide albedo data are limited by
daylight availability (Wang and others, 2018), resulting in data gaps in areas with heavy cloud cover or re-
duced sunlight. Consequently, while synthetic data can theoretically satisfy continuous data requirements,

real-world data collection remains inherently constrained by these observational challenges that we aimed

to replicate in the design of our twin experiments.

Performance of data assimilation schemes

For all the given observations and research areas, both data assimilation schemes contribute to considerably
reductions in uncertainty and error in SMB simulations. The PBS showed superior performance in albedo
assimilation, offering a more confident and accurate ensemble. Conversely, ES generally outperformed PBS
in snow depth assimilation scenarios, particularly where the model’s prior did not bracket the truth value
(Fig. B). The PBS operates by weighing the ensemble of states based on their likelihood (Margulis and
ofherd, POTH; Aalstad and ofherd, POIR), avoiding the need to move particles in parameter space. This
results in lower computational demands for state estimation as it only requires one model run per ensemble
member. In our study, PBS was particularly effective for albedo assimilation, offering significant uncertainty
reduction with less computational effort. However, the performance of PBS can be limited when the true

state falls outside the range of the prior ensemble(Robinson and ofherd, 2OTR;

irk_and_ofhers, 2022),

I

as seen in scenarios with low snowfall where the posterior ensemble sometimes became degenerate and
overconfident. To address this limitation, a potential approach involves implementing hybrid schemes that
combine ensemble Kalman methods and particle methods to alleviate this issue (Pirk-and ofhers, 2027),
although this would increase computational costs.

In contrast, ES updates the state by moving particles in parameter space, which can lead to better
coverage of the true state, especially when it lies outside the prior ensemble range (van Leenwen and
Fvensen, T996; Evensen and otherd, 2022). This adaptability was evident in our results, where ES performed
better in assimilating snow depth, particularly under low snowfall scenarios. The ES method requires

twice the number of model runs compared to PBS because it requires rerunning the model with updated

parameters, which increases computational cost, but can lead to more accurate results in certain scenarios.
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whereas traditional Markov Chain Monte Carlo (MCMC) methods involve numerous sequential iter-
ations to converge on a solution, both PBS and ES use parallelizable ensemble approaches, significantly
reducing computational time. For instance, in the study by Rounce and ofhers (2020), MCMC methods
were used to quantify parameter uncertainty in glacier models, involving costly iterations to sample the
posterior distribution. Our methods avoid the mainly iterative sampling of MCMC by directly updating
an ensemble of parameter vectors, providing a faster convergence to a posterior estimate. While MCMC
methods can be very accurate due to their thorough sampling of parameter space, they are often computa-
tionally heavy for complex models like CryoGrid, where each model simulation is expensive. Our approach

integrates the complexity of CryoGrid with efficient data assimilation methods, allowing for more frequent

updates or larger ensembles without a proportional increase in computational demand.

Sensitivity to ensemble size

The sensitivity is evaluated based on two components: resampling (Monte Carlo) variance and interan-
nual variability. As reported in the results, the average CRPS decreases with increasing ensemble size.
Notably, the variance of CRPS from interannual variability remains unchanged, whereas the variance of
CRPS associated with Monte Carlo resampling error follows the overall decreasing trend of the total error.
Interannual variance reflects the natural variability in the system over the different years, capturing the
system’s response to varying climatic conditions (Malone and ofherd, P019; Wei and otherd, 2019). In
this study, all experiments are forced using the same meteorological data source, meaning that interannual
variance is inherent to the system and remains unaffected by ensemble size. The problem of small ensemble
sizes resulting in large resampling variance is well-documented, as subsets sampled from smaller ensembles
may fail to adequately represent the full diversity of a larger ensemble, leading to greater variance in the
results (Choiand Led, 2025). In our study, as the ensemble size increases to 100, the rate of improvement
in CRPS (result accuracy) and the reduction in resampling variance both exhibit a diminishing trend.
While larger ensembles generally reduce sampling errors, they come at the cost of increased computational
demands (Sacher_and Barfelld, 200R). The optimal ensemble size, however, depends on the specific design
of the experiment and the acceptable trade-off between computational cost and error tolerance for the
user (Milinski_and ofhers, 2020). When the ensemble size reaches 1000, the resampling variation might

be expected to approach zero in our experiment design, as the entire large ensemble pool comprises 1000

unique members. However the resampling variation remains non-zero even when the ensemble size is 1000.
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This is because the CRPS statistics are estimated through a bootstrapping process, where an ensemble
of N particles is resampled with replacement from the complete large ensemble. Even when the number
of samples matches the original pool size, the randomness introduced by bootstrapping with replacement
ensures that the resampled subset does not perfectly replicate the original pool (Davison and Hinkley,
997). Some particles may appear multiple times, while others may be excluded entirely. This stochastic
nature of the bootstrapping process introduces Monte Carlo sampling error, leading to persistent variability
in the results and ensuring a non-zero resampling variance that mimics the actual Monte Carlo variance
that would arise when individual particles are sampled multiple times within 1000 ensemble members.
The bootstrap technique used herein is a computationally affordable way to probe Monte Carlo sampling
error that could otherwise be prohibitively expensive to evaluate in that it would require running multiple

distinct large ensembles through CryoGrid.

CONCLUSIONS

In this study, we applied two data assimilation schemes, the PBS and ES, to simulate glacier surface mass
balance from 2010 to 2022 across different glacier zones in Kongsvegen with 2.5 km grid cells through
extensive large ensemble twin experiments. The posterior results were evaluated by comparing them with
synthetic true surface mass balance values using the CRPS metric with the prior CRPS as a reference
from which improvement was measured. Cross-comparisons across different scenarios further illustrated
the impact of various observational data on surface mass balance simulations under different assimilation

schemes. From this study, the following conclusions can be drawn:

- Assimilating albedo generally improves SMB simulation across all glacier zones, with 68.4% improve-
ment by PBS and 48.3% improvement by ES. However, the degree of improvement varies between
different glacier areas. In particular, results in the ablation area show an average improvement of

58.4%, which is greater than the 27.5% improvement observed in the accumulation area.

- The assimilation of snow depth yields results comparable to those of albedo assimilation, particularly
in the ablation and ELA zones, 77.8% (79%) and 66.9% (67.4%) respectively, for the PBS (ES) data
assimialtion scheme. However, under the low snowfall scenarios within the PBS scheme, method-
ological limitations cause the posterior results to collapse to a single point in the accumulation zone,
resulting in an overly constrained ensemble. This excessive constraint leads to outcomes that are

both overconfident and biased.
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- Both assimilation schemes lead to marked improvements in surface mass balance simulations. While
the PBS outperforms the ES in assimilating albedo, the ES demonstrates marginally better perfor-

mance over the PBS when assimilating snow depth.

- The joint assimilation of both observation types gives the best performance across all experiments
except those given by low snowfall level in the accumulation area. The average improvement in CRPS

after joint assimilation across all different glacier areas is 63.5%.

- Resampling from the large 1000 members ensemble using varying ensemble sizes, the rate of im-
provement, reflected in both the variance of the Monte Carlo resampling and the median CRPS,
slows considerably when the ensemble size reaches 100 indicating diminishing performance gains

with further computationally costly increases in ensemble size.

The twin experiments in this study demonstrated strong performance gains in most scenarios, including
various glacier zones and observational data. This establishes the assimilation approach as effective in
synthetic experiments and suggests that it is potentially transferable for estimating surface mass balance
of all glaciers on Svalbard. Corroborating this claim will require further experiments with real observations.
However, observational data can be inconsistent in real-world applications, posing further implementation

challenges when relying on satellite-based observations due to factors such as gaps and retrieval uncertainty.

DATA AND CODE AVAILABILITY

CARRA data was downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store at
https : //doi.org/10.24381/cds.d29ad2c6. The results are generated using Copernicus Climate Change
Service information (2025). Neither the European Commission nor ECMWF is responsible for any use
that may be made of the Copernicus information or data it contains. The CryoGrid community model is
hosted on Github. The source code is available at

https : //github.com/CryoGrid/CryoGridCommunity__source.
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