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ABSTRACT. Numerical modeling is crucial for quantifying the evolution of

cryospheric processes. At the same time, uncertainties hamper process un-

derstanding and predictive accuracy. Here, we suggest improving glacier sur-

face mass balance simulations for the Kongsvegen glacier in Svalbard through

the application of Bayesian data assimilation techniques in a set of large en-

semble twin experiments. Noisy synthetic observations of albedo and snow

depth, generated using the multilayer CryoGrid community model with a full

energy balance, are assimilated using two ensemble-based data assimilation

schemes: the particle batch smoother and the ensemble smoother. A compre-

hensive evaluation exercise demonstrates that the joint assimilation of albedo

and snow depth improves the simulation skill by up to 86% relative to the prior

in specific glacier regions. The particle batch smoother excels in representing

albedo dynamics, while the ensemble smoother is marginally more effective for

snow depth under low snowfall conditions in the ablation area. By combining

the strengths of both observations, the joint assimilation achieves improved

surface mass balance simulations across different glacier zones using either as-

similation scheme. This work underscores the potential of ensemble-based data

assimilation methods for refining glacier models by offering a robust frame-

work to enhance predictive accuracy and reduce uncertainties in cryospheric

simulations. Further advances in glacier data assimilation research with both

synthetic and real observations will be critical to better understanding the
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fate and role of Arctic glaciers in a changing climate.

INTRODUCTION

Glaciers are regarded as key indicators of climate change. Over the past three decades, global glacier ice loss

has contributed nearly 1 mm annually to sea level rise (Zemp and others, 2019; IPCC, 2022). At the same

time, glaciers serve as a critical component of mountain water towers, helping to provide a more consistent

and reliable water supply to downstream regions (Immerzeel and others, 2019; Zhang and others, 2023).

Arctic glaciers are experiencing an accelerated mass loss (Østby and others, 2017; Van Pelt and others,

2019; Rounce and others, 2023; Schmidt and others, 2023) because warming is amplified in the Arctic at

two to four times the global average through various positive feedback mechanisms (e.g. Lind and others,

2018; Rantanen and others, 2022). Freshwater runoff from melting Arctic glaciers can have considerable

impacts on ocean circulation and ocean-atmosphere interaction globally (Devilliers and others, 2024; Pontes

and Menviel, 2024; Schiller-Weiss and others, 2024; Malles and others, 2025), as well as on regional marine

biogeochemistry and productivity (Hopwood and others, 2020; Ezat and others, 2024). Thus, accurate

knowledge of glacier surface mass balance is vital for understanding, detecting, and predicting the impacts

of climate change.

Numerical modeling is the main method to reconstruct past or project future glacier surface mass bal-

ance at sites with scarce in situ observations. Glacier surface mass balance models forced by meteorological

data include temperature-index models (e.g. Hock, 2003; Marzeion and others, 2012) and energy balance

models (e.g. Hock and Holmgren, 2005; Westermann and others, 2023). Temperature-index models approx-

imate the melt rate based on air temperature (Huss and Hock, 2015), while physically-based energy balance

models explicitly calculate the energy fluxes on the glacier surface and therefore provide a more detailed

representation of the processes controlling the surface mass balance. The accuracy of glacier models is

limited by uncertainties related to meteorological forcing (Marzeion and others, 2020), incomplete model

physics (Schmidt and others, 2023), and parameter uncertainty (Rounce and others, 2020; Schuster and

others, 2023). Constraining each uncertainty source remains a significant challenge.

Data assimilation methods can incorporate observations into modeling to improve accuracy and con-

strain simulation uncertainty (Evensen and others, 2022, , Chapter 2). In situ and remotely sensed ob-

servations can be individually or jointly assimilated into glacier models, leading to a reduction of the
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aforementioned uncertainties (Gillet-Chaulet, 2020; Choi and others, 2023). The assimilation of ground-

based glaciological measurements into surface mass balance models is gradually becoming a recognized

approach for updating glacier model parameters or initial states (Landmann and others, 2021; Sjursen and

others, 2023). Despite this recognition, there are still relatively few studies that have implemented data

assimilation in surface mass balance modeling. Moreover, in situ measurements are available for only a

minority of glaciers worldwide, which presents a significant challenge to transfer information to the unmea-

sured majority of glaciers. In addition to the direct assimilation of surface mass balance measurements,

other quantities that can directly influence surface mass balance changes, such as remotely sensed albedo

or snow depth, can also be ingested within a data assimilation framework. Satellite-derived observations of

albedo and snow depth offer greater spatial and temporal coverage, enabling broader applicability despite

their susceptibility to factors such as cloud cover, sensor resolution, and atmospheric interference, which can

impact data quality and availability (Vionnet and others, 2012; Østby and others, 2014; Deschamps-Berger

and others, 2023).

Albedo, defined as the reflectivity of the Earth’s surface to shortwave insolation, is a controlling variable

in the surface energy balance of glaciers. It significantly impacts the radiation budget, thereby influencing

the rate of melt and overall surface mass balance of glaciers (e.g. Budyko, 1969; Ye and others, 2024). In a

pioneering study, a variational assimilation scheme was used to incorporate Moderate Resolution Imaging

Spectroradiometer (MODIS) derived albedo into a snowpack model to reconstruct the spatial surface mass

balance distribution for an Alpine glacier (Dumont and others, 2012). More recently, Sentinel-2 albedo

estimates were assimilated into a glacio-hydrological model to improve the simulation of streamflow in two

glacierized basins in the Canadian Rockies (Bertoncini and others, 2024).

Snowfall is another major driver of the surface mass balance, as it is the primary source of glacier mass

gain (Hock, 2003; Pramanik and others, 2019). Satellite-based snow depth retrievals, such as from the

ICESat-2 laser altimeter, are a potentially globally available constraint on uncertainties in snowfall forcing

which is being explored for seasonal snow data assimilation (Mazzolini and others, 2024). However, to the

best of our knowledge, no experiment has explored the joint assimilation of remotely sensed albedo and snow

depth into an energy balance model for surface mass balance simulation. Moreover, the current state of the

art in using Bayesian data assimilation to infer surface mass balance has focused on static parameters in

temperature index models using relatively costly Markov chain Monte Carlo methods (Rounce and others,

2020; Sjursen and others, 2023). This stands in contrast to other recent cryospheric work on glacier flow
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(Brinkerhoff, 2022), ice sheet (Navari and others, 2021), seasonal snow (Alonso-González and others, 2022),

and permafrost (Groenke and others, 2023), which employ a greater diversity of modern Bayesian data

assimilation (also known as inversion) schemes that allow for the use of more complex models.

In this study, we performed twin experiments (Arnold and Dey, 1986; Masutani and others, 2010), also

known as synthetic experiments or Observing System Simulation Experiments, to explore the benefits of

assimilating albedo and snow depth on surface mass balance simulations. This allowed us to test the data

assimilation workflow in a series of targeted experiments while avoiding challenges of real observations and

model discrepancies (Masutani and others, 2010). In particular, as satellite-based measurements of albedo

and snow depth and their associated error characteristics are not always available or consistent due to vari-

able weather conditions and observational limitations. Here, synthetic observations are instead generated

using synthetic truth (also known as nature) runs of the energy balance model CryoGrid (Schmidt and

others, 2023; Westermann and others, 2023). It should be noted from the title of our study that it revolves

entirely around conducting twin experiments using synthetic truth runs and noisy synthetic observations

thereof. For brevity, we will henceforth often simply refer to these as truth and observations. These syn-

thetic observations serve as idealized representations of satellite measurements, with their spatiotemporal

resolution designed to mirror that of actual satellite data, forming the foundation for observing system

simulation. While these synthetic observations currently facilitate controlled testing of our methodology,

the ultimate objective is to assimilate actual satellite observations in future applications. To assimilate the

synthetic observations, we employed and compared two Bayesian data assimilation schemes, namely the

Particle Batch Smoother (PBS; Margulis and others, 2015) and the Ensemble Smoother (ES; van Leeuwen

and Evensen, 1996). The synthetic observations were derived from synthetic truth runs for four distinct

scenarios, each representing different climatic conditions. These four scenarios were selected to better cap-

ture the varying information content of the assimilated observations. They are represented by four different

climatic conditions generated by four different parameter settings (Table 2). The simulations were driven

by reanalysis data from the Copernicus Arctic Regional Reanalysis (CARRA) dataset over 12 hydrolog-

ical years from September 2010 to September 2022. Kongsvegen glacier, one of the best studied glaciers

in High Arctic Svalbard, was selected as the study area due to the availability of data and its extensive

size, encompassing diverse glacier zones that offer a comprehensive basis for representing a broad range of

Arctic glaciers. By conducting a large number of twin experiments, we compared the effectiveness of the

particle-based PBS scheme to the ensemble Kalman-based ES in improving simulated glacier surface mass
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balance across different glacier zones and climatic scenarios. The sensitivity of the surface mass balance

estimates to ensemble size was also tested in terms of both accuracy and precision via bootstrap resampling

experiments using the PBS at essentially no extra cost since (unlike the ES) no costly model reruns were

required in this PBS sensitivity analysis. Synthetic observations of albedo and snow depth with synthetic

truth surface mass balance enabled us to perform a robust evaluation of a novel glacier data assimilation

framework in CryoGrid through a large ensemble of twin experiments that allowed us to control for both

observation and model error.

DATA AND METHODS

Study Site

The Svalbard archipelago is one of the most climatically sensitive regions in the world (Noël and others,

2020; Geyman and others, 2022). For example, it is the region in Europe that has experienced the greatest

warming in the past three decades (Nordli and others, 2014; Isaksen and others, 2016). Kongsvegen is a

marine-terminating glacier, located on the northwestern coast of Svalbard close to the research station of

Ny-Ålesund (Fig. 1). The glacier has an area of around 100 km2 and a length of 26 km, with slopes ranging

from 0.5 to 2.5˝ (Karner and others, 2013). The ice flows towards the northwest from its ice-divide at about

800 m a.s.l. down to sea level at the head of Kongsfjorden (Hagen and others, 1999; Karner and others,

2013). The three grid cells used in this study are shown in Fig. 1 and we used these grids to represent

different glacier zones, namely the ablation area, equilibrium line altitude (ELA), and accumulation area.

Forcing Data

This study uses the Copernicus Arctic Regional Reanalysis (CARRA) dataset (Copernicus Climate Change

Service (C3S) Climate Data Store (CDS), 2024) as meteorological forcing data. The CARRA forcing fields

considered are the 2 m air temperature, 2 m specific humidity, 10 m windspeed, incoming longwave and

shortwave radiation, precipitation, and atmospheric pressure. CARRA is derived from the HARMONIE-

AROME numerical weather prediction system (Bengtsson and others, 2017). This regional reanalysis

covers two domains in the European sector of the Arctic, CARRA-West and CARRA-East, employing

ERA5 reanalysis as boundary conditions (Yang and others, 2021). The CARRA output has a horizontal

resolution of 2.5 km and a 3-hour temporal resolution covering the period from 1991 to present. Following

Schmidt and others (2023), this study employs meteorological data from the CARRA-East domain over
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Fig. 1. Atmospherically corrected shortwave infrared false color image over the area surrounding Kongsvegen

glacier near Ny-Ålesund in the Svalbard archipelago captured by the Sentinel-2B satellite at 13:07 UTC on the 25th

of August 2020. The image shows the locations of Ny-Ålesund (yellow star) and the Kongsvegen glacier outline from

RGI 7.0 (white) as well as the locations of 2.5 by 2.5 km grid cells that were extracted from CARRA to represent

the ablation zone (ABL, red), Equilibrium Line Altitude (ELA, purple), and the accumulation zone (ACC, blue) of

Kongsvegen. The inset shows the location of Ny-Ålesund (yellow star) in the Arctic (here roughly defined as latitudes

above 60˝N) on a polar stereographic map using open Gray Earth data from Natural Earth.
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12 hydrological years from the 16th of September 2010 to the 15th of September 2022.

Surface mass balance model

Model description

The CryoGrid community model is an open-source model developed for climate-driven multiphysics simula-

tions of the terrestrial cryosphere (Westermann and others, 2023), which uses a full surface energy-balance

scheme that can be coupled to different multilayer subsurface modules of varying complexity. We used the

glacier surface mass balance configuration of CryoGrid with a snow and firn module that was first employed

by Schmidt and others (2023). The model calculates the full energy balance at the surface Es:

Es “ p1 ´ αqSin ` Lin ´ Lout ´Qh ´Qe (1)

where Sin is the incoming shortwave radiation, α is the surface albedo, Lin and Lout is the incoming and

outgoing longwave radiation, Qh is the sensible heat flux and Qe is the latent heat flux. The surface albedo

of snow is calculated in three spectral bands following Vionnet and others (2012). In the UV and visible

range (0.3-0.8 µm), the albedo is calculated as:

α “ maxp0.6, αi ´ τaAq , (2)

where αi is the albedo contribution from snow microstructure, represented by the optical diameter, τa

is the albedo decay rate, and A is the snow age in days. The albedo in the near-infrared bands ([0.81.5]

and [1.52.8] µm) only depend on snow microstructure. The albedo of ice is given a constant value of 0.4.

The outgoing longwave radiation is calculated as

Lout “ ϵσT 4 ´ p1 ´ ϵqLin , (3)

where ϵ is the surface emissivity, σ is the Stefan Boltzmann constant and T is the 2m air temperature in

Kelvin.

Finally, the turbulent fluxes are calculated using the Monin-Obukhov similarity theory (Monin and

Obukhov, 1954), and depend on the surface pressure and wind speed. The sensible heat flux is further

calculated using the temperature gradient between the 2m temperature and the surface, while the latent

heat flux is calculated from the gradient in specific humidity.
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Parameter Description Default value Reference

τa albedo decay rate 0.0033 day´1 Vionnet and others (2012)

αice ice albedo 0.4 e.g. Schmidt and others (2023)

zsnow
0 roughness length of snow 1 mm e.g. Schmidt and others (2023)

zice
0 roughness length of ice 1 mm e.g. Schmidt and others (2023)

θ field capacity of snow/firn 0.05 e.g. Westermann and others (2023)

βs snow factor 1

βr rain factor 1

Table 1. Tuneable parameters within glacier and snow modules of the CryoGrid model

If the energy balance is positive Es ą 0, the excess energy can either be used to warm up or melt the

glacier surface. If the surface consists of pure ice, the melt will immediately run off. If a layer of snow

is present, the water will percolate down the snowpack and, depending on the snow conditions, either be

retained, refrozen, or run off.

While glacier ablation is calculated through the energy balance, the accumulation is taken directly

from the CARRA reanalysis. The precipitation is divided into rainfall and snowfall using a temperature

threshold. CryoGrid has the option of a relative bias correction for snowfall and rainfall using multiplicative

factors βs and βr, respectively.

Uncertain parameters

In this study, we added ensemble-based data assimilation methods to the glacier surface mass balance

simulations, thereby creating a comprehensive probabilistic modeling package. Through data assimilation,

we aim to improve simulated glacier surface mass balance. The most important physical parameters which

are currently tunable within the CryoGrid model are given in Table 1.

In numerical weather forecasting and climate modeling, precipitation, particularly snowfall, is associated

with significant uncertainties that can contribute to considerable errors in Arctic surface mass balance

models (e.g. Forbes and others, 2011; Schmidt and others, 2017; Van Pelt and others, 2019; Lenaerts and

others, 2020). Albedo is a controlling variable of the surface energy balance, and therefore accurately

simulating albedo is important for modeling the surface mass balance (e.g Schmidt and others, 2017;

Gunnarsson and others, 2023). We therefore determine that the parameters in Table 1 which control these

variables (βs and τa) are the most uncertain and will have the largest impact on the surface mass balance
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simulations. Our ensemble assimilation approach thus involved constraining these uncertain parameters,

to enhance the accuracy of the simulated snowfall, the snow albedo evolution, and the associated surface

mass balance.

Model initialization

We initialized the model using a 5-year spin-up from 2006 to 2010, using a snow albedo evolution rate

of τa “ 0.005 day´1 and no bias correction of the snowfall, i.e. βs “ 1. This allows the near-surface ice

temperatures to respond to the model forcing and the buildup of a small firn layer of 3 m w.e. in the

accumulation zone and improves the physical consistency of the subsequent experiments, particularly in

the accumulation area. The primary objective of the spin-up phase is to achieve model relaxation, allowing

the glacier system to reach a quasi-equilibrium state that aligns with realistic initial conditions consistent

with climatological data and available observations. This ensures that subsequent simulations start from

a physically consistent baseline, minimizing artifacts from arbitrary initializations and better reflecting

natural variability in snow and ice dynamics. Regarding the zonal differences, in the accumulation area,

where perennial snow cover predominates, the spin-up is crucial for building a stable snowpack and ensuring

that processes like firn densification and albedo evolution are initialized correctly, as these areas are less

likely to complete melt-out.

Synthetic observations

In this study, synthetic albedo and snow depth observations were assimilated to constrain simulations of

glacier surface mass balance using the CryoGrid model. We generated albedo and snow depth time series

for each of the three grid cells, selected to represent the ablation area, ELA, and accumulation area of

Kongsvegen. By prescribing true parameters and running the model for these three grid cells, we obtained

a synthetic truth from which synthetic observations have been generated. Fig. 2 shows the workflow in

our experimental design. We primarily divided the workflow into three steps. First, the generation of

synthetic truth data was achieved by prescribing ‘true’ parameters representing different conditions. To

mimic realistic observational data that is inherently noisy, we added Gaussian noise to both the albedo

and snow depth truth to represent observation error. For the albedo, this noise has a mean of 0 and an

observation error standard deviation of σα “ 0.1. This standard deviation is chosen based on the upper

limit values of the reported root mean square error, which is an average of 0.7, obtained by comparing
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MODIS albedo retrievals to in situ measurements (Stroeve and others, 2005). The noise added to snow

depth has a mean of 0 m and a standard deviation of σs “ 0.5 m, which is based on the findings of

Deschamps-Berger and others (2023) for ICESat2 snow depth retrievals on low slopes that the median

residual is up to 0.65m. The synthetic albedo observations were sampled based on the effective temporal

resolution of MODIS onboard the Terra and Aqua satellites. We simulated the impact of polar night on

the availability of optical albedo retrievals in our research area by removing the values of synthetic albedo

during this time (November to February). In addition, the occluding impact of cloud cover is considered

in this study. According to findings by Marshall and others (1993), statistically only 22% to 24% of days

between April and September in Svalbard are classified as clear-sky conditions, making MODIS albedo

products usable only for those days. Also, Østby and others (2014) found that only 26% of MODIS

products are acquired under clear sky conditions on Austfonna, Svalbard. Thus, we use 30 daily albedo

observations that were randomly distributed in time excluding polar night, representing approximately

20% of the total days of each year between mid of April to mid of October. In our analysis of snow

depth data, we considered the temporal resolution provided by the ICESat-2 satellite in the Arctic region.

Typically, ICESat-2 operates on a 91-day revisit cycle at the equator. However, due to its high-inclination

orbit, the ground tracks of the satellite converge towards the poles, significantly enhancing the frequency

of overpasses in polar regions. Consequently, in the Arctic, the temporal resolution increases, with revisit

intervals reduced to approximately 1 to 2 weeks (Markus and others, 2017). This enhancement in revisit

frequency was utilized to simulate the temporal resolution in our synthetic snow depth data, providing a

more accurate representation of snow accumulation and change over time in this region.

Data assimilation

In this section we describe the data assimilation methods used and their implementation in CryoGrid to

infer glacier surface mass balance. For a more comprehensive treatment of Bayesian data assimilation

methods we refer to the extensive work of Evensen and others (2022, , Chapter 2 and 6) and Sanz-

Alonso and others (2023) and the overview in Alonso-González and others (2022) for details pertinent to

cryospheric applications. Data assimilation is loosely defined as the fusion of data and models that can be

mathematically formalized using the probabilistic framework of Bayesian inference.

There are multiple sources of model uncertainty related to the choice of model parameters, forcing,

initial conditions, and model structure. Here, we are primarily concerned with the two first sources of
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Fig. 2. Workflow in the twin experiments involving the sequential generation of: synthetic truth runs (orange),

noisy synthetic observations (green), and data assimilation experiments (blue) followed by the evaluation of each

experiment (purple).

Table 2. Truth parameter value settings used to generate the synthetic truth for each scenario . The selection of

these ‘extreme’ parameter values was based on the values corresponding to three standard deviations away from the

prior mean after applying a logit transformation to the respective parameter ensembles.

Truth parameter Albedo evolution rate τa Snowfall factor βs

Rapid albedo evolution rate and

high snowfall factor

0.03 1.7

Slow albedo evolution rate and

low snowfall factor

0.0003 0.7

Rapid albedo evolution rate and

low snowfall factor

0.03 0.7

Slow albedo evolution rate and

high snowfall factor

0.0003 1.7
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uncertainty which we lump into an uncertain input parameter vector θ with Np “ 2 elements, namely βs

and τa. By using the synthetic truth generated by the same underlying model, CryoGrid in this case, we

avoid model structural uncertainty by confining ourselves to so-called identical twin experiments (Arnold

and Dey, 1986). Within these identical twin experiments, we are thus by construction justified in restricting

ourselves to solving the strong constraint data assimilation problem that assumes a perfect data generating

model (CryoGrid) that can map perfectly onto reality if the true input vector θ‹ were known (Evensen and

others, 2022, , Chapter 2). Note that the strong assumption has been widely and successfully adopted in

atmospheric (Hersbach and others, 2020), land (Keetz and others, 2025), and cryospheric (Alonso-González

and others, 2022) data assimilation even if the underlying perfect model assumption is always violated to

some extent. Moreover, research in snow hydrology points to forcing, particularly precipitation, as being

the dominant source of uncertainty (Günther and others, 2019; Tang and others, 2023). Translating this

into glacier surface mass balance modeling helps further justifies our use of the strong constraint assumption

by encoding the forcing uncertainty into the parameter vector θ in line with common practice in snow data

assimilation (Alonso-González and others, 2022).

In this strong constraint setting, we can model the observation vector y containing No noisy observations

for a given temporal data assimilation window using the following data generating process:

y “ G pθ‹q ` ϵ . (4)

where Gp¨q denotes the data generating model, θ‹ is the aforementioned true parameter vector, and ϵ

is a noise term representing observation error. Given some observations, the task at hand is to invert

Gp¨q to recover θ‹. This task is challenging since Gp¨q is often a nonlinear and relatively computationally

costly model instantiated in a long piece of typically non-differentiable code, namely CryoGrid in our case

(Westermann and others, 2023). To complicate matters further, it is also a fundamentally ill-posed inverse

problem since the solution is not unique due to the presence of irreducible noise in the form of observation

error ϵ (Sanz-Alonso and others, 2023). As such, we abandon the ill-conceived notion of a single optimal

solution θ‹ and instead adopt a probabilistic perspective where we seek a distribution over solutions θ that

are compatible with the noisy data y that we are given. Adopting a probabilistic perspective naturally leads

to casting this ill-posed inverse problem in terms of Bayesian inference (Sanz-Alonso and others, 2023), and

the computational challenge motivates the adoption of efficient ensemble-based data assimilation algorithms

to make inference tractable (Evensen and others, 2022, , Chapter 8). Formally the entire exercise of data
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assimilation can now be boiled down to using Bayes’ rule as follows

ppθ|yq “
ppy|θqppθq

ppyq
, (5)

to infer the posterior probability distribution ppθ|yq over parameters θ given data y. The likelihood quanti-

fies how well the model predictions with parameters θ fit the noisy observations y, the prior regularizes the

problem using background information about θ, and the evidence ppyq is a normalizing constant (MacKay,

2003).

Once prior and likelihood are defined, Bayesian inference is theoretically straightforward and is just a

matter of applying (5) to a grid of parameter vectors θ. Practical geophysical applications of Bayesian

inference for data assimilation tend to require more efficient methods than computationally expensive

grid approximations. The current state-of-the-art data assimilation approaches can generally be split into

ensemble-based (Monte Carlo) and variational methods (Evensen and others, 2022, , Chapter 2). The latter

requires a differentiable model which is often, as is the case with this CryoGrid version (Westermann and

others, 2023), not available. As such, we use ensemble-based data assimilation methods that are widely

used in cryospheric applications (e.g. Navari and others, 2021; Alonso-González and others, 2022; Groenke

and others, 2023), but have not been widely applied to glacier surface mass balance modeling. In particular,

we adopt both the PBS and the ES to compare their performance for a large ensemble of twin experiments.

In addition to being used in the literature (Alonso-González and others, 2022), these methods are relatively

straightforward to implement and can serve as kernels for more sophisticated schemes, such as the hybrid

particle-adjusted iterative ensemble smoother (Pirk and others, 2022), which remain too costly for large

ensemble twin experiments.

Prior and likelihood

In this study, we focus on two uncertain parameters within the glacier configuration of CryoGrid, namely

the albedo evolution rate τa and the snowfall factor βs. The former factor τa is an inverse timescale that

controls the rate at which the visible albedo in the Crocus albedo parametrization decays (Vionnet and

others, 2012), with larger (smaller) values indicating a faster (slower) decay rate. Here, we are not trying to

be within the bounds given by Vionnet and others (2012), but rather to find a value that better represents

the albedo evolution due to snow age for Svalbard. The latter multiplier βs explicitly accounts for biases

in the snowfall (solid precipitation) forcing from the CARRA reanalysis while also implicitly accounting
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for unresolved processes in this instantiation of CryoGrid in the form of wind-driven snow redistribution.

Both parameters are treated as fixed (time-invariant) within a given mass balance year which is used as

the data assimilation window. As such, the Bayesian inference step in (5) can be carried out independently

for each such mass balance year window using the same prior ppθq but different observations y and thus

varying likelihood ppy|θq resulting in a posterior ppθ|yq that varies from (balance) year to year. In this

study, the parameter vector θ has Np “ 2 elements so we consider a 2D parameter space. On the one hand,

this is quite a low-dimensional parameter space. On the other hand, CryoGrid which we use as the data

generating model is relatively expensive to evaluate. Moreover, these Np “ 2 parameters were selected

based on several modeling studies of surface mass balance where related parameters were deemed among

the most uncertain yet sensitive parameters (e.g. Schmidt and others, 2017; Van Pelt and others, 2019;

Lenaerts and others, 2019; Raoult and others, 2023; Schmidt and others, 2023).

To encode uncertainty in these parameters we need to specify a prior distribution ppθq that reflects our

prior knowledge concerning possible values for these parameters. Herein, building on several related studies

(Aalstad and others, 2018; Guidicelli and others, 2024; Mazzolini and others, 2024; Keetz and others, 2025),

we use the generalized logit-normal prior distribution that is a double bounded transformed version of a

normal distribution allowing for upper and lower bounds pa, bq, a central location parameter µ˚
0 , and a

scale parameter σ0 reflecting the spread in possible values. Following Keetz and others (2025), this prior

is defined as follows for a scalar parameter θ

ppθ|µ0, σ0, a, bq “
|J |

σ0
?

2π
exp

˜

´
pϕ´ µ0q

2

2σ2
0

¸

, (6)

where |J | “ pb´ aq{pθ ´ aqpb´ θq is a Jacobian term and ϕ is the generalized logit transform of θ

ϕ “ ψpθ, a, bq “ ln
ˆ

θ ´ a

b´ a

˙

´ ln
ˆ

b´ θ

b´ a

˙

, (7)

with corresponding inverse transform

θ “ ψ´1pϕ, a, bq “ a`
b´ a

1 ` expp´ϕq
. (8)

The generalized logit normal distribution in (6) has an associated normal distribution, namely the dis-

tribution of the logit transformed parameter ϕ with mean µ0 and standard deviation σ0. We use the

σ0 parameter to define the scale (spread) of the logit-normal prior for a bounded parameter θ. For the
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Table 3. The hyperparameters for the independent logit-normal priors used for each of the Np “ 2 uncertain

parameters in the parameter vector θ considered in this study. The hyperparameters are the lower bound a, the

upper bound b, the location parameter which is the median µ˚
0 , and the scale (spread) which is the dimensionless

standard deviation σ0 of the associated normal distribution.

Parameter name Symbol Units Lower bound a Upper bound b Location µ˚
0 Scale σ0

Albedo evolution rate τa day´1 0.0001 0.05 0.005 1

Snowfall factor βs - 0.5 2 1 1

location parameter of the logit normal we use the median of the logit normal distribution µ˚
0 that can be

transformed to the mean of the associated normal distribution through µ0 “ ψpµ˚
0 , a, bq and vice versa.

The generalized logit prior in (6) is specified independently for each of the parameters τa and βs using the

hyperparameters in Table 3 resulting in a weakly informative prior (Banner and others, 2020). Assuming

independence, the joint prior ppθq is simply given by the product of the marginal priors ppθq “ ppτaqppβsq.

It is possible to relax this prior independence assumption by adding non-zero correlations to a multivariate

logit-normal distribution (Mazzolini and others, 2024). More generally, adding dependence structure to the

joint prior using background knowledge can improve inference (Pirk and others, 2022). At the same time,

adding this kind of structure requires that such background knowledge is available, and here, we had no

prior reasons to suspect a general dependence between the albedo aging factor and the snowfall multiplier.

Crucially, prior independence does not imply posterior independence since via the likelihood the data allow

us to infer the posterior dependence structure between parameters. To sample from the generalized logit

normal distribution (6), we apply the generalized logit transform (7) to the prior median µ˚
0 to obtain

the mean of the associated normal µ0 then add Ne samples of randomly generated Gaussian noise with

standard deviation σ0 to µ0 and apply the inverse transform (8) to obtain prior samples θi „ ppθq for the

parameter θ P θ (i.e., either τa or βs) in question. After having done this for both parameters, we are left

with an ensemble of Ne particles from the joint prior θi „ ppθq.

As is commonly done in data assimilation (Carrassi and others, 2018), we use a simple additive zero-

mean Gaussian observation error model of the form ϵ „ Np0,Rq where R is an No ˆ No observation

error covariance matrix. This can be justified as a useful default first-order error model using both the

central limit theorem and maximum entropy arguments (Jaynes, 2003). Using this error model, allows us

to formulate the likelihood ppy|θq. By definition, this is the probability density of the (fixed) observations

y given that the parameter set θ is true. By inspection of (4) conditional on θ “ θ‹ the observation error
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becomes ϵ “ y´Gpθq and by inserting this into the Gaussian observation error model we obtain a Gaussian

likelihood ppy|θq “ Npy|Gpθq,Rq of the form

ppy|θq “ cyexp
ˆ

´
1
2

ry ´ pys
T R´1 ry ´ pys

˙

, (9)

where cy “ detp2πRq´1{2 is a constant and py “ Gpθq denotes the predicted observations from the data

generating model given a particular parameter set θ. Following the likelihood principle in Bayesian inference

(Jaynes, 2003), the likelihood should be viewed as a function of the uncertain parameters θ (here through

py “ Gpθq) rather than a distribution over the fixed (albeit noisy) observations y that we are assimilating.

Although the likelihood in (9) is Gaussian, our data generating model py “ Gpθq makes it nonlinear.

To further simplify the likelihood (9) we also make a standard assumption that the observation errors

are conditionally independent (Carrassi and others, 2018; Särkkä and Svensson, 2023). As such, our NoˆNo

observation error covariance matrix R becomes diagonal with entries corresponding to the observation error

variance σ2
ym

associated with each of the m “ 1, . . . , No observations ym in the observation vector y. When

we only assimilate one type of observation, these entries are constant and equal to the observation error

variance of either snow depth (σ2
d) or albedo (σ2

α). For joint assimilation, where both types of observation

are assimilated, both error variances appear along the diagonal of R in accordance with the entries in y.

Particle batch smoother

The Particle Batch Smoother was introduced in the snow literature by Margulis and others (2015) as a

batch smoother version of the widely used particle filter (see Chopin and Papaspiliopoulos, 2020; Särkkä

and Svensson, 2023). Algorithmically, the PBS boils down to performing basic sequential importance

sampling (van Leeuwen, 2009) which effectively represents the posterior through a particle approximation

ppθ|yq »

Ne
ÿ

i“1
wiδ pθ ´ θiq , (10)

where wi are the weights associated with each of the i “ 1, . . . , Ne particles (samples) θi in parameter space.

These particles weights are self-normalized such that
řNe

i“1wi “ 1. The δp¨q in (10) denotes the Dirac delta

which is a generalized function with properties
ş

δpθ ´ θiq dθ “ 1 and
ş

gpθqδpθ ´ θiq dθ “ gpθiq for some

function of the parameters gpθq. Thereby, the particle approximation represents the continuous posterior

probability density function as a sum of discrete particles with probability mass given by their weights
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wi. Posterior expectations become straightforward to compute, for example setting gpθq “ θ we recover

the particle approximation to the posterior mean of the parameters as the weighted sum over particles

θi. The corresponding posterior expectations in state space are obtained analogously. With minimal loss

of accuracy, simpler unweighted posterior statistics are computed by first resampling particles based on

the weights (Alonso-González and others, 2022). The weights wi in the PBS are obtained through basic

importance sampling approach using the prior as a proposal distribution to sample particles θi „ ppθq so

that the weights effectively become the likelihood ratio

wi “
ppy|θiq

řNe
k“1 ppy|θkq

, (11)

which when we insert for our Gaussian likelihood becomes (Aalstad and others, 2018)

wi “
exp

´

´1
2 ry ´ pyis

T R´1 ry ´ pyis

¯

řNe
k“1 exp

´

´1
2 ry ´ pyks

T R´1 ry ´ pyks

¯ , (12)

where pyi “ Gpθiq denotes the vector ofNo predicted observables from CryoGrid for particle i with associated

parameter vector θi, r¨s
T denotes the transpose, and R´1 is the inverse of the No ˆ No observation error

covariance matrix. In practice, we first compute the logarithm of the PBS weights in (12) to ensure

numerical stability as described in Alonso-González and others (2022). Both the PBS and ES are batch

smoothers in the sense that they assimilate a single batch of observations in a long data assimilation

window, unlike a filter which updates sequentially as observations become available. The length of the

window is typically defined by a typical timescale of the system being modeled, which we here take to be

one mass balance year. This smoothing property is crucial since it allows the future to update the past:

observations in the accumulation season can inform model states in the preceding accumulation season

(Margulis and others, 2015; Aalstad and others, 2018). A computational advantage of the PBS is that

it only requires running a single ensemble model integration of Ne particles sampled from the parameter

prior. A particle approximation of the posterior for model parameters and state variables can then be

obtained solely using the weights in (12) followed by a resampling step. As such, the computational cost

of the PBS is incurred almost entirely by the need to run Ne forward simulations of the data generating

model G. It is this feature that helped motivate our design of a large ensemble of twin experiments, in that

it is straightforward to test a large number of observation types and parameter scenarios based on a single

large ensemble run by using a (fixed) prior distribution ppθq as the proposal.
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Ensemble smoother

We also test the ensemble smoother (ES) scheme that was originally proposed by van Leeuwen and Evensen

(1996) as a batch smoother version of the widely used ensemble Kalman filter (EnKF, Evensen and others,

2022, , Chapter 6). Here we use the classic stochastic version of the ES with perturbed observations

to avoid underestimating ensemble covariances (van Leeuwen, 2020). The general framework of ensemble

Kalman methods, which the ES falls under, extends the domain of applicability of classical Kalman filtering

methods (Särkkä and Svensson, 2023), that require Gaussian linear data generating models, to Gaussian

nonlinear models (Evensen and others, 2022). The Gaussian assumption in the prior and likelihood can

also be relaxed through transformations using Gaussian anamorphosis functions (Bertino and others, 2003).

Herein we use an analytical approach to Gaussian anamorphosis using the generalized logit transform in

(7). Among the ensemble Kalman methods, the ES is most widely used for parameter estimation such as

the strong constraint problem that we are tackling here.

The ES is initialized by sampling an ensemble of Ne parameter vectors θ
p0q
i from the prior θ

p0q
i „ ppθq.

Using this prior parameter ensemble, following Aalstad and others (2018) the stochastic ES with analytical

anamorphosis proceeds in the following steps while looping over ensemble members i “ 1, . . . , Ne:

1. Generate an ensemble of prior predicted observables by running the parameters through the data gener-

ating model pyp0q
i “ G

´

θ
p0q
i

¯

which implicitly also involves generating an ensemble of prior model state

vectors xp0q
i for the whole data assimilation window (i.e., mass balance year in our case).

2. Transform the prior parameter ensemble to Gaussian space using Gaussian anamorphosis ϕ
p0q
i “ Ψpθ

p0q
i q

in the form of the generalized logit transform (7).

3. Perform the ensemble Kalman analysis step to update the parameters

ϕ
p1q
i “ ϕ

p0q
i ` Kp0q

´

y ` ϵi ´ pyp0q
i

¯

(13)

where the ensemble Kalman gain Kp0q is obtained using ensemble covariance matrices together with R

as outlined in Aalstad and others (2018) while realizations of Gaussian observation noise ϵi „ Np0,Rq

are used to perturb the observations y in this stochastic scheme (van Leeuwen, 2020).

4. Apply the inverse transformations using (8) to recover the posterior parameter ensemble in the original

model parameter space θ
p1q
i “ Ψ´1pϕ

p1q
i q.

https://doi.org/10.1017/jog.2025.10101 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10101


: 19

5. Rerun the data generating model to obtain an ensemble of posterior predicted observables pyp1q
i “

G
´

θ
p1q
i

¯

which also implicitly yields an ensemble of posterior model state vectors xp1q
i .

Note that the parameters θ are updated directly while the model state x are updated indirectly. As such,

to recover the posterior state x with the ES it is necessary to run the data generating model twice for

each ensemble member, first with the prior parameters θ
p0q
i in step 1 and subsequently with the posterior

parameters θ
p1q
i in step 5. Thereby, for posterior state estimation the ES is twice as costly as the PBS in

that it requires running the data generating model 2Ne times.

Twin experiments

The conceptual diagram in Fig. 3 shows the structure of the twin experiments where we generated synthetic

truth scenarios along with synthetic noisy observations. We constructed four different scenarios by using

different true parameter vectors θ‹ with different values for the true snow albedo evolution rate τ‹
a and

true snowfall factor β‹
s . These true parameter vector scenarios include combinations of high and low

values for each of the two parameters. The true parameter vector scenarios are then used in CryoGrid

to generate synthetic true state x‹ scenarios including the true observables py‹ “ Gpθ‹q. These diverse

true parameter scenarios are used to effectively mimic the variability of meteorological conditions and

location-specific characteristics under differnet climatic scenarios. The synthetic albedo and snow depth

obtained under these four different climatic scenarios were generated and perturbed with Gaussian noise

that was scaled with the appropriate variances (σ2
α and σ2

d) to mimic observation error. These noisy

synthetic observations are then assimilated to constrain the prior CryoGrid simulations. Note that in

this assimilation exercise, the model has no access to the hidden synthetic truth (θ‹, x‹, py‹q other than

through the corrupted information present in the noisy synthetic observations. This is the standard setup

for widely used identical twin experiments where the same model is used to generate the observations

and in the subsequent assimilation experiments (Arnold and Dey, 1986; Masutani and others, 2010). The

generated synthetic observations, albedo and snow depth, can be assimilated either individually or jointly,

amounting to a total of three assimilated observation scenarios. All experiments are applied in three

different glacier zones, namely the ablation, ELA, and accumulation areas. In total, we conducted 864,000

unique forward model realizations by using 4 scenarios ˆ 3 glacier zones ˆ 3 combinations of assimilated

observations ˆ 2 assimilation methods ˆ 12 years ˆ 1000 ensemble members.

The prior ensemble of CryoGrid simulations consists of Ne “ 1000 ensemble members that were gener-
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Fig. 3. Structure of the large ensemble twin experiments based on permutations of four parameter scenarios, three

types of assimilated observation vectors, and three experimental areas generating a total of 36 twin experiments.

The scenarios combine either a rapid or slow albedo evolution rate with either a high or low snowfall factor. The

assimilated observation vectors are either albedo only, snow depth only, or joint assimilation of albedo and snow

depth. The experimental areas are either the ablation (ABL), equilibrium line altitude (ELA), and accumulation

(ACC) areas depicted in Fig. 1.

ated by perturbing albedo evolution rate and snowfall factor. We implemented the prior simulation with the

same initial conditions for all data assimilation experiments. When initiating the model, we performed a 5

years spin-up to eliminate initialization shocks. Two different ensemble-based data assimilation methods,

the PBS and ES, were compared in the twin experiments.

Evaluation of the experiments

To evaluate the performance of all experiments, we use the Continuous Ranked Probability Score (CRPS)

to compare the posterior surface mass balance distribution to the synthetic truth surface mass balance.

As outlined in Hersbach (2000), the CRPS is a statistical metric that compares probabilistic ensemble

predictions to deterministic ground-truth values. Compared with Root Mean Square Error (RMSE) which is

mainly used for deterministic forecasts, the CRPS is designed for probabilistic forecasts, which can evaluate

https://doi.org/10.1017/jog.2025.10101 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10101


: 21

the entire predictive distribution and provide a comprehensive assessment of the quality of predictions

that include uncertainty quantification. The CRPS evaluates both the accuracy and the precision of the

ensemble. The precision is a gauge of how well calibrated the ensemble is by punishing ensembles that

are overconfident (too narrow) and underconfident (too wide). The CRPS is a negatively oriented score

where a score of zero means that the probabilistic prediction is perfect, which only occurs for deterministic

forecasts centered on the truth, while a larger CRPS entails a lower score. The CRPS is given by (Gneiting

and others, 2005)

CRPSpP, x‹q “

ż 8

´8

pP pxq ´Hpx´ x‹qq
2 dx (14)

where P pxq is the cumulative distribution function of the ensemble prediction for variable x, x‹ is the

reference value which can be a synthetic truth or an observation, and Hpx´ x‹q is the Heaviside function,

which is 1 if x ě x‹ and 0 otherwise. The CRPS inherits the same units as the variable x whose ensemble

prediction is being evaluated.

RESULTS

Influence of observations on surface mass balance modeling by PBS

Here, we present the results of surface mass balance (SMB) simulations in several twin experiments achieved

by assimilating two observational datasets, albedo and snow depth, using the PBS scheme on an ensemble

with Ne “ 1000 members. Fig. 4 shows the posterior annual SMB for the ablation area for the four

different scenarios. The prior and posterior CRPS are calculated by comparing the prior and posterior

SMB estimates with the synthetic truth over a 12-year period across these scenarios. Since this is the

ablation area, the effect of the snow albedo evolution rate on the SMB (compare panels b to c and panels a

to d) is clearly negligible because the surface albedo is mostly that of bare ice in either scenario. As such,

snow depth is a stronger constraint on the SMB than albedo in this case. After assimilation, the average

CRPS values (Fig. 5) for the posterior SMB estimates are 0.05 m for albedo assimilation, 0.03 for snow

depth assimilation, and 0.02 m for jointly assimilating both observations. For all assimilated observation

scenarios this is a marked improvement from the prior CRPS of 0.16 m. These improvements represent

CRPS reductions of 69%, 80%, and 86%, respectively, compared to the prior, showing the enhanced skill

of the posterior estimates obtained after data assimilation. On the one hand, snow depth assimilation is

particularly effective in bringing the posterior ensemble median SMB closer to the truth. On the other
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hand, the 95th percentile of the posterior ensemble after albedo assimilation often scarcely encompassed the

true values. A comparison of error reduction demonstrates (Fig. 4) that joint assimilation of albedo and

snow depth provides the most substantial improvements in the performance of posterior SMB simulations

in the ablation area. When comparing the four scenarios, it becomes evident that snow depth assimilation

performs better under high snowfall conditions, yielding a CRPS of 0.03 m compared to 0.04 m in low

snowfall conditions. Conversely, albedo assimilation performs better in low snowfall scenarios, with a CRPS

of 0.04 m compared to 0.06 m under high snowfall conditions.

Fig. 5 provides a comprehensive evaluation of the experiments using the PBS assimilation scheme

across all scenarios and areas. In both the ablation and equilibrium line altitude areas, the assimilation

of either albedo or snow depth substantially reduces CRPS compared to the prior estimates. The average

CRPS reduction is 71% and 74%, respectively, when albedo and snow depth are assimilated individually.

The difference in performance improvement in terms of CRPS between albedo and snow depth assimi-

lation is particularly notable, ranging from a 10% to 19% difference, especially under the high snowfall

scenario. In most experiments, joint assimilation of albedo and snow depth consistently yields the lowest

CRPS values. However, in the accumulation area, results indicate an increase in CRPS following snow

depth assimilation under low snowfall scenarios, relative to the prior. In contrast, albedo assimilation still

improves performance, though the improvements are less pronounced than in the ablation and equilibrium

line altitude areas, especially under high snowfall conditions. Similarly, joint assimilation of albedo and

snow depth exhibits behavior similar to snow depth assimilation alone in the accumulation area.

The results indicate that the assimilation of joint albedo and snow depth observations within the PBS

framework improves the skill of surface mass balance simulations, particularly in scenarios with high snow-

fall. The results show that snow depth assimilation tends to perform better under high snowfall conditions

in the ablation area, while albedo assimilation is more effective under low snowfall scenarios in the ablation

and accumulation areas. In the ELA area, albedo assimilation outperforms snow depth assimilation under

high snowfall scenarios, while the two methods yield comparable results in low snowfall conditions. More-

over, joint assimilation tends to yield the best (including ties) results across the majority of experiments

(10 out of 12) in Fig. 5, providing the greatest improvements both in terms of reducing uncertainty and

bringing the posterior closer to the truth. These findings highlight the importance of selecting appropriate

observations to assimilate based on specific climatic conditions to optimize the performance of SMB simu-

lations. In particular, the most robust choice is generally joint data assimilation which can automatically

https://doi.org/10.1017/jog.2025.10101 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10101


: 23

handle trade-offs in the information content of different types of observations.

The ES scheme overall exhibits performance similar to that of the PBS scheme after assimilating albedo

and snow depth (Fig.S1 and Fig.S2). Joint assimilation yields the best results, while the assimilation

of albedo and snow depth individually shows varying outcomes across different scenarios. A detailed

comparison of the two assimilation schemes follows in the next section.

Comparison of two data assimilation schemes

We evaluated both the PBS and ES schemes against synthetic truth using an ensemble size of 1000 mem-

bers for all experiments. Table 4 presents the improvement in CRPS performance in terms of surface mass

balance achieved by the two data assimilation schemes relative to the prior. The values represent the aver-

age improvement across four truth scenarios, calculated by comparing the posterior results with the prior.

For albedo assimilation, PBS shows a significantly better overall performance compared to ES across all

glacier zones. However, for snow depth assimilation, ES performs slightly better than PBS, except in the

accumulation zone. Joint assimilation of both albedo and snow depth yields the best performance, regard-

less of the assimilation method used. In terms of different glacier zones, the performance in the ablation

area is generally the best across both data assimilation schemes. In the ELA region, the results slightly

underperform those in the ablation area, considering the average performance of three distinct assimilated

observation scenarios. The accumulation zone yields the lowest accuracy improvement among the glacier

zones for both schemes. Nonetheless, the posterior always improved over the prior in terms of surface mass

balance CRPS. Note that these results represent averages across four scenarios and considerable differences

exist between individual scenarios, particularly when assimilating snow depth generated under different

snowfall factors.

Fig. 6 presents statistical properties of the posterior annual surface mass balance results derived from

the two data assimilation schemes in the ELA region under a scenario of rapid snow albedo evolution

and high snowfall. Joint assimilation under the ES scheme demonstrates the best overall performance,

achieving the lowest RMSE and standard deviation compared to other configurations. While the PBS

scheme also performs well with joint assimilation, but the variability in standard deviation across years is

notably higher than in the ES results. For albedo assimilation, both methods considerably enhance the

accuracy and reduce uncertainty compared to the prior. However, the PBS scheme yields slightly lower

RMSE and standard deviation than the ES scheme but exhibits higher interannual variability. In contrast,
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Fig. 4. Comparison of prior, posterior, and true surface mass balance in the ablation area when using the PBS to

assimilate albedo only, snow depth only, and both observations jointly. The figure presents four scenarios based on

the snow albedo evolution rates and snowfall factors: a) Rapid snow albedo evolution with high snowfall. b) Slow

snow albedo evolution with low snowfall. c) Rapid snow albedo evolution with low snowfall. d) Slow snow albedo

evolution with high snowfall. Error bars represent the 95th central percentile range of the ensemble with the points

indicating the median value for surface mass balance estimates.
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Fig. 5. Continuous ranked probability score (CRPS) for the prior and posterior surface mass balance after assim-

ilating albedo, snow depth, and both observations jointly using the PBS, for all scenarios: a) rapid albedo evolution

rate & high snowfall factor, b) slow albedo evolution rate & low snowfall factor, c) rapid albedo evolution rate &

slow snowfall factor, d) slow albedo evolution rate & high snowfall factor, and three different areas of interest (AOI):

ablation area (ABL), equilibrium-line area (ELA), accumulation area (ACC), compared to synthetic true surface

mass balance.
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Table 4. Comparison of two data assimilation methods in improving the average CRPS of surface mass balance

simulations by assimilating different observations for various glacier zones. The values in the table represent the

average CRPS improvement, calculated by comparing the percentage improvement of the posterior CRPS results to

that of the prior CRPS results, across all four scenarios.

Albedo Snow depth Joint

PBS ABL 68.4% 77.8% 85.4%

ELA 72.2% 66.9% 79.5%

ACC 31.0% 19.9% 25.5%

ES ABL 48.3% 79.0% 85.6%

ELA 47.9% 67.4% 76.7%

ACC 24.1% 11.6% 25.4%

the ES scheme demonstrates a more stable annual performance. Regarding snow depth assimilation, the

posterior results from the PBS scheme reveal overconfidence, characterized by an ensemble spread near

zero and high annual variability, along with a higher average RMSE than the ES scheme. In comparison,

the ES scheme produces a smaller standard deviation and maintains stable annual performance after snow

depth assimilation, with no marked interannual fluctuations. However, this disadvantage of the results

from PBS may partially stem from the bias introduced by overconfidence, especially influenced by snow

depth assimilation. In PBS, particles are weighted based on their likelihood given the observations. If

the observations strongly favor one particle, that particle’s weight approaches 1 (Margulis and others,

2015). During resampling, particles with low weights are discarded, and the dominant particle is replicated

multiple times. This reduces the effective number of particles, collapsing the posterior to a single point or

a very narrow range (Aalstad and others, 2018). It is also unclear if the higher computational cost of 2Ne

CryoGrid running with the ES, compared to just Ne with the PBS, justifies the slight gain in performance

in this case. If the prior ensemble is so biased that it does not encompass the observations, the PBS is

incapable of correcting the posterior towards the observations outside the bounds of the prior (Aalstad and

others, 2018), while ES can address this problem by re-run the model with updated parameters and higher

computational cost.
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Fig. 6. Comparison of the performance of two assimilation schemes applied to the ELA area under rapid albedo

evolution and high snowfall scenario in terms of RMSE (top row) and ensemble standard deviation (bottom row) for

the Particle Batch Smoother (left panels a and c) and the Ensemble Smoother (right panels b and d). Dashed lines

represent the mean value of RMSE and ensemble standard deviation of the simulation performance.
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Fig. 7. Sensitivity of the posterior surface mass balance CRPS to ensemble size following joint assimilation of

albedo and snow depth using the PBS scheme under the scenario of rapid albedo evolution rate and high snowfall

factor in the ablation area. For each ensemble size (Ne) the CRPS statistics were estimated by resampling with

replacement (i.e., bootstrapping) an ensemble of Ne particles from the complete large ensemble (1000 members)

100 times, evaluating the CRPS for each of these 100 bootstrapped ensembles, and subsequently computing sample

statistics.

Sensitivity of data assimilation performance to the ensemble size

In this section, we present the results of analysing the sensitivity of data assimilation performance to the

number of ensemble members Ne. The range of ensemble sizes Ne investigated was selected to be regular

on a logarithmic scale, generating a vector of seven logarithmically spaced values between 101 and 103

ensemble members. Fig. 7 illustrates the mean and variance of CRPS values obtained from 100 iterations

of bootstrapping (resampling with replacement) prior ensembles of variable size Ne from the original large

ensemble of 1000 prior parameters (used in the rest of the study) followed by the assimilation of joint

albedo and snow depth under the PBS scheme. The results indicate that, across all experiments, both the

average CRPS and its Monte Carlo variance decrease as the ensemble size increases. This replicates the

improvement in performance, both in terms of mean and variance, with increased ensemble size as expected

from Monte Carlo methods. Moreover, as expected, the rate of error reduction diminishes considerably,

particularly after the ensemble size reaches 100, the mean CRPS starts to show clear convergent behavior

towards an asymptote around 0.025 (m w.e.) with a steadily decreasing variance. However, unlike the

Monte Carlo variance, interannual variability remains relatively stable and does not exhibit any clear

dependence on ensemble size.
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Fig. 8. Comparison of the prior, posterior, and true annual surface mass balance in the accumulation area when

assimilating different types of observations with the PBS (a) and the ES (b) under a low snowfall factor and slow

albedo evolution rate scenario.

DISCUSSION

Influence of observations on surface mass balance modeling

Across all scenarios and regions, the assimilation of albedo consistently brings the ensemble median of the

SMB simulations closer to the true values while effectively reducing the ensemble spread. This improvement

is consistent with the findings of Dumont and others (2012), which demonstrated that assimilating MODIS-

derived albedo in a snowpack model improves the accuracy of the SMB simulation for an alpine glacier

in the French Alps through variational assimilation. Despite claims to this effect, Dumont and others

(2012) did not show how their variational data assimilation scheme constrained uncertainty. In contrast,

our ensemble-based data assimilation results show that both the PBS and ES schemes effectively constrain

the ensemble, leading to significant reductions in uncertainty. Moreover, unlike variational methods, the

ensemble-based schemes pursued herein do not require a differentiable data-generating model and are thus

more widely applicable. Fig. 6 highlights the improvement in accuracy and the reduction in uncertainty

achieved by albedo assimilation, with PBS outperforming ES in both metrics.

The impact of snow depth assimilation on SMB simulations exhibits some spatial variability, but overall,

snow depth assimilation generally enhances SMB accuracy, with more consistent improvements observed

outside the accumulation area. Under high snowfall factor scenarios, snow depth assimilation markedly

improves SMB simulation accuracy across all regions, aligning with the general findings by Landmann and
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others (2021) for surface mass balance and Magnusson and others (2017) for seasonal snow.

Our results show a substantial impact of snow depth assimilation on model performance in terms of

SMB , with an average improvement of 74% in SMB accuracy in both the ablation and ELA regions.

This demonstrates similar performance gains to previous studies. For example, Landmann and others

(2021) reported a relatively low CRPS of 0.012 m w.e. surface mass balance compared with cumulative

observations, while Magnusson and others (2017) observed a 64% reduction in SWE error from snow depth

assimilation across 40 sites in Switzerland. Unlike these studies that use particle filtering techniques, we

apply the smoothing-based PBS and ES schemes that allow information from the observations to propagate

backward in time which has been shown to be advantageous for retrospective snow data assimilation

(Alonso-González and others, 2022).

Under low snowfall scenarios, snow depth assimilation alone yields less favorable results, particularly in

the accumulation area. As illustrated in Fig. 8, posterior estimates in PBS collapse to a single particle with

snow depth assimilation in this scenario. This phenomenon is likely due to limitations inherent in the PBS

scheme (Robinson and others, 2018; Pirk and others, 2022) and the nature of the low snowfall setting, which

produces some SMB truth values that fall outside the prior ensemble range. This discrepancy prevents

the posterior from fully encompassing true values, and, when coupled with the ensembles overconfidence,

results in an increased CRPS due to bias and overconfident predictions. Under the same conditions, ES out-

performs PBS due to fundamental differences in both the assumptions and updates steps in these methods

(Margulis and others, 2015; Aalstad and others, 2018; Alonso-González and others, 2022). Additionally,

synthetic snow depth data were perturbed with Gaussian noise, maintaining a uniform standard deviation

of 50 cm across all glacier zones. In practice, the RMSE of in situ snow depth measurements in Svalbard

is around 5cm, particularly in accumulation zones with rare rainfall, which is substantially lower than the

applied noise level (An and others, 2020). Assimilation of lower-quality observational data into the model

may compromise the posterior estimates, resulting in suboptimal performance.

To address data availability challenges, we generated synthetic observational data for albedo and snow

depth, potentially providing daily coverage over a full year. Subsequently, we applied the specific meth-

ods mentioned above to select data points that mimic the temporal availability of ICESat-2 and MODIS

measurements. This approach enabled us to control the experimental environment under conditions of pa-

rameter uncertainty, thereby facilitating the execution of large ensemble experiments. While this approach

theoretically fulfilled continuous data requirements, achieving similar completeness with real observational
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data remains challenging (Gabarró and others, 2023; Sandven and others, 2023). Satellite-based mea-

surements, such as those from ICESat-2 and MODIS, face limitations due to cloud contamination, which

degrades data quality and restricts data acquisition (Østby and others, 2014; Neuenschwander and Ma-

gruder, 2019; Kotarba, 2022). Additionally, optical satellites that provide albedo data are limited by

daylight availability (Wang and others, 2018), resulting in data gaps in areas with heavy cloud cover or re-

duced sunlight. Consequently, while synthetic data can theoretically satisfy continuous data requirements,

real-world data collection remains inherently constrained by these observational challenges that we aimed

to replicate in the design of our twin experiments.

Performance of data assimilation schemes

For all the given observations and research areas, both data assimilation schemes contribute to considerably

reductions in uncertainty and error in SMB simulations. The PBS showed superior performance in albedo

assimilation, offering a more confident and accurate ensemble. Conversely, ES generally outperformed PBS

in snow depth assimilation scenarios, particularly where the model’s prior did not bracket the truth value

(Fig. 8). The PBS operates by weighing the ensemble of states based on their likelihood (Margulis and

others, 2015; Aalstad and others, 2018), avoiding the need to move particles in parameter space. This

results in lower computational demands for state estimation as it only requires one model run per ensemble

member. In our study, PBS was particularly effective for albedo assimilation, offering significant uncertainty

reduction with less computational effort. However, the performance of PBS can be limited when the true

state falls outside the range of the prior ensemble(Robinson and others, 2018; Pirk and others, 2022),

as seen in scenarios with low snowfall where the posterior ensemble sometimes became degenerate and

overconfident. To address this limitation, a potential approach involves implementing hybrid schemes that

combine ensemble Kalman methods and particle methods to alleviate this issue (Pirk and others, 2022),

although this would increase computational costs.

In contrast, ES updates the state by moving particles in parameter space, which can lead to better

coverage of the true state, especially when it lies outside the prior ensemble range (van Leeuwen and

Evensen, 1996; Evensen and others, 2022). This adaptability was evident in our results, where ES performed

better in assimilating snow depth, particularly under low snowfall scenarios. The ES method requires

twice the number of model runs compared to PBS because it requires rerunning the model with updated

parameters, which increases computational cost, but can lead to more accurate results in certain scenarios.
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whereas traditional Markov Chain Monte Carlo (MCMC) methods involve numerous sequential iter-

ations to converge on a solution, both PBS and ES use parallelizable ensemble approaches, significantly

reducing computational time. For instance, in the study by Rounce and others (2020), MCMC methods

were used to quantify parameter uncertainty in glacier models, involving costly iterations to sample the

posterior distribution. Our methods avoid the mainly iterative sampling of MCMC by directly updating

an ensemble of parameter vectors, providing a faster convergence to a posterior estimate. While MCMC

methods can be very accurate due to their thorough sampling of parameter space, they are often computa-

tionally heavy for complex models like CryoGrid, where each model simulation is expensive. Our approach

integrates the complexity of CryoGrid with efficient data assimilation methods, allowing for more frequent

updates or larger ensembles without a proportional increase in computational demand.

Sensitivity to ensemble size

The sensitivity is evaluated based on two components: resampling (Monte Carlo) variance and interan-

nual variability. As reported in the results, the average CRPS decreases with increasing ensemble size.

Notably, the variance of CRPS from interannual variability remains unchanged, whereas the variance of

CRPS associated with Monte Carlo resampling error follows the overall decreasing trend of the total error.

Interannual variance reflects the natural variability in the system over the different years, capturing the

system’s response to varying climatic conditions (Malone and others, 2019; Wei and others, 2019). In

this study, all experiments are forced using the same meteorological data source, meaning that interannual

variance is inherent to the system and remains unaffected by ensemble size. The problem of small ensemble

sizes resulting in large resampling variance is well-documented, as subsets sampled from smaller ensembles

may fail to adequately represent the full diversity of a larger ensemble, leading to greater variance in the

results (Choi and Lee, 2025). In our study, as the ensemble size increases to 100, the rate of improvement

in CRPS (result accuracy) and the reduction in resampling variance both exhibit a diminishing trend.

While larger ensembles generally reduce sampling errors, they come at the cost of increased computational

demands (Sacher and Bartello, 2008). The optimal ensemble size, however, depends on the specific design

of the experiment and the acceptable trade-off between computational cost and error tolerance for the

user (Milinski and others, 2020). When the ensemble size reaches 1000, the resampling variation might

be expected to approach zero in our experiment design, as the entire large ensemble pool comprises 1000

unique members. However the resampling variation remains non-zero even when the ensemble size is 1000.
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This is because the CRPS statistics are estimated through a bootstrapping process, where an ensemble

of N particles is resampled with replacement from the complete large ensemble. Even when the number

of samples matches the original pool size, the randomness introduced by bootstrapping with replacement

ensures that the resampled subset does not perfectly replicate the original pool (Davison and Hinkley,

1997). Some particles may appear multiple times, while others may be excluded entirely. This stochastic

nature of the bootstrapping process introduces Monte Carlo sampling error, leading to persistent variability

in the results and ensuring a non-zero resampling variance that mimics the actual Monte Carlo variance

that would arise when individual particles are sampled multiple times within 1000 ensemble members.

The bootstrap technique used herein is a computationally affordable way to probe Monte Carlo sampling

error that could otherwise be prohibitively expensive to evaluate in that it would require running multiple

distinct large ensembles through CryoGrid.

CONCLUSIONS

In this study, we applied two data assimilation schemes, the PBS and ES, to simulate glacier surface mass

balance from 2010 to 2022 across different glacier zones in Kongsvegen with 2.5 km grid cells through

extensive large ensemble twin experiments. The posterior results were evaluated by comparing them with

synthetic true surface mass balance values using the CRPS metric with the prior CRPS as a reference

from which improvement was measured. Cross-comparisons across different scenarios further illustrated

the impact of various observational data on surface mass balance simulations under different assimilation

schemes. From this study, the following conclusions can be drawn:

- Assimilating albedo generally improves SMB simulation across all glacier zones, with 68.4% improve-

ment by PBS and 48.3% improvement by ES. However, the degree of improvement varies between

different glacier areas. In particular, results in the ablation area show an average improvement of

58.4%, which is greater than the 27.5% improvement observed in the accumulation area.

- The assimilation of snow depth yields results comparable to those of albedo assimilation, particularly

in the ablation and ELA zones, 77.8% (79%) and 66.9% (67.4%) respectively, for the PBS (ES) data

assimialtion scheme. However, under the low snowfall scenarios within the PBS scheme, method-

ological limitations cause the posterior results to collapse to a single point in the accumulation zone,

resulting in an overly constrained ensemble. This excessive constraint leads to outcomes that are

both overconfident and biased.
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- Both assimilation schemes lead to marked improvements in surface mass balance simulations. While

the PBS outperforms the ES in assimilating albedo, the ES demonstrates marginally better perfor-

mance over the PBS when assimilating snow depth.

- The joint assimilation of both observation types gives the best performance across all experiments

except those given by low snowfall level in the accumulation area. The average improvement in CRPS

after joint assimilation across all different glacier areas is 63.5%.

- Resampling from the large 1000 members ensemble using varying ensemble sizes, the rate of im-

provement, reflected in both the variance of the Monte Carlo resampling and the median CRPS,

slows considerably when the ensemble size reaches 100 indicating diminishing performance gains

with further computationally costly increases in ensemble size.

The twin experiments in this study demonstrated strong performance gains in most scenarios, including

various glacier zones and observational data. This establishes the assimilation approach as effective in

synthetic experiments and suggests that it is potentially transferable for estimating surface mass balance

of all glaciers on Svalbard. Corroborating this claim will require further experiments with real observations.

However, observational data can be inconsistent in real-world applications, posing further implementation

challenges when relying on satellite-based observations due to factors such as gaps and retrieval uncertainty.

DATA AND CODE AVAILABILITY

CARRA data was downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store at

https : {{doi.org{10.24381{cds.d29ad2c6. The results are generated using Copernicus Climate Change

Service information (2025). Neither the European Commission nor ECMWF is responsible for any use

that may be made of the Copernicus information or data it contains. The CryoGrid community model is

hosted on Github. The source code is available at

https : {{github.com{CryoGrid{CryoGridCommunity_source.
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