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Abstract
From arsenal delivery to rescue missions, unmanned aerial vehicles (UAVs) are playing a crucial role in various
fields, which brings the need for continuous evolution of system identification techniques to develop sophisticated
mathematical models for effective flight control. In this paper, a novel parameter estimation technique based on filter
error method (FEM) augmented with particle swarm optimisation (PSO) is developed and implemented to estimate
the longitudinal and lateral-directional aerodynamic, stability and control derivatives of fixed-wing UAVs. The FEM
used in the estimation technique is based on the steady-state extended Kalman filter, where the maximum likelihood
cost function is minimised separately using a randomised solution search algorithm, PSO and the proposed method
is termed FEM-PSO. A sufficient number of compatible flight data sets were generated using two cropped delta
wing UAVs, namely CDFP and CDRW, which are used to analyse the applicability of the proposed estimation
method. A comparison has been made between the parameter estimates obtained using the proposed method and the
computationally intensive conventional FEM. It is observed that most of the FEM-PSO estimates are consistent with
wind tunnel and conventional FEM estimates. It is also noticed that estimates of crucial aerodynamic derivatives
CLα

, Cmα
, CYβ

, Clβ and Cnβ
obtained using FEM-PSO are having relative offsets of 2.5%, 1.5%, 6.5%, 3.4% and

7.6% w.r.t. wind tunnel values for CDFP, and 1.4%, 1.9%, 0.1%, 9.6% and 7.5% w.r.t. wind tunnel values for
CDRW. Despite having slightly higher Cramer-Rao Lower Bounds of estimated aerodynamic derivatives using the
FEM-PSO method, the simulated responses have a relative error of less than 0.10% w.r.t. measured flight data. A
proof-of-match exercise is also conducted to ascertain the efficacy of the estimates obtained using the proposed
method. The degree of effectiveness of the FEM-PSO method is comparable with conventional FEM.

Nomenclature
A steady-state state matrix
b Wingspan in m
c mean aerodynamic chord in m
C steady-state observation matrix
CD0 drag force coefficient at zero lift
CLδe

derivative of lift force coefficient w.r.t. elevator deflection
CL0 lift force coefficient at zero angle-of-attack
CLα

derivative of lift force coefficient w.r.t. angle-of-attack
CYδr

derivative of side force coefficient w.r.t. rudder deflection
CY0 side force coefficient at zero sideslip angle
CYp derivative of side force coefficient w.r.t. roll rate
CYr derivative of side force coefficient w.r.t. yaw rate
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CYβ
derivative of side force coefficient w.r.t. sideslip angle

Clδa
derivative of rolling moment coefficient w.r.t. aileron deflection

Clδr
derivative of rolling moment coefficient w.r.t. rudder deflection

Cl0 rolling moment coefficient at zero sideslip angle
Clp derivative of rolling moment coefficient w.r.t. roll rate
Clr derivative of rolling moment coefficient w.r.t. yaw rate
Clβ derivative of rolling moment coefficient w.r.t. sideslip angle
Cmδe

derivative of pitching moment coefficient w.r.t. elevator deflection
Cm0 pitching moment coefficient at zero angle-of-attack
Cmq derivative of pitching moment coefficient w.r.t. pitch rate
Cmα

derivative of pitching moment coefficient w.r.t. angle-of-attack
Cnδr

derivative of yawing moment coefficient w.r.t. rudder deflection
Cn0 Yawing moment coefficient at zero sideslip angle
Cnp derivative of yawing moment coefficient w.r.t. roll rate
Cnr derivative of yawing moment coefficient w.r.t. yaw rate
Cnβ

derivative of yawing moment coefficient w.r.t. sideslip angle
CD nondimensional drag force coefficient
CL nondimensional lift force coefficient
CY nondimensional side force coefficient
Cl nondimensional rolling moment coefficient
Cm nondimensional pitching moment coefficient
Cn nondimensional yawing moment coefficient
F Fisher information matrix
F process noise distribution matrix
Ft thrust force in N
g acceleration due to gravity in m/s2

G gradient vector
G measurement noise distribution matrix
Ixx mass moment of inertia about body x-axis in kg m2

Ixz product moment of inertia in body xz-plane in kg m2

Iyy mass moment of inertia about body y-axis in kg m2

Izz mass moment of inertia about body z-axis in kg m2

J cost function
k induced drag force correction factor
K steady-state Kalman gain matrix
L likelihood function
m mass of UAV in kg
np number of parameters
nx number of state variables
ny number of observation variables
p roll rate in rad/s
P steady-state prediction error covariance matrix
q pitch rate in rad/s
r Yaw rate in rad/s
R measurement noise covariance matrix
S Wing planform area in m2

tk discrete-time
u control input vector
u discrete-time control input vector
v measurement noise vector
V freestream velocity in m/s
V measurement noise matrix
w process noise vector
x state vector
x̂ corrected state vector
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x̃ predicted state vector
y output vector
ỹ predicted output vector
z measurement vector

Greek symbol
α angle-of-attack in rad
β sideslip angle in rad
δa aileron deflection angle in rad
δe elevator deflection angle in rad
δr rudder deflection angle in rad
θ pitch angle in rad
μ mean of a scalar Gaussian random variable
ρ density of air in kg/m3

σ standard deviation of a scalar Gaussian random variable
φ roll angle in rad
M mean of a Gaussian random vector
� covariance of a Gaussian random vector
� parameter vector

1.0 Introduction
Following their tremendous success in the military arena, unmanned aerial vehicles (UAVs) are rapidly
finding their way into civilian applications. The UAV was initially designed as a tool for aerial pho-
tography, surveillance and reconnaissance during the last century [1]. Sooner they became a valuable
military asset with a broader range of applications, including decoying, jamming, relaying radio sig-
nals, detecting land mines and so on [2]. UAVs have also been used for aerial photography, agriculture,
search and rescue and crowd control by civilians and governments over the last two decades. Since most
of these applications demand the UAV to be highly manoeuvrable, they are designed to have marginal
stability or even instability [1], demanding a dedicated fly-by-wire onboard autopilot. The robustness
and effectiveness of an onboard autopilot are significantly influenced by the UAV dynamics, which is
indeed described by its aerodynamic model [3]. Besides the above purpose, the aerodynamic model also
plays an integral part in developing a realistic flight simulator for the training of pilots.

Aerodynamic characterisation is already a well-established discipline with ever-growing scientific
literature. There are a wide variety of techniques available such as analytical methods [4], wind tunnel
testing [5], computational fluid dynamics (CFD) methods [6] and system identification methods. The
analytical methods are based on sets of empirical and semi-empirical equations, which provide com-
plete information about the aerodynamic derivatives in the preliminary design stages, albeit with low
accuracy in most cases. One of the famous analytical procedures, called US DATCOM, has been used
for evaluating the aerodynamic coefficients of a UAS-S4 aircraft, and these estimates are found to be
as accurate as CFD-based estimates [7]. Wind tunnel testing and CFD methods can be used to esti-
mate parameters with better accuracy than those estimated using analytical methods. However, both are
expensive in terms of cost and time [8]. Furthermore, the parameters estimated using static wind tunnel
testing suffer errors due to wall effects, Reynold’s number and sting interferences. Its inability to pro-
vide damping derivatives is another severe limitation [9]. Even though damping derivatives of a scaled
model can be obtained from dynamic wind tunnel testing, it requires sophisticated instruments and actu-
ators [10]. System identification methods based on flight testing can overcome most of the limitations
mentioned earlier and can help to formulate complex aerodynamic models by considering realistic flight
scenarios.

System identification is defined as “a methodology for building mathematical models of dynamic
systems using measurements of input and output signals of the system” [11]. In the case of UAVs, the
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structure of the dynamic model is well defined using rigid body Newtonian mechanics; the system identi-
fication problem reduces to a parameter estimation problem where the numerical value of the parameters
governing the UAV dynamics are determined statistically using flight data [12]. These flight data that
are to be used for the system identification process are obtained by carrying out specific manoeuvres
that exogenously excite the dynamics of the aircraft [13]. The advancement in sensor technology has
made the fabrication of micro-electro-sensor systems possible, which helps in logging the flight data
acquired while performing system identification manoeuvres, even in small UAVs. Equation error meth-
ods (EEM), output error methods (OEM) [14–16], filter error methods (FEM) [17–19] and Artificial
Intelligence- (AI) based methods [20–24] are primary aerodynamic parameter estimation methods. The
least square cost function-based EEM has been touted as a promising alternative for a rapid parameter
estimation technique because of its computational simplicity. This method does not require any initial
value for the estimation of parameters and does not possess numerical instability. Though it is the sim-
plest method in terms of mathematical formulation, its estimates are discrepant when the flight data
is corrupted with random noise, which is usually the case. In the presence of measurement noise, the
OEM, based on the maximum-likelihood cost function, performs exceedingly better than EEM because it
considers the statistical properties of random noise in its cost function. However, when there are uncer-
tainties in the model dynamics, termed process noise, OEM is a less-reliable method [25]. It is well
observed that OEM estimates are susceptible to a priori information, which may lead to significant inac-
curacies if the initial value of the parameters is at a significant offset from the nominal value [26]. FEM is
considered an exemplary method for estimating parameters in the presence of measurement and process
noise. FEM is mainly classified into extended Kalman filter (EKF), unscented Kalman filter (UKF),
and augmented unscented Kalman filter (UKFa). Though the UKF method performs better in some
cases, the overall performance of all three variants remains similar [27]. Over the past two decades, the
widespread accessibility of extensive computational resources has significantly popularised the usage of
AI techniques, primarily based on Machine Learning (ML) and Deep Learning (DL) algorithms, to solve
existing problems in different disciplines. One of the popular AI-based estimation methods is Neural-
Gauss-Newton (NGN), in which a feed-forward neural network, trained using flight data, replaces the
system dynamics [28]. Though the NGN method accurately estimates the parameters, the trained neural
network does not necessarily represent a generalised flight dynamic model. Instead, it is a restricted
model sensitive to flight data used to train the model. Apart from the time-domain parameter estima-
tion methods, some procedures use frequency-domain formulation based on the finite Fourier transform
[29–31].

Despite its versatility, the conventional FEM requires significant computational resources because it
involves the computation of Jacobian matrices, Kalman gain obtained by solving the Ricatti equation,
and parameter updation through the Gauss-Newton (GN) method. The heavy computational aspects of
FEM can be minimised by considering steady-state EKF instead of its time-varying counterpart, which
is regarded as a valid simplification if the system under investigation is time-invariant and the devia-
tion from the nominal trajectory is minimal [12]. Furthermore, reduction in computational resources
is possible by replacing the gradient-based parameter updation technique with a solution search-based
approach such as particle swarm optimisation (PSO) and genetic algorithms (GA). The PSO algorithm
[32], discovered in 1995, is an evolutionary computation technique like GA in many of the aspects
wherein the potential solutions (particles) move through the solution search space following the current
optimum particle [33]. The PSO method has already been used in many aerospace applications as a
tool for optimisation [34]. The present work attempts to couple the advantages of steady-state EKF
and PSO to develop an efficient FEM without compromising the accuracy of the estimated param-
eters, and the proposed method is termed FEM-PSO. The parameters estimated using the proposed
FEM-PSO method are compared with those obtained using the conventional FEM method and wind
tunnel. Further, a proof-of-match exercise has been carried out using the estimated parameters. The
manuscript has been organised as follows: Mathematical modelling of the flight dynamics of the UAV
for longitudinal and lateral-directional cases has been presented in Section 2. The parameter estimation
methodology, including the formulations for conventional FEM and FEM-PSO, has been organised in
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Table 1. Standard geometric parameters of CDFP
and CDRW

Part Parameter Value
Wing Span 1.5 m

Root Chord 0.9 m
Taper Ratio 0.167
Planform Area 0.787 m2

Vertical Tail Root Chord 0.2 m
Tip Chord 0.08 m
Span 0.42 m
Aerofoil NACA 0012

Elevon Chord 0.125 m
Span 0.45 m

Figure 1. Cropped Delta wing UAVs [35].

Section 3. A description of data gathering has been provided in Section 4. Section 5 contains the analysis
of the results obtained in the current research. The advantages and limitations of using FEM-PSO have
been presented in Section 6.

2.0 Mathematical modelling
The flight data for this research was acquired using two indigenously designed propeller-driven wing-
alone UAVs, namely CDFP and CDRW [3]. CDFP, with a gross take-off mass of 3.5 kg, features a
cropped delta wing with a flat-plate aerofoil, while CDRW, with a gross take-off mass of 3.6 kg, features a
reflex aerofoil. The UAVs house their separate fuselages, and they have an all-moving vertical tail, which
acts as both a vertical stabiliser and rudder. Both UAVs do not have a dedicated horizontal tail, but they
feature elevons that act as the control surface to induce pitching and rolling moments independently [35].
Both CDFP and CDRW, whose prototypes are given in Fig. 1, were developed, instrumented and tested
at the Flight Laboratory of IIT Kanpur. The standard geometrical parameters of CDFP and CDRW have
been listed in Table 1.

The UAVs can be treated as rigid bodies and their six DOF dynamics can be described using differ-
ential equations, which are nonlinear and coupled in nature. These governing equations of motion are
decoupled, retaining their original non-linearity, under appropriate assumptions based on flight manoeu-
vres to represent longitudinal and lateral-directional motion independently. The simplifying assumptions
include the thrust from the propulsion system being perfectly aligned with the body’s x-axis and the
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Figure 2. A schematic representation of the cropped Delta UAV [36].

angle-of-attack α being small. A schematic representation of the UAV is given in Fig. 2. The descrip-
tion of the symbols used in the forthcoming sections is given in nomenclature. The governing equations
for longitudinal motion used in the current research are given by Equation (1) as follows [25]:

V̇ = −ρSV2

2m
CD + g sin(α − θ ) + Ft

m
cos(α)

α̇ = −ρSV

2m
CL + g

V
cos(α − θ ) − Ft

mV
sin(α) + q

q̇ = ρScV2

2Iyy

Cm

θ̇ = q (1)

The lateral-directional dynamic equations in current research are given by Equation (2) as fol-
lows [25]:

β̇ = −ρSV

2m
CY − Ft

mV
sin(β) + g

V
sin(φ) − r

ṗ = 1

2

(
ρSV2b (IzzCl + IxzCn)

IxxIzz − I2
xz

)
ṙ = 1

2

(
ρSV2b (IxzCl + IxxCn)

IxxIzz − I2
xz

)
φ̇ = p (2)

The aerodynamic coefficients involved in the dynamic equations, if the UAV is operated at a low
angle-of-attack, can be modelled using the linear equations as follows [3, 37]:

CL = CL0 + CLα
α + CLq

qc

2V
+ CLδe

δe

CD = CD0 + kC2
L

Cm = Cm0 + Cmα
α + Cmq

qc

2V
+ Cmδe

δe
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CY = CY0 + CYβ
β + CYp

pb

2V
+ CYr

rb

2V
+ CYδr

δr

Cl = Cl0 + Clβ β + Clp

pb

2V
+ Clr

rb

2V
+ Clδa

δa + Clδr
δr

Cn = Cn0 + Cnβ
β + Cnp

pb

2V
+ Cnr

rb

2V
+ Cnδr

δr (3)

Equation (1) can be rewritten in the following vector form,

ẋL(t) = f L(xL(t), uL(t), �L) (4)

In Equation (4),

xL = [
V , α, q, θ

]
uL = [δe, Ft]

�L = [
CD0 , k, CL0 , CLα

, CLq , CLδe
, Cm0 , Cmα

, Cmq , Cmδe

]
are the state variables, control variables, and parameters for the longitudinal dynamics, respectively.

Equation (2) can be rewritten in the following vector form,

ẋLD(t) = f LD (xLD(t), uLD(t), �LD) (5)

In Equation (5),

xLD(t) = [β, p, r, φ]

uLD(t) = [δa, δr, Ft]

�LD(t) = [
CY0 , CYβ

, CYp , CYr , CYδr
, Cl0 , Clβ , Clp , Clr , Clδa

, Clδr
, Cn0 , Cnβ

, Cnp , Cnr , Cnδr

]
are the state variables, control variables and parameters for the lateral-directional dynamics,
respectively.

In general, the nonlinear equations of motion describing the longitudinal and lateral-directional
dynamics of a UAV can be represented in state space [12] as follows in Equation (6),

ẋ(t) = f (x(t), u(t), �)

y(t) = g(x(t), u(t), �) (6)

Equation (6) does not necessarily capture the dynamics perfectly because of the inaccuracies in the
model arising due to unmodelled dynamics and uncertainties in the parameters. These uncertainties in
the model can be quantified by modelling the process noise. This research assumes that the process
noise follows the Gaussian distribution with zero mean and identical covariance. During flight tests, the
variables of interest are measured using sensors. However, all sensors are not perfect. The data captured
by the sensors contain undesirable frequencies, which is termed measurement noise. In this research, it
is assumed that the measurement noise is Gaussian with zero mean and identical covariance.

When measurement and process noise are added to Equation (6), it becomes [5]

ẋ(t) = f (x(t), u(t), �) + Fw(t)

y(t) = g(x(t), u(t), �)

z(tk) = y(tk) + Gv(tk) (7)

F and G are process and measurement noise distribution matrices, respectively.
Since the noises are assumed to be random, w and v can be treated as random vectors, which means

that the system states x is also a random vector, complicating the parameter estimation process because
the state cannot be obtained by direct integration of state equations. It must be estimated using a suitable
minimum variance estimator, as described in Section 3.
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3.0 Parameter estimation methodology
3.1 Multivariate Gaussian distribution
From [38], if X is a Gaussian random variable that takes on values from a discrete set s{x1, x2, . . . , xm}
with mean μ and variance σ 2, then its probability distribution function pX(x) is given by,

pX(X = x) = 1√
2πσ 2

exp

(
− (x − μ)2

2σ 2

)
(8)

If X is a Gaussian random vector with mean M and covariance �, of dimension n × 1 where each of
its elements Xi take on values from discrete sets si{xi1, xi2, . . . , xim} and if all Xi are independent of each
other, the joint probability distribution function pX(x) is given by,

pX(X = x) = 1

(
√

2π )
n × 1√

det(�)
× exp

(
−1

2
(x − M)

T�−1(x − M)

)
(9)

If X is a Gaussian random matrix of dimension n × N where each of its N columns Xi are independent
random vectors with identical variance M, the joint probability distribution pX(X ) is given by,

pX(X =X ) = ((2π )ndet(�))− N
2 × exp

(
−1

2

∑N

i=1
(xi − μi)

T�−1(xi − μi)

)
(10)

3.2 Conventional filter error method (FEM)
The need for a state estimator is described briefly in this subsection. Since the dynamics of the UAV is
nonlinear in both longitudinal and lateral cases, EKF has been preferred as the state estimator. In this
research, the steady-state EKF algorithm has been used because it dramatically reduces the computation
costs if the system is linear time-invariant (LTI) and the deviations from the nominal trajectory are minor.
The steady-state EKF algorithm consists of prediction and correction steps given by [12].

Prediction step

x̃(tk+1) = x̂(tk) +
tk+1∫
tk

f (x(t), u(tk), �) dt, x̂(t0) = x0

ỹ(tk) = g(̃x(tk), u(tk), �) (11)

Correction step

x̂(tk) = x̃(tk) + K[z(tk) − ỹ(tk)] (12)

The steady-state Kalman gain K in Equation (12) is obtained by solving the steady-state Ricatti
equation given by Equation (13) for steady-state prediction error covariance matrix P as follows,

AP + PAT− 1


t
PCTR−1CP + FFT = 0

K = PCTR−1 (13)

The State and Observation matrices in Equation (13) are obtained using Newton’s Central Difference
scheme. Proper tuning of F and G matrices decides the success of EKF. This adaptive filtering problem
is solved using the combined formulation technique proposed by Maine and Iliff in Ref. [15]. The EKF by
itself does not do parameter estimation. It gives the best estimate of the state based on current parameters.
The goodness of this generated estimate is measured with a cost function. This cost function must be
minimised for the parameters using an optimisation algorithm. In conventional EKF implementation,
Gauss-Newton (GN) method is used for carrying out the optimisation.

Using Equations (7) and (10), the likelihood function L(z|�), which captures the probability
of observing the data z given the parameters � for the case of z being drawn from Gaussian
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distribution is given by,

L(z|�, R) = ((2π )ndet(R))− N
2 × exp

(
−1

2

∑N

i=1
(zi − ỹi)

TR−1(zi − ỹi)

)
(14)

It is possible to convert the parameter estimation problem into a nonlinear optimisation problem con-
strained by dynamic equations. If the measurement z and covariance R are fixed, when the optimal value
of parameters �∗ is used in Equation (14), L will have its maximum value, which is the maximum likeli-
hood estimate (MLE) for z. In this research, the cost J is taken as the negative logarithm of Equation (14),
as given below,

J(z|�, R) = 1

2

∑N

i=1
(zi − ỹi)

TR−1(zi − ỹi) + N

2
log(det(R)) + Nny

2
log(2π ) (15)

If the value of R is unknown, it is taken to be the value that minimises Equation (15) when � is a
known value as proposed in the two-step relaxation strategy [12]. It is found by partially differentiating
Equation (15) with respect to R and equating it to 0 as follows,

∂J(R)

∂R
= 0 (16)

From, [39]

R = 1

N

∑N

i=1
(zi − ỹi)(zi − ỹi)

T (17)

Substituting Equation (17) in Equation (15),

J(z|�) = Nny

2
+ N

2
log(det(R)) + Nny

2
log(2π ) (18)

Since J is to be optimised for �, for a given measurement z, Equation (18) can further be reduced
into [12]

J(�) = det(R) (19)
GN optimisation algorithm is used to optimise Equation (19) w.r.t. �. The parameter � iteratively
converges towards the optimal solution �∗ using the gradient information of the cost function. The cost
function J(�) can be linearly approximated [28], and parameter correction �� [12] is given as follows,

�� = −
(

∂2J

∂�2

)
i

−1(
∂J

∂�

)
i

∼= −F−1G (20)

In Equation (20), the first derivative of J w.r.t. � represents the gradient G and an approximation of
the second derivate represents the Fisher information matrix F . They are evaluated as follows [12]:

G = −STR−1
∑N

i=1
[zi − ỹi]

F = STR−1S (21)
In Equation (21), S is a matrix of dimension (ny × np) and it is known as the sensitivity matrix, which

quantifies the effect of change in parameters on the estimated output vector ỹ. Mathematically, it is
given as,

S =
N∑

i=1

∂ ỹi

∂�
(22)

The response gradience
∂ ỹ
∂�

in Equation (22) is obtained numerically by giving a small perturbation
δ� to each element of the parameter vector and computing the corresponding perturbed response ỹp.
The lth column of the response gradience is computed using the following linear approximation:(

∂ ỹ
∂�

)
l

= ỹpl
− ỹl

δ�
(23)
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Finally, the parameter update is given by,

�i+1 = �i + �� (24)

3.3. FEM augmented with particle swarm optimisation (FEM-PSO)
The cost function in Equation (19) is optimised using the PSO algorithm. The PSO belongs to a class
of computational techniques inspired by biological systems. This evolutionary computational technique
performs stochastic optimisation based on the social behaviour of particles. The main advantage of using
the PSO algorithm over the conventional Gauss-Newton (GN) algorithm is that the PSO does not require
gradience computation at each iteration which significantly reduces the computation cost of the onboard
computer. The working of the PSO algorithm for parameter estimation is briefly explained as follows:

Initialise The search space S where the optimal solution �∗ is likely to be observed is chosen as[
�i

min, �i
max

]
where �i

min and �i
max represent the maximum and minimum limits of the solution. The

initial position of all the particles �i(0) are chosen randomly within S. The initial velocity of all the
particles ��i(0) are chosen to be 0. Initial value of personal best position for each particle �i

pb(0) is
chosen to be their respective initial positions since the particles have not started moving yet. The initial
global best position �gb(0) is chosen to be the personal best position that minimises the cost function
given in Equation (19).

�i(0) := rand
[
�i

min, �i
max

]
, ∀ i ∈ [1, 2, . . . , Np]

��i(0) := 0

�i
pb(0) := �i(0)

�gb(0) := argmin
�pb

J
(
�i

pb

)
(25)

Update The position of the particles is updated iteratively, followed by its velocity update to give a
new generation of particles. The velocity is updated based on the relative position of the particle from
its personal best position and global best position in the current iteration. The following equations list
the velocity and position updates of the particles, respectively, for a given generation t,

��i(t + 1) = w(t + 1)��i(t) + c1aT
1

[
�i

pb(t) − �i(t)
] + c2aT

2

[
�gb(t) − �i(t)

]
(26)

�i(t + 1) = �i(t) + ��i(t + 1) (27)

In Equation (26), w, c1, and c2 are the hyperparameters of the PSO algorithm and are called the
inertial coefficient, personal cognitive coefficient, and social cognitive coefficient, respectively. In this
research, the values of c1 and c2 are chosen to be 2 as given in [32]. The value of w is chosen to decrease
with each iteration by the rule w(t + 1) = 0.99 w(t) to encourage the particles to follow the optimal
direction as given in [36]. a1 and a2 in Equation (26) are random vectors of appropriate dimensions.

It is to be asserted that �i(t + 1) ∈ S, ∀ ∈ [1, 2, . . . , Np]. If the ith particle is not in S, it is to be re-
initialised. The personal best position of the particles and the global best position are updated iteratively
as follows:

�i
pb(t + 1) =

{
�i(t + 1), if J

(
�i(t + 1)

) ≤ J
(
�i

pb(t)
)

�i
pb(t), Otherwise

�gb(t + 1) =
{

�i
pb(t + 1), if J

(
�i

pb(t + 1)
) ≤ J

(
�gb(t)

)
�gb(t), Otherwise

(28)

Convergence If t � tmax, the iteration is stopped and �gb is taken as �∗.
The above description has been summarised in Fig. 3 as a flowchart.
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Figure 3. PSO algorithm for parameter estimation.

4.0 Flight data gathering
Flight data gathering (FDG) can be defined as acquiring the time history of motion variables and the
corresponding applied control inputs. FDG is such an essential step in the parameter estimation process
that the accuracy and reliability of the estimated parameters directly depend on the quality of the gathered
data. The amount of information content is a direct measure of the quality of flight data, and it can be held
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Figure 4. Comparison between actual flight data and simulated data for CDFP in the longitudinal
flight regime.

high only when the control input sufficiently excites the dynamics of the UAV independently. For this
purpose, the UAV should house an industrial-grade data acquisition system with an inertial measurement
unit (IMU) to capture motion variables, standard quality pressure sensors to indirectly measure velocity,
and flow angle sensors to measure the angle-of-attack and sideslip angles. The technical details of the
data acquisition system and the nature of the flight tests performed with CDFP and CDRW are presented
briefly in Ref. [35]. The generated flight data are labelled with the UAV name followed by the nature
of excitation – L for longitudinal and LD for lateral directional, followed by the serial number of the
flight test. Therefore, CDFP_Li would mean that it is the ith CDFP dataset where its longitudinal mode
is excited.

A total of 16 compatible flight data sets, 4 for longitudinal parameter estimation and 4 for lateral-
directional parameter estimation for CDFP and CDRW each, are used in the current research. From
Figs 4 and 5, it can be noticed that sinusoidal elevator inputs are applied to the UAVs for the excitation
of longitudinal dynamics. Since the maximum angle-of-attack observed in the manoeuvres performed
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Figure 5. Comparison between flight data and simulated data for CDRW in the longitudinal flight
regime.

by the UAVs is close to 10◦ and from the wind tunnel experiments carried out using the above UAVs [40],
it was observed that the variation of the aerodynamic coefficients was linear when the angle-of-attack
varied between −5◦ and 10◦. Hence the use of the linear aerodynamic model presented in Equation
(3) is suitable for the aerodynamic characterisation of the above UAVs. From Figs 7 and 8, it can be
referred that the aileron is subjected to sinusoidal inputs varied between ±10◦ to excite the lateral-
directional dynamics of the UAVs. It can be observed that the rudder inputs are negligible in most cases
because the UAVs have a high aspect ratio all-movable vertical tail rudder, which indicates high control
power, and the slightest deflection of the rudder can make the task of controlling the UAV difficult for
a ground stationed pilot. Therefore, lateral-directional dynamics are excited through aileron deflection
alone [3].
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Table 2. Estimated longitudinal parameters for CDFP_L1, CDFP_L2

FEM FEM−PSO

Parameters Wind Tunnel [41] CDFP_L1 CDFP_L2 CDFP_L1 CDFP_L2
CD0 0.035 0.0356

(7.38E−06)
0.0353

(2.40E−06)
0.0374

(4.49E−05)
0.0359

(5.97E−06)
k – 0.1655

(7.12E−05)
0.164

(4.58E−05)
0.1363

(4.14E−04)
0.1552

(8.86E−05)
CL0 0 0.0001

(1.29E−06)
0.0001

(1.19E−06)
0.0001

(2.02E−06)
0.0001

(3.89E−06)
CLα

3.25 3.1583
(2.88E−03)

3.1572
(2.38E−03)

3.1662
(3.53E−03)

3.1868
(3.90E−03)

CLq – 0.6737
(2.95E−03)

0.6718
(3.19E−03)

0.7259
(5.13E−03)

0.6831
(4.16E−03)

CLδe
0.26 0.2533

(2.23E−03)
0.2519

(1.88E−03)
0.2519

(2.78E−03)
0.274

(2.98E−03)
Cm0 0 0.0001

(3.24E−07)
0.0001

(3.22E−07)
0.0001

(1.24E−06)
0.0001

(3.56E−06)
Cmα

−0.39 −0.3893
(2.32E−05)

−0.3894
(2.15E−05)

−0.387
(1.06E−04)

−0.4038
(2.22E−04)

Cmq – −0.0713
(3.70E−05)

−0.0715
(3.95E−05)

−0.0654
(1.52E−04)

−0.0753
(4.37E−04)

Cmδe
−0.2843 −0.2839

(2.01E−05)
−0.284

(1.90E−05)
−0.2819

(9.05E−05)
−0.2948

(1.93E−04)
Note: Values in the () denote Cramer-Rao lower bounds.

Table 3. Estimated longitudinal parameters for CDFP_L3, CDFP_L4

FEM FEM−PSO

Parameters Wind Tunnel [41] CDFP_L3 CDFP_L4 CDFP_L3 CDFP_L4
CD0 0.035 0.0354

(4.36E−06)
0.0354

(6.50E−06)
0.035

(7.87E−06)
0.0347

(1.34E−05)
k – 0.166

(5.12E−05)
0.1656

(8.11E−05)
0.174

(9.11E−05)
0.1724

(1.66E−04)
CL0 0 0.0001

(1.02E−06)
0.0001

(1.22E−06)
0.0001

(1.47E−06)
0.0001

(2.18E−06)
CLα

3.25 3.1569
(2.27E−03)

3.1573
(2.67E−03)

3.1639
(2.43E−03)

3.1578
(3.19E−03)

CLq – 0.671
(2.27E−03)

0.6727
(2.68E−03)

0.6416
(2.66E−03)

0.6721
(2.93E−03)

CLδe
0.26 0.252

(1.77E−03)
0.2523

(2.10E−03)
0.2669

(1.90E−03)
0.2592

(2.48E−03)
Cm0 0 0.0001

(2.47E−07)
0.0001

(3.22E−07)
0.0001

(1.13E−06)
0.0001

(1.97E−06)
Cmα

−0.39 −0.3893
(1.97E−05)

−0.3893
(3.08E−05)

−0.3907
(8.68E−05)

−0.3987
(1.85E−04)

Cmq – −0.0711
(3.03E−05)

−0.0713
(4.62E−05)

−0.0769
(1.37E−04)

−0.0791
(2.73E−04)

Cmδe
−0.2843 −0.2839

(1.67E−05)
−0.2839

(2.64E−05)
−0.2853

(7.40E−05)
−0.2912

(1.58E−04)
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Table 4. Estimated longitudinal parameters for CDRW_L1, CDRW_L2

FEM FEM−PSO

Parameters Wind Tunnel [42] CDRW_L1 CDRW_L2 CDRW_L1 CDRW_L2
CD0 0.02 0.02

(4.78E−06)
0.02

(4.79E−06)
0.0166

(6.28E−05)
0.0193

(3.00E−05)
k – 0.16

(6.02E−05)
0.16

(7.87E−05)
0.1691

(7.93E−04)
0.1581

(5.35E−04)
CL0 0.067 0.0676

(4.59E−05)
0.0676

(4.04E−05)
0.0539

(3.45E−04)
0.0655

(6.88E−05)
CLα

2.980 2.9795
(1.14E−03)

2.9796
(9.56E−04)

3.1699
(8.27E−03)

2.9609
(1.60E−03)

CLq – 0.6011
(2.11E−03)

0.6011
(1.78E−03)

0.5644
(8.02E−03)

0.6447
(3.02E−03)

CLδe
0.401 0.3995

(1.52E−03)
0.3995

(1.28E−03)
0.4684

(1.30E−02)
0.4492

(2.55E−03)
Cm0 0.01 0.01

(1.30E−06)
0.01

(1.18E−06)
0.0119

(1.83E−05)
0.0096

(5.32E−06)
Cmα

−0.241 −0.2396
(2.75E−05)

−0.2396
(2.27E−05)

−0.2793
(3.88E−04)

−0.2296
(1.01E−04)

Cmq – −0.071
(7.45E−05)

−0.0708
(6.57E−05)

−0.0695
(1.42E−03)

−0.0689
(3.12E−04)

Cmδe
−0.41 −0.4095

(6.20E−05)
−0.4095

(5.35E−05)
−0.4667

(8.13E−04)
−0.3921

(2.41E−04)

Table 5. Estimated longitudinal parameters for CDRW_L3, CDRW_L4

FEM FEM−PSO

Parameters Wind Tunnel [42] CDRW_L3 CDRW_L4 CDRW_L3 CDRW_L4
CD0 0.02 0.02

(6.79E−06)
0.02

(2.91E−06)
0.0205

(2.47E−05)
0.0198

(2.09E−05)
k – 0.16

(1.47E−04)
0.16

(1.63E−04)
0.1431

(5.13E−04)
0.1558

(1.05E−03)
CL0 0.067 0.0676

(4.70E−05)
0.0676

(6.11E−05)
0.0664

(6.58E−05)
0.0662

(1.45E−04)
CLα

2.980 2.9793
(1.11E−03)

2.9795
(1.26E−03)

3.0391
(1.54E−03)

2.9185
(3.06E−03)

CLq – 0.5995
(1.96E−03)

0.601
(2.39E−03)

0.5649
(2.53E−03)

0.6065
(5.26E−03)

CLδe
0.401 0.3987

(1.47E−03)
0.3994

(1.81E−03)
0.4645

(2.20E−03)
0.3757

(4.54E−03)
Cm0 0.01 0.01

(1.21E−06)
0.01

(9.03E−07)
0.0103

(2.76E−06)
0.0096

(4.78E−06)
Cmα

−0.241 −0.2394
(2.63E−05)

−0.2396
(1.49E−05)

−0.2466
(6.07E−05)

−0.2283
(8.78E−05)

Cmq – −0.07
(5.43E−05)

−0.071
(4.68E−05)

−0.0735
(1.30E−04)

−0.0649
(2.75E−04)

Cmδe
−0.41 −0.409

(5.42E−05)
−0.4095

(3.45E−05)
−0.4223

(1.25E−04)
−0.3904

(1.90E−04)
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Figure 6. Scatter plot comparing the estimated longitudinal parameters with wind tunnel estimates.

5.0 Results and discussions
Some of the longitudinal and lateral-directional parameters of both CDFP and CDRW UAVs have
already been estimated using wind tunnel testing in Refs [40–42]. The parameters estimated using
FEM and FEM-PSO are compared against the corresponding wind tunnel estimates for both CDFP
and CDRW. Further, longitudinal and lateral-directional flight simulations are constructed using the
estimated FEM and FEM-PSO parameters subjected to the same control inputs as the flight data, and
the reconstructed simulations are graphically compared against the flight data in this section.

5.1 Validation of longitudinal parameters
The longitudinal aerodynamic parameters corresponding to CDFP datasets, estimated using conven-
tional FEM and FEM-PSO, are presented in Tables 2 and 3. From the tables, it can be observed that
both the FEM and FEM-PSO estimates of the longitudinal static stability parameter Cmα

are fairly con-
sistent across all the datasets. Their mean offsets from the wind tunnel estimate for CDFP_L1, CDFP_L2,
CDFP_L3, and CDFP_L4 are found to be 0.18%, 0.15%, 0.18% and 0.18% for FEM, and 0.77%, 3.57%,
0.18% and 2.23% for FEM-PSO, respectively. In the case of lift curve slope CLα

, the FEM estimates are
off from wind tunnel estimate by 2.58%, 2.86%, 2.86% and 2.85%, while the FEM-PSO estimates are
off by 2.58%, 1.94%, 2.65% and 2.84%. The estimated parameters are then used to simulate the longi-
tudinal motion variables given by Equation (1), where the thrust and elevator input correspond to the
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Figure 7. Comparison between flight data and simulated data for CDFP in the lateral-directional flight
regime.

respective flight data set. They are compared against the originally recorded motion variables in the flight
data, as shown in Fig. 4. It can be noted from the figure that although the elevator inputs are unique in
each of the datasets, the responses simulated using both the FEM and FEM-PSO estimates match with
the actual flight data reasonably well.

Tables 4 and 5 contain the longitudinal parameters estimated for CDRW datasets using FEM and
FEM-PSO. The estimated parameters and recorded control inputs are then used to reconstruct the motion
variables using the dynamic equations given in Equation (1). A comparison has been made between the
reconstructed and actual responses in Fig. 5. It can be observed that all the simulated responses are
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Figure 8. Comparison between flight data and simulated data for CDRW in the lateral-directional flight
regime.

consistent with measured flight data except V∞ in CDRW_L1. The FEM estimates of CLα
are off from

the wind tunnel estimate by 0.02%, 0.01%, 0.02% and 0.02%, while the FEM-PSO estimates are off
by 6.37%, 0.64%, 1.98% and 2.06%. The variation in Cmα

estimates are lower in FEM estimate than
in the FEM-PSO. FEM estimates of Cmα

have a variation of < 1% in all the cases, while the offsets in
FEM-PSO estimates are 15.89%, 4.73%, 2.32% and 5.27%.

From Fig. 6, in CLα
estimation for CDFP, the FEM-PSO with a mean deviation of 2.5% w.r.t. the wind

tunnel estimate performs slightly better than FEM with a mean deviation of 2.85%. The FEM estimates
of longitudinal damping derivative Cmq with a median deviation of 0.18% and 0.58% for CDFP and
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Table 6. Estimated lateral-directional parameters for CDFP_LD1, CDFP_LD2

FEM FEM−PSO

Parameters Wind Tunnel [40] CDFP_LD1 CDFP_LD2 CDFP_LD1 CDFP_LD2
CY0 0 −0.0005

(1.51E−05)
−0.0004

(3.37E−05)
0

(5.70E−05)
0

(7.14E−05)
CYβ

−0.12 −0.1673
(4.63E−04)

−0.1747
(1.02E−03)

−0.1316
(7.54E−04)

−0.1336
(1.11E−03)

CYp – −0.0478
(7.98E−04)

−0.0728
(1.58E−03)

−0.0573
(1.09E−03)

−0.0554
(1.61E−03)

CYr – 0.1186
(3.08E−03)

0.0798
(7.62E−03)

0.0953
(4.49E−03)

0.1437
(8.26E−03)

CYδr
0.459 0.6279

(7.63E−03)
0.5447

(6.51E−03)
0.5311

(2.08E−02)
0.4323

(1.54E−02)
Cl0 0 0

(8.96E−07)
0

(3.80E−06)
0

(2.76E−06)
0

(3.53E−06)
Clβ −0.09 −0.0899

(1.68E−05)
−0.0899

(6.72E−05)
−0.0917

(7.41E−05)
−0.0918

(7.71E−05)
Clp – −0.5061

(8.27E−05)
−0.506

(3.20E−04)
−0.5143

(3.50E−04)
−0.5115

(3.56E−04)
Clr – 0.1034

(5.69E−05)
0.1033

(4.11E−04)
0.0882

(2.75E−04)
0.0963

(4.67E−04)
Clδa

−0.096 −0.0961
(1.56E−05)

−0.0961
(6.63E−05)

−0.0973
(6.42E−05)

−0.0967
(7.28E−05)

Clδr
0.02 0.0196

(3.26E−04)
0.0196

(8.58E−04)
0.0222

(9.73E−04)
0.0174

(7.35E−04)
Cn0 0 0

(2.22E−07)
0

(7.05E−07)
0

(5.37E−07)
0

(7.30E−07)
Cnβ

0.02 0.0186
(2.07E−06)

0.0186
(1.25E−05)

0.0187
(7.95E−06)

0.0181
(1.46E−05)

Cnp – 0.0193
(3.55E−06)

0.0193
(1.91E−05)

0.0197
(1.26E−05)

0.0187
(2.21E−05)

Cnr – −0.0281
(1.41E−05)

−0.0281
(7.93E−05)

−0.0261
(5.55E−05)

−0.0264
(8.94E−05)

Cnδr
−0.01 −0.0093

(8.11E−05)
−0.0093

(1.55E−04)
−0.0096

(1.91E−04)
−0.0096

(1.50E−04)

CDRW, respectively, perform better than FEM-PSO estimates with a median deviation of 1.5% and 5%.
It can also be noticed that in the case of CDFP, the elevator control power Cmδe estimates obtained by
FEM have a lower standard deviation of 5 × 10−5 when compared against FEM-PSO estimates with a
standard deviation of 5.79 × 10−3.

5.2 Validation of lateral-directional parameters
The estimated aerodynamic parameters pertaining to the lateral-directional datasets of CDFP are listed
in Tables 6 and 7. These are used to generate simulated responses using the dynamic equations given
by Equation (2) for the same aileron and rudder control inputs corresponding to the respective flight
data. A comparison between the simulated results and the flight data has been made in Fig. 7. It can
be seen that both the FEM and FEM-PSO simulated motion variables agree with the flight data except
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Table 7. Estimated lateral-directional parameters for CDFP_LD3, CDFP_LD4

FEM FEM−PSO

Parameters Wind Tunnel [40] CDFP_LD3 CDFP_LD4 CDFP_LD3 CDFP_LD4
CY0 0 −0.0001

(3.67E−06)
0

(4.89E−05)
0

(6.81E−05)
0

(6.44E−05)
CYβ

−0.12 −0.1807
(8.00E−04)

−0.1648
(5.35E−04)

−0.12
(1.33E−03)

−0.1262
(8.42E−04)

CYp – −0.0594
(8.89E−04)

−0.0609
(6.27E−04)

−0.0555
(1.51E−03)

−0.059
(1.03E−03)

CYr – 0.1243
(4.20E−03)

0.1231
(3.11E−03)

0.1131
(6.74E−03)

0.1366
(4.94E−03)

CYδr
0.459 0.4864

(5.73E−03)
0.4499

(1.02E−02)
0.4509

(1.56E−02)
0.4569

(1.33E−02)
Cl0 0 0

(5.60E−07)
0

(6.80E−07)
0

(3.88E−06)
0

(3.03E−06)
Clβ −0.09 −0.0899

(1.11E−05)
−0.0899

(1.28E−05)
−0.0995

(1.10E−04)
−0.0892

(7.63E−05)
Clp – −0.5059

(5.83E−05)
−0.5058

(8.52E−05)
−0.5324

(4.73E−04)
−0.5122

(5.03E−04)
Clr – 0.1032

(5.20E−05)
0.1032

(6.12E−05)
0.0941

(6.09E−04)
0.1008

(3.56E−04)
Clδa

−0.096 −0.0961
(1.17E−05)

−0.096
(1.72E−05)

−0.1003
(9.15E−05)

−0.0976
(1.01E−04)

Clδr
0.02 0.0195

(1.32E−04)
0.0194

(1.42E−04)
0.0171

(9.52E−04)
0.017

(6.23E−04)
Cn0 0 0

(1.69E−07)
0

(1.77E−07)
0

(7.21E−07)
0

(5.91E−07)
Cnβ

0.02 0.0186
(2.80E−06)

0.0186
(2.48E−06)

0.019
(1.70E−05)

0.0181
(9.25E−06)

Cnp – 0.0193
(3.03E−06)

0.0193
(2.58E−06)

0.0197
(2.07E−05)

0.0188
(1.06E−05)

Cnr – −0.0281
(1.45E−05)

−0.0281
(1.28E−05)

−0.0245
(1.11E−04)

−0.0265
(5.07E−05)

Cnδr
−0.01 −0.0093

(4.02E−05)
−0.0093

(3.71E−05)
−0.0087

(1.67E−04)
−0.0097

(1.25E−04)

for y-acceleration ay. The FEM-PSO estimates of CYβ
have a significantly lower offset (<12%) from the

wind tunnel estimate when compared against the FEM estimates with relative offsets of 39.42%, 45.58%,
50.58% and 37.88%. In the case of lateral static stability derivative Clβ , all the FEM estimates have a
relative error of 0.11% w.r.t. wind tunnel value, while the FEM-PSO estimates have offsets of 1.89%,
2%, 10.56% and 0.89%. The relative error in directional static stability derivative Cnβ

w.r.t. wind tunnel
value is observed to be 7% in all FEM estimates, while it is 6.5%, 9.5%, 5% and 9.5% in FEM-PSO
estimates.

The lateral-directional derivatives of CDRW datasets estimated using FEM and FEM-PSO are pre-
sented in Tables 8 and 9. In Fig. 8, a comparison is made for the motion variables simulated using
FEM and FEM-PSO estimated derivatives against the actual flight data. Similar to CDFP, a slight devi-
ation is observed in ay from the flight data. Significant difference in relative error is observed between
estimates of CYβ

by FEM and FEM-PSO; FEM-PSO estimates having a lower relative error than the
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Table 8. Estimated lateral-directional parameters for CDRW_LD1, CDRW_LD2

FEM FEM−PSO

Parameters Wind Tunnel [42] CDRW_LD1 CDRW_LD2 CDRW_LD1 CDRW_LD2
CY0 0 −0.0002

(1.02E−05)
0.0064

(5.33E−04)
0

(1.26E−04)
0

(2.55E−03)
CYβ

−0.131 −0.1819
(5.82E−04)

−0.195
(1.54E−03)

−0.1453
(9.28E−04)

−0.1142
(2.77E−03)

CYp – −0.0665
(1.41E−03)

−0.0553
(1.81E−03)

−0.0665
(1.60E−03)

−0.0594
(2.30E−03)

CYr – 0.1357
(3.65E−03)

0.1207
(9.39E−03)

0.1474
(4.91E−03)

0.1421
(1.78E−02)

CYδr
0.429 0.4337

(2.18E−03)
0.5886

(9.74E−03)
0.4206

(1.35E−02)
0.4745

(4.97E−02)
Cl0 0 0

(2.03E−06)
0

(3.03E−05)
0

(7.72E−06)
0

(7.70E−05)
Clβ −0.101 −0.0899

(2.09E−05)
−0.0899

(9.30E−05)
−0.0903

(9.42E−05)
−0.0929

(3.15E−04)
Clp – −0.506

(9.44E−05)
−0.5062

(3.00E−04)
−0.5084

(4.13E−04)
−0.5104

(1.01E−03)
Clr – 0.1034

(6.12E−05)
0.1033

(3.47E−04)
0.0935

(3.06E−04)
0.0918

(1.09E−03)
lδa

−0.102 −0.0961
(1.76E−05)

−0.0961
(5.42E−05)

−0.0964
(7.54E−05)

−0.0974
(1.84E−04)

Clδr
0.021 0.0196

(2.22E−04)
0.02

(5.77E−04)
0.0181

(8.31E−04)
0.0182

(1.45E−03)
Cn0 0 0

(5.21E−07)
0

(9.47E−06)
0

(1.48E−06)
0

(3.08E−05)
Cnβ

0.02 0.0186
(2.37E−06)

0.0186
(1.09E−05)

0.0187
(9.47E−06)

0.0186
(3.62E−05)

Cnp – 0.0193
(6.26E−06)

0.0193
(7.97E−06)

0.0197
(2.15E−05)

0.0193
(2.99E−05)

Cnr – −0.0281
(1.51E−05)

−0.0281
(7.26E−05)

−0.026
(6.34E−05)

−0.0249
(2.43E−04)

Cnδr
−0.011 −0.0093

(5.74E−05)
−0.0093

(1.83E−04)
−0.0094

(1.61E−04)
−0.0089

(5.99E−04)

FEM estimates. The relative errors in CYβ
w.r.t. wind tunnel value for FEM estimates are observed to

be 38.85%, 48.85%, 20.61% and 18.17%, while for FEM-PSO estimates the relative errors are 10.92%,
12.82%, 6.49% and 4.96%. In the case of lateral static stability derivative Clβ , all the FEM estimates
have a relative error of 10.99% w.r.t. wind tunnel value, while the FEM-PSO estimates have offsets of
10.59%, 8.02%, 13.47% and 6.34%. The relative error in directional static stability derivative Cnβ

w.r.t.
wind tunnel value is observed to be 7% in all FEM estimates, while it is 6.5%, 7%, 8% and 8.5% in
FEM-PSO estimates.

Since the rudder is not used in most of the manoeuvres intentionally, it is natural to have inaccuracies
in rudder deflection-dependent derivatives. From Fig. 9, the CYδr estimates of FEM-PSO are closer to
wind tunnel estimates than the FEM estimates. However, both the FEM and FEM-PSO estimates of
rudder control power Cnδr suffer noticeable offset with a maximum of 15.45% in FEM and 19.09% in
FEM-PSO w.r.t. wind tunnel estimates.
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Table 9. Estimated lateral-directional parameters for CDRW_LD3, CDRW_LD4

FEM FEM−PSO

Parameters Wind Tunnel [42] CDRW_LD3 CDRW_LD4 CDRW_LD3 CDRW_LD4
CY0 0 −0.0018

(1.02E−04)
0

(2.39E−05)
0

(1.20E−03)
0

(4.03E−05)
CYβ

−0.131 −0.158
(6.48E−04)

−0.1548
(4.76E−04)

−0.1395
(1.42E−03)

−0.1245
(7.41E−04)

CYp – −0.0583
(1.37E−03)

−0.0168
(4.11E−04)

−0.045
(2.79E−03)

−0.05
(1.92E−03)

CYr – 0.1359
(4.27E−03)

0.1609
(3.75E−03)

0.1398
(8.64E−03)

0.1219
(4.96E−03)

CYδr
0.429 0.421

(2.37E−03)
0.4612

(5.58E−04)
0.4584

(2.41E−02)
0.4805

(8.69E−04)
Cl0 0 0

(5.41E−06)
0

(1.26E−06)
0

(7.87E−05)
0

(2.38E−06)
Clβ −0.101 −0.0899

(1.89E−05)
−0.0899

(1.67E−04)
−0.0874

(3.90E−04)
−0.0946

(3.13E−04)
Clp – −0.5058

(8.44E−05)
−0.5061

(1.01E−03)
−0.5157

(1.79E−03)
−0.5254

(1.84E−03)
Clr – 0.1035

(3.79E−05)
0.1035

(1.60E−04)
0.0988

(8.24E−04)
0.1116

(2.85E−04)
Clδa

−0.102 −0.096
(1.46E−05)

−0.0961
(1.93E−04)

−0.0984
(3.10E−04)

−0.1002
(3.55E−04)

Clδr
0.021 0.0195

(1.06E−04)
0.0195

(3.38E−05)
0.0184

(1.52E−03)
0.0196

(6.17E−05)
Cn0 0 0

(2.04E−06)
0

(2.05E−07)
0

(1.27E−05)
0

(3.96E−07)
Cnβ

0.02 0.0186
(1.62E−06)

0.0186
(5.57E−06)

0.0184
(1.40E−05)

0.0183
(1.06E−05)

Cnp – 0.0193
(4.43E−06)

0.0193
(2.80E−05)

0.0198
(3.39E−05)

0.0183
(4.49E−05)

Cnr – −0.0281
(1.45E−05)

−0.0281
(3.39E−05)

−0.0303
(1.21E−04)

−0.0261
(6.81E−05)

Cnδr
−0.011 −0.0093

(4.06E−05)
−0.0093

(5.37E−06)
−0.0094

(2.54E−04)
−0.0091

(1.05E−05)

5.3 Convergence comparison between FEM and FEM-PSO
PSO is a metaheuristic optimisation algorithm, whereas GN is a second-order derivative-based algo-
rithm. The nonlinear dependence of the output variables with the system parameters makes the MLE
cost function non-convex and, along with the approximation of the Hessian matrix, introduces numer-
ical instabilities in the GN algorithm when inappropriate initial values are given [25]. In this research,
parameters estimated using the EEM are fed as initial values to the GN algorithm, and it is observed
that it narrows down to the optimal parameter set in a finite number of iterations (at most 28 iterations
when tolerance was set at 10−4). Figure 10 shows the result of a convergence comparison between GN-
employed conventional FEM and FEM-PSO for CDFP_L1. It can be noticed that for the same initial
parameters and number of maximum iterations, FEM is roughly three times faster than the FEM-PSO
method. Even though the convergence is poor in PSO, it does not suffer the numerical difficulties encoun-
tered with GN. From Tables 2–9, it can be observed that the Cramer-Rao Lower Bounds (CRLB) of FEM
estimates are lower in magnitude when compared with the FEM-PSO estimates, which shows that there
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Figure 9. Scatter plot comparing the estimated lateral directional parameters with wind tunnel
estimates.

is relatively little room for uncertainty in FEM estimates than FEM-PSO estimates. This might be pos-
sible because FEM offers the optimal parameters within the given number of iterations, which is not
the case with FEM-PSO. Although FEM-PSO estimates come with more uncertainty, analysis of the
simulation results with FEM-PSO estimates against the actual flight data shows that they are as good as
FEM for practical purposes.
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Figure 10. Convergence time comparison between FEM and FEM-PSO.

5.4 Proof-of-match exercise
The estimated aerodynamic parameters of the individual datasets are used to carry out the proof-of-
match exercise for longitudinal and lateral-directional cases separately. The longitudinal parameters
estimated using the eight datasets are averaged and are used to simulate the response for the elevator
inputs of CDFP_L5 and CDRW_L5, respectively. The simulated response is compared with the recorded
response of CDFP_L5 and CDRW_L5, as shown in Fig. 11a and b, where it can be observed that the
simulated output variables are in close agreement with the flight data. Similarly, the lateral-directional
proof-of-match is performed using CDFP_LD5 and CDRW_LD5, where the mean of the eight lateral-
directional estimated parameters is used to generate the response corresponding to the aileron and
rudder inputs of CDFP_LD5 and CDRW_LD5, respectively. The generated response is matched against
the recorded response, as shown in Fig. 11c and d. It can be noticed that all the motion variables are
consistent with the flight data.

6.0 Conclusion
In the current research work, a filter error method augmented with particle swarm optimisation, FEM-
PSO, is proposed and successfully implemented for the aerodynamic characterisation of CDFP and
CDRW UAVs. Various compatible data sets pertaining to linear longitudinal and lateral-directional
flight regimes are used to demonstrate and compare the effectiveness of the proposed method with
conventional computationally intensive FEM. It is clear from the results that estimated aerodynamic
derivatives using FEM-PSO are consistent with full-scale wind tunnel and FEM estimates. With the
considered initial parameters of the PSO algorithm and search space, the Cramer-Rao bounds of esti-
mated aerodynamic parameters are slightly higher than the FEM method, indicating less confidence
in estimates; however, simulated responses are in good agreement with measured flight data. With the
proof-of-match exercise, it is observed that all simulated responses using FEM-PSO estimates are very
close to measured flight data, which further strengthens the faith in the estimated parameters. The main
advantages of the FEM-PSO method are ease of implementation and lower dependencies on initial val-
ues of aerodynamic parameters. Although the cost of gradience computation is saved, the seemingly
random motion of the particles through the search space affects the rate of convergence in the FEM-
PSO method, mainly when the number of particles is large, and the search space is higher dimensional.
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Figure 11. Proof-of-match exercise.

The convergence rate of the proposed method can be made faster by employing an advanced variant of
the PSO algorithm and an optimised number of search particles, which may lead to another research
problem.
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