Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T21:44:54.864Z Has data issue: false hasContentIssue false

Chapter 13 - Autoimmune Brainstem Encephalitis

from Section 3 - Specific Syndromes and Diseases

Published online by Cambridge University Press:  27 January 2022

Josep Dalmau
Affiliation:
Universitat de Barcelona
Francesc Graus
Affiliation:
Universitat de Barcelona
Get access

Summary

Brainstem encephalitis represents around 20% of all cases of encephalitis and has unique clinical and epidemiological features. The best-characterized brainstem encephalitis include opsoclonus-myoclonus syndrome (OMS), Bickerstaff encephalitis, paraneoplastic brainstem encephalitis, and chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). The main causes of OMS are paraneoplastic, post-infectious, and idiopathic; it is likely that they share an immune-mediated pathophysiology, although neuronal antibodies only occur in a subgroup of patients with OMS and breast cancer who develop Ri antibodies. Other paraneoplastic brainstem encephalitis can associate with Ma2 and Hu antibodies. Patients with Bickerstaff encephalitis frequently develop overlapping features with Miller–Fisher syndrome (characterized by bilateral ophthalmoplegia, ataxia, and areflexia). The identification of GQ1b antibodies in both disorders suggests that they are part of the same spectrum of disease that has been designated anti-GQ1b syndrome. The diagnosis of CLIPPERS is mainly based on the presence of suggestive brain MRI abnormalities. However, similar MRI lesions can occur in systemic autoimmune diseases that may affect the brainstem, particularly Behçet disease or sarcoidosis, and in primary lymphoma of the central nervous system. CLIPPERS does not have a specific biological marker.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tan, IL, Mowry, EM, Steele, SU, et al. Brainstem encephalitis: etiologies, treatment, and predictors of outcome. J Neurol 2013;260:23122319.CrossRefGoogle ScholarPubMed
Moragas, M, Martinez-Yelamos, S, Majos, C, et al. Rhombencephalitis: a series of 97 patients. Medicine (Baltimore) 2011;90:256261.Google Scholar
Carvajal-Gonzalez, A, Leite, MI, Waters, P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137: 21782192.CrossRefGoogle ScholarPubMed
Caviness, JN, Forsyth, PA, Layton, DD, McPhee, TJ. The movement disorder of adult opsoclonus. Mov Disord 1995;10:2227.Google Scholar
Shahrizaila, N, Yuki, N. Bickerstaff brainstem encephalitis and Fisher syndrome: anti-GQ1b antibody syndrome. J Neurol Neurosurg Psychiatry 2013;84:576583.Google Scholar
Tobin, WO, Guo, Y, Krecke, KN, et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2017;140:24152425.CrossRefGoogle ScholarPubMed
Desai, J, Mitchell, WG. Acute cerebellar ataxia, acute cerebellitis, and opsoclonus-myoclonus syndrome. J Child Neurol 2012;27:14821488.Google Scholar
Joubert, B, Rostasy, K, Honnorat, J. Immune-mediated ataxias. Handb Clin Neurol 2018;155:313332.Google Scholar
Luque, FA, Furneaux, HM, Ferziger, R, et al. Anti-Ri: an antibody associated with paraneoplastic opsoclonus and breast cancer. Ann Neurol 1991;29:241251.Google Scholar
Chen, CL, Chou, HH, Chen, CM, Shen, CY, Tsai, SJ. Post-infectious opsoclonus and reversible magnetic resonance imaging changes: a case report and review of the literatures. Acta neurologica Taiwanica 2012;21:7983.Google ScholarPubMed
Taieb, G, Mulero, P, Psimaras, D, et al. CLIPPERS and its mimics: evaluation of new criteria for the diagnosis of CLIPPERS. J Neurol Neurosurg Psychiatry 2019;90:10271038.Google Scholar
Saiz, A, Bruna, J, Stourac, P, et al. Anti-Hu-associated brainstem encephalitis. J Neurol Neurosurg Psychiatry 2009;80:404407.Google Scholar
Sabater, L, Gaig, C, Gelpi, E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014;13:575586.Google Scholar
Pranzatelli, MR, Tate, ED, McGee, NR. Demographic, clinical, and immunologic features of 389 children with opsoclonus-myoclonus syndrome: a cross-sectional study. Front Neurol 2017;8:113.Google Scholar
Bataller, L, Graus, F, Saiz, A, Vilchez, JJ. Clinical outcome in adult onset idiopathic or paraneoplastic opsoclonus-myoclonus. Brain 2001;124:437443.Google Scholar
Klaas, JP, Ahlskog, JE, Pittock, SJ, et al. Adult-onset opsoclonus-myoclonus syndrome. Arch Neurol 2012;69:15981607.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.CrossRefGoogle ScholarPubMed
Mandel-Brehm, C, Dubey, D, Kryzer, TJ, et al. Kelch-like protein 11 antibodies in seminoma-associated paraneoplastic encephalitis. N Engl J Med 2019;381:4754.Google Scholar
Maudes, E, Landa, J, Munoz-Lopetegi, A, et al. Clinical significance of Kelch-like protein 11 antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7:e666.CrossRefGoogle ScholarPubMed
Pittock, SJ, Lucchinetti, CF, Lennon, VA. Anti-neuronal nuclear autoantibody type 2: paraneoplastic accompaniments. Ann Neurol 2003;53:580587.Google Scholar
Tintore, M, Rovira, A, Arrambide, G, et al. Brainstem lesions in clinically isolated syndromes. Neurology 2010;75:19331938.Google Scholar
Jarius, S, Kleiter, I, Ruprecht, K, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement – frequency, presentation and outcome. J Neuroinflammation 2016;13:281.CrossRefGoogle ScholarPubMed
Shosha, E, Dubey, D, Palace, J, et al. Area postrema syndrome: frequency, criteria, and severity in AQP4-IgG-positive NMOSD. Neurology 2018;91:e1642e1651.CrossRefGoogle ScholarPubMed
Mundiyanapurath, S, Jarius, S, Probst, C, et al. GABA-B-receptor antibodies in paraneoplastic brainstem encephalitis. J Neuroimmunol 2013;259:8891.CrossRefGoogle ScholarPubMed
Jubelt, B, Mihai, C, Li, TM, Veerapaneni, P. Rhombencephalitis/brainstem encephalitis. Curr Neurol Neurosci Rep 2011;11:543552.CrossRefGoogle ScholarPubMed
Bossart, S, Thurneysen, S, Rushing, E, et al. Case report: encephalitis, with brainstem involvement, following checkpoint inhibitor therapy in metastatic melanoma. Oncologist 2017;22:749753.CrossRefGoogle ScholarPubMed
Miller, DH, Chard, DT, Ciccarelli, O. Clinically isolated syndromes. Lancet Neurol 2012;11:157169.Google Scholar
Digre, KB. Opsoclonus in adults: report of three cases and review of the literature. Arch Neurol 1986;43:11651175.Google Scholar
Grubbs, J Jr., Trobe, JD, Fisher-Hubbard, A. Opsoclonus-myoclonus syndrome in primary central nervous system lymphoma. J Neuroophthalmol 2016;36:408411.CrossRefGoogle ScholarPubMed
Matsumura, K, Sonoh, M, Tamaoka, A, Sakuta, M. Syndrome of opsoclonus-myoclonus in hyperosmolar nonketotic coma. Ann Neurol 1985;18:623624.Google Scholar
Pullicino, P, Aquilina, J. Opsoclonus in organophosphate poisoning. Arch Neurol 1989;46:704705.Google Scholar
Wong, A. An update on opsoclonus. Curr Opin Neurol 2007;20:2531.Google Scholar
Kinsbourne, M. Myoclonic encephalopathy of infants. J Neurol Neurosurg Psychiatry 1962;25:271276.Google Scholar
Solomon, GE, Chutorian, AM. Opsoclonus and occult neuroblastoma. N Engl J Med 1968;279:475477.Google Scholar
Klein, A, Schmitt, B, Boltshauser, E. Long-term outcome of ten children with opsoclonus-myoclonus syndrome. Eur J Pediatr 2007;166:359363.CrossRefGoogle ScholarPubMed
Mitchell, WG, Brumm, VL, Azen, CG, et al. Longitudinal neurodevelopmental evaluation of children with opsoclonus-ataxia. Pediatrics 2005;116:901907.Google Scholar
Catsman-Berrevoets, CE, Aarsen, FK, van Hemsbergen, ML, et al.. Improvement of neurological status and quality of life in children with opsoclonus myoclonus syndrome at long-term follow-up. Pediatr Blood Cancer 2009;53:10481053.Google Scholar
Pang, KK, de Sousa, C, Lang, B, Pike, MG. A prospective study of the presentation and management of dancing eye syndrome/opsoclonus-myoclonus syndrome in the United Kingdom. Eur J Paediatr Neurol 2010;14:156161.Google Scholar
Hasegawa, S, Matsushige, T, Kajimoto, M, et al. A nationwide survey of opsoclonus-myoclonus syndrome in Japanese children. Brain Dev 2015;37:656660.CrossRefGoogle ScholarPubMed
De, GE, Parodi, S, Conte, M, et al. Long-term follow-up of neuroblastoma-associated opsoclonus-myoclonus-ataxia syndrome. Neuropediatrics 2009;40:103111.Google Scholar
Pranzatelli, MR, Tate, ED, McGee, NR. Multifactorial analysis of opsoclonus-myoclonus syndrome etiology (‘Tumor’ vs. ‘No tumor’) in a cohort of 356 US children. Pediatr Blood Cancer 2018;65:e27097.Google Scholar
Krug, P, Schleiermacher, G, Michon, J, et al. Opsoclonus-myoclonus in children associated or not with neuroblastoma. Eur J Paediatr Neurol 2010;14:400409.Google Scholar
Connolly, AM, Dodson, WE, Prensky, AL, Rust, RS. Course and outcome of acute cerebellar ataxia. Ann Neurol 1994;35:673679.Google Scholar
Matthay, KK, Blaes, F, Hero, B, et al. Opsoclonus myoclonus syndrome in neuroblastoma: a report from a workshop on the dancing eyes syndrome at the advances in neuroblastoma meeting in Genoa, Italy, 2004. Cancer Lett 2005;228:275282.Google Scholar
Pranzatelli, MR, Tate, ED, Alber, M, et al. Rituximab, IVIg, and tetracosactide (acth1-24) combination immunotherapy (‘rite-ci’) for pediatric opsoclonus-myoclonus syndrome: immunomarkers and clinical observations. Neuropediatrics 2018;49:123134.Google Scholar
Pranzatelli, MR, Tate, ED. Dexamethasone, intravenous immunoglobulin, and rituximab combination immunotherapy for pediatric opsoclonus-myoclonus syndrome. Pediatr Neurol 2017;73:4856.CrossRefGoogle ScholarPubMed
Anderson, NE, Budde-Steffen, C, Rosenblum, MK, et al. Opsoclonus, myoclonus, ataxia, and encephalopathy in adults with cancer: a distinct paraneoplastic syndrome.Medicine 1988;67:100109.Google Scholar
Baringer, JR, Sweeney, VP, Winkler, GF. An acute syndrome of ocular oscillations and truncal myoclonus. Brain 1968;91:473480.Google Scholar
Bataller, L, Graus, F, Saiz, A, Vilchez, J. Clinical course and response to immunotherapy in 24 patients with idiopathic or paraneoplastic opsoclonus-myoclonus syndrome. Brain 2000;124:437443.CrossRefGoogle Scholar
Armangue, T, Sabater, L, Torres-Vega, E, et al. Clinical and immunological features of opsoclonus-myoclonus syndrome in the era of neuronal cell surface antibodies. JAMA Neurol 2016;73:417424.Google Scholar
Belcastro, V, Piola, M, Binda, S, et al. Opsoclonus-myoclonus syndrome associated with human herpes virus-6 rhomboencephalitis. J Neurol Sci 2014;341:165166.Google Scholar
Zaganas, I, Prinianakis, G, Xirouchaki, N, Mavridis, M. Opsoclonus-myoclonus syndrome associated with cytomegalovirus encephalitis. Neurology 2007;68:1636.Google Scholar
Guedes, BF, Vieira Filho, MAA, Listik, C, et al. HIV-associated opsoclonus-myoclonus-ataxia syndrome: early infection, immune reconstitution syndrome or secondary to other diseases? Case report and literature review. J Neurovirol 2018;24:123127.CrossRefGoogle ScholarPubMed
Ayarza, A, Parisi, V, Altclas, J, et al. Opsoclonus-myoclonus-ataxia syndrome and HIV seroconversion. J Neurol 2009;256:10241025.Google Scholar
van Toorn, R, Rabie, H, Warwick, JM. Opsoclonus-myoclonus in an HIV-infected child on antiretroviral therapy: possible immune reconstitution inflammatory syndrome. Eur J Paediatr Neurol 2005;9:423426.Google Scholar
Kanjanasut, N, Phanthumchinda, K, Bhidayasiri, R. HIV-related opsoclonus-myoclonus-ataxia syndrome: report on two cases. Clin Neurol Neurosurg 2010;112:572574.CrossRefGoogle ScholarPubMed
Syrbe, S, Merkenschlager, A, Bernhard, MK, et al. Opsoclonus-myoclonus syndrome after adenovirus infection. SpringerPlus 2015;4:636.Google Scholar
Skeie, GO, Eldoen, G, Skeie, BS, et al. Opsoclonus myoclonus syndrome in two cases with neuroborreliosis. Eur J Neurol 2007;14:e12.Google Scholar
Sanguinetti, S, Ramdhani, RA. Opsoclonus myoclonus ataxia syndrome related to the novel coronavirus (COVID-19). J Neuroophthalmol 2021;41:e288e289.CrossRefGoogle Scholar
Shah, PB, Desai, SD. Opsoclonus myoclonus ataxia syndrome (OMAS) in the setting of COVID-19 infection. Neurology 2021;96:33.Google Scholar
Tan, AH, Linn, K, Ramli, NM, et al. Opsoclonus-myoclonus-ataxia syndrome associated with dengue virus infection. Parkinsonism Relat Disord 2014;20:13091310.Google Scholar
Akiyama, K, Imazeki, R, Yoshii, F, Koide, T, Muto, J. An adult case of hand, foot, and mouth disease caused by enterovirus 71 accompanied by opsoclonus myoclonica. Tokai J Exp Clin Med 2008;33:143145.Google Scholar
Sahly, A, Gauquelin, L, Sebire, G. Rapid resolution of enterovirus 71-associated opsoclonus myoclonus syndrome on intravenous immunoglobulin. Child Neurol Open 2017;4:2329048x17733215.Google Scholar
Verma, A, Brozman, B. Opsoclonus-myoclonus syndrome following Epstein–Barr virus infection. Neurology 2002;58:11311132.Google Scholar
Ertekin, V, Tan, H. Opsoclonus-myoclonus syndrome attributable to hepatitis C infection. Pediatr Neurol 2010;42:441442.CrossRefGoogle ScholarPubMed
Singh, D, Sinha, M, Kumar, R, Shukla, R, Ahuja, RC. Opsoclonus-myoclonus syndrome caused by varicella-zoster virus. Ann Ind Acad Neurol 2010;13:211212.Google Scholar
Morita, A, Ishihara, M, Kamei, S, Ishikawa, H. Opsoclonus-myoclonus syndrome following influenza a infection. Intern Med (Tokyo, Japan) 2012;51:24292431.Google Scholar
Sountharalingam, S, Herath, H, Wijegunasinghe, D, Senanayke, S. Opsoclonus myoclonus syndrome in a patient with Japanese encephalitis: a case report. J Med Case Rep 2017;11:294.CrossRefGoogle Scholar
Nunes, JC, Bruscato, AM, Walz, R, Lin, K. Opsoclonus-myoclonus syndrome associated with Mycoplasma pneumoniae infection in an elderly patient. J Neurol Sci 2011;305:147148.Google Scholar
Huber, BM, Strozzi, S, Steinlin, M, Aebi, C, Fluri, S. Mycoplasma pneumoniae associated opsoclonus-myoclonus syndrome in three cases. Eur J Pediatr 2010;169:441445.Google Scholar
Kang, BH, Kim, JI. Opsoclonus-myoclonus syndrome associated with mumps virus infection. J Clin Neurol (Seoul, Korea) 2014;10:272275.CrossRefGoogle ScholarPubMed
D’sa, S, Singh, S, Sowmya, S. Opsoclonus in scrub typhus. J Postgrad Med 2012;58:296297.Google Scholar
Gurkas, E, Gucuyener, K, Yilmaz, U, Havali, C, Demir, E. Opsoclonus-myoclonus syndrome following rotavirus gastroenteritis. Pediatr Int 2014;56:e86e87.Google Scholar
Evans, RW, Welch, K. Opsoclonus in a confirmed case of St. Louis encephalitis. J Neurol Neurosurg Psychiatry 1982;45:660661.Google Scholar
Ahn, AK, Bradley, K, Pina-Garza, JE. Opsoclonus associated with salmonellosis in a 6-week-old infant. J Child Neurol 2014;29:952954.CrossRefGoogle Scholar
Flabeau, O, Meissner, W, Foubert-Samier, A, et al. Opsoclonus myoclonus syndrome in the context of Salmonellosis. Mov Disord 2009;24:23062308.CrossRefGoogle ScholarPubMed
Radic, B, Cajic, I, Petelin Gadze, Z, Sulentic, V, Nankovic, S. A case of adult-onset poststreptococcal opsoclonus-myoclonus syndrome. Acta Neurol Belg 2018;118:541542.Google Scholar
Jones, CE, Smyth, DP, Faust, SN. Opsoclonus-myoclonus syndrome associated with group a streptococcal infection. Pediatr Infect Dis J 2007;26:358359.Google Scholar
Radu, RA, Terecoasa, EO, Ene, A, Bajenaru, OA, Tiu, C. Opsoclonus-myoclonus syndrome associated with West-Nile virus infection: case report and review of the literature. Front Neurol 2018;9:864.Google Scholar
Armangue, T, Titulaer, MJ, Sabater, L, et al. A novel treatment-responsive encephalitis with frequent opsoclonus and teratoma. Ann Neurol 2014;75:435441.Google Scholar
Armangue, T, Sabater, L, Torres-Vega, E, et al. Clinical and immunological features of opsoclonus-myoclonus syndrome in the era of neuronal cell surface antibodies. JAMA Neurol 2016;73:417424.Google Scholar
Musunuru, K, Kesari, S. Paraneoplastic opsoclonus-myoclonus ataxia associated with non-small-cell lung carcinoma. J Neurooncol 2008;90:213216.CrossRefGoogle ScholarPubMed
Fumal, A, Jobe, J, Pepin, JL, et al. Intravenous immunoglobulins in paraneoplastic brainstem encephalitis with anti-Ri antibodies. J Neurol 2006;253:13601361.Google Scholar
Jongen, JL, Moll, WJ, Sillevis Smitt, PA, Vecht, CJ, Tijssen, CC. Anti-Ri positive opsoclonus-myoclonus-ataxia in ovarian duct cancer. J Neurol 1998;245:691692.Google Scholar
Scholz, J, Vieregge, P, Ruff, C. Paraneoplastic opsoclonus-myoclonus syndrome in metastatic ovarian carcinoma. J Neurol Neurosurg Psychiatry 1994;57:763764.Google Scholar
Biotti, D, Viaccoz, A, Olivier, N, et al. Opsoclonus, limbic encephalitis, anti-Ma2 antibodies and gastric adenocarcinoma. Eur J Neurol 2012;19:e144e145.CrossRefGoogle ScholarPubMed
Honnorat, J, Trillet, M, Antoine, JC, et al. Paraneoplastic opsomyoclonus, cerebellar ataxia and encephalopathy associated with anti-Purkinje cell antibodies [letter]. J Neurol 1997;244:333335.Google Scholar
Aggarwal, A, Williams, D. Opsoclonus as a paraneoplastic manifestation of pancreatic carcinoma. J Neurol Neurosurg Psychiatry 1997;63:687688.Google Scholar
Corcia, P, De, TB, Hommet, C, Saudeau, D, Autret, A. Paraneoplastic opsoclonus associated with cancer of the gall bladder. J Neurol Neurosurg Psychiatry 1997;62:293.Google Scholar
Rossor, AM, Perry, F, Botha, A, Norwood, F. Opsoclonus myoclonus syndrome due to squamous cell carcinoma of the oesophagus. BMJ Case Rep 2014;2014:bcr2013202849.Google Scholar
Graus, F, Arino, H, Dalmau, J. Paraneoplastic neurological syndromes in Hodgkin and non-Hodgkin lymphomas. Blood 2014;123:32303238.Google Scholar
Jung, KY, Youn, J, Chung, CS. Opsoclonus-myoclonus syndrome in an adult with malignant melanoma. J Neurol 2006;253:942943.Google Scholar
Dresco, F, Aubin, F, Deveza, E, et al. Paraneoplastic opsoclonus-myoclonus syndrome preceding a mucosal malignant melanoma. Acta dermato-venereologica 2019;99:337338.Google Scholar
Zamecnik, J, Cerny, R, Bartos, A, Jerabek, J, Bojar, M. Paraneoplastic opsoclonus-myoclonus syndrome associated with malignant fibrous histiocytoma: neuropathological findings. Ceskoslovenska patologie 2004;40:6367.Google Scholar
Kearsley, JH, Johnson, P, Halmagyi, GM. Paraneoplastic cerebellar disease: remission with excision of the primary tumor. Arch Neurol 1985;42:12081210.Google Scholar
Mitoma, H, Orimo, S, Sodeyama, N, Tamaki, M. Paraneoplastic opsoclonus-myoclonus syndrome and neurofibrosarcoma. Eur Neurol 1996;36:322.Google Scholar
Prestigiacomo, CJ, Balmaceda, C, Dalmau, J. Anti-Ri-associated paraneoplastic opsoclonus-ataxia syndrome in a man with transitional cell carcinoma. Cancer 2001;91:14231428.Google Scholar
Helmchen, C, Rambold, H, Sprenger, A, Erdmann, C, Binkofski, F. Cerebellar activation in opsoclonus: an fMRI study. Neurology 2003;61:412415.Google Scholar
Taib, BG, Kinshuck, AJ, Milburn-McNulty, P, et al. Opsoclonus-myoclonus syndrome associated with a nasopharyngeal tumor in an adult: a case report. J Med Case Rep 2015;9:128.Google Scholar
Van Diest, D, De Raeve, H, Claes, J, et al. Paraneoplastic opsoclonus-myoclonus-ataxia (OMA) syndrome in an adult patient with esthesioneuroblastoma. J Neurol 2008;255:594596.CrossRefGoogle Scholar
De, LS, Terrone, C, Crivellaro, S, et al. Opsoclonus-myoclonus syndrome as a paraneoplastic manifestation of renal cell carcinoma. a case report and review of the literature. Urol Int 2002;68:206208.Google Scholar
Yamaguchi, Y, Wada, M, Tanji, H, et al. Marked improvement in opsoclonus and cerebellar ataxia after the surgical removal of a squamous cell carcinoma of the thymus: a case report. J Neurol Sci 2013;325:156159.CrossRefGoogle ScholarPubMed
Schwartz, M, Sharf, B, Zidan, J. Opsoclonus as a presenting symptom in thymic carcinoma. J Neurol Neurosurg Psychiatry 1990;53:534.Google Scholar
Dropcho, E, Payne, R. Paraneoplastic opsoclonus-myoclonus: association with medullary thyroid carcinoma and review of the literature. Arch Neurol 1986;43:410415.Google Scholar
Hattori, T, Hirayama, K, Imai, T, et al. Pontine lesion in opsoclonus-myoclonus syndrome shown by MRI. J Neurol Neurosurg Psychiat 1988;51:15721575.Google Scholar
Bartos, A. Effective high-dose clonazepam treatment in two patients with opsoclonus and myoclonus: GABAergic hypothesis. Eur Neurol 2006;56:240242.Google Scholar
Fernandes, TD, Bazan, R, Betting, LE, da Rocha, FC. Topiramate effect in opsoclonus-myoclonus-ataxia syndrome. Arch Neurol 2012;69:133.Google Scholar
Oh, SY, Kim, JS, Dieterich, M. Update on opsoclonus-myoclonus syndrome in adults. J Neurol 2019;266:15411548.Google Scholar
Ross, AT, Zeman, W. Opsoclonus, occult carcinoma, and chemical pathology in dentate nuclei. Arch Neurol 1967;17:546551.Google Scholar
Ridley, A, Kennard, C, Scholtz, CL, et al. Omnipause neurons in two cases of opsoclonus associated with oat cell carcinoma of the lung. Brain 1987;110:16991709.Google Scholar
Ohara, S, Iijima, N, Hayashida, K, Oide, T, Katai, S. Autopsy case of opsoclonus-myoclonus-ataxia and cerebellar cognitive affective syndrome associated with small cell carcinoma of the lung. Mov Disord 2007;22:13201324.Google Scholar
Oh, SY, Boegle, R, Eulenburg, PZ, et al. Longitudinal multi-modal neuroimaging in opsoclonus-myoclonus syndrome. J Neurol 2017;264:512519.Google Scholar
Hormigo, A, Dalmau, J, Rosenblum, MK, River, ME, Posner, JB. Immunological and pathological study of anti-Ri-associated encephalopathy. Ann Neurol 1994;36:896902.Google Scholar
Pranzatelli, MR, Travelstead, AL, Tate, ED, et al. B- and T-cell markers in opsoclonus-myoclonus syndrome: immunophenotyping of CSF lymphocytes. Neurology 2004;62:15261532.Google Scholar
Fuhlhuber, V, Bick, S, Kirsten, A, et al. Elevated B-cell activating factor BAFF, but not APRIL, correlates with CSF cerebellar autoantibodies in pediatric opsoclonus-myoclonus syndrome. J Neuroimmunol 2009;210:8791.Google Scholar
Bickerstaff, ER, Cloake, PC. Mesencephalitis and rhombencephalitis. Br Med J 1951;2:7781.Google Scholar
Bickerstaff, ER. Brain-stem encephalitis: further observations on a grave syndrome with benign prognosis. Br Med J 1957;1:13841387.Google Scholar
Fisher, M. An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia). N Engl J Med 1956;255:5765.Google Scholar
Odaka, M, Yuki, N, Hirata, K. Anti-GQ1b IgG antibody syndrome: clinical and immunological range. J Neurol Neurosurg Psychiatry 2001;70:5055.Google Scholar
Ito, M, Kuwabara, S, Odaka, M, et al. Bickerstaff’s brainstem encephalitis and Fisher syndrome form a continuous spectrum: clinical analysis of 581 cases. J Neurol 2008;255:674682.Google Scholar
Odaka, M, Yuki, N, Hirata, K. Patients with chronic inflammatory demyelinating polyneuropathy initially diagnosed as Guillain–Barre syndrome. J Neurol 2003;250:913916.Google Scholar
Liu, JX, Willison, HJ, Pedrosa-Domellof, F. Immunolocalization of GQ1b and related gangliosides in human extraocular neuromuscular junctions and muscle spindles. Invest Ophthalmol Vis Sci 2009;50:32263232.Google Scholar
Chiba, A, Kusunoki, S, Obata, H, Machinami, R, Kanazawa, I. Ganglioside composition of the human cranial nerves, with special reference to pathophysiology of Miller Fisher syndrome. Brain Res 1997;745:3236.Google Scholar
Zeiner, PS, Brandhofe, A, Muller-Eschner, M, Steinmetz, H, Pfeilschifter, W. Area postrema syndrome as frequent feature of Bickerstaff brainstem encephalitis. Ann Clin Transl Neurol 2018;5:15341542.Google Scholar
Santoro, JD, Lazzareschi, DV, Campen, CJ, Van Haren, KP. Pediatric Bickerstaff brainstem encephalitis: a systematic review of literature and case series. J Neurol 2018;265:141150.Google Scholar
Koga, M, Kusunoki, S, Kaida, K, et al. Nationwide survey of patients in Japan with Bickerstaff brainstem encephalitis: epidemiological and clinical characteristics. J Neurol Neurosurg Psychiatry 2012;83:12101215.Google Scholar
Odaka, M, Yuki, N, Yamada, M, et al. Bickerstaff’s brainstem encephalitis: clinical features of 62 cases and a subgroup associated with Guillain–Barre syndrome. Brain 2003;126:22792290.Google Scholar
Wakerley, BR, Uncini, A, Yuki, N. Guillain–Barre and Miller Fisher syndromes: new diagnostic classification. Nat Rev Neurol 2014;10:537544.Google Scholar
Yoshikawa, K, Kuwahara, M, Morikawa, M, Kusunoki, S. Bickerstaff brainstem encephalitis with or without anti-GQ1b antibody. Neurol Neuroimmunol Neuroinflamm 2020;7:e889.Google Scholar
Yuki, N, Shahrizaila, N. How do we identify infectious agents that trigger Guillain–Barre syndrome, Fisher syndrome and Bickerstaff brainstem encephalitis? J Neurol Sci 2011;302:15.CrossRefGoogle ScholarPubMed
Pittock, SJ, Kryzer, TJ, Lennon, VA. Paraneoplastic antibodies coexist and predict cancer, not neurological syndrome. Ann Neurol 2004;56:715719.Google Scholar
Dauvilliers, Y, Bauer, J, Rigau, V, et al. Hypothalamic immunopathology in anti-Ma-associated diencephalitis with narcolepsy-cataplexy. JAMA Neurol 2013;70:13051310.Google Scholar
Bernal, F, Graus, F, Pifarre, A, et al. Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathol (Berl) 2002;103:509515.Google Scholar
Blaes, F. Paraneopla`stic brain stem encephalitis. Curr Treat Options Neurol 2013;15:201209.Google Scholar
Pruss, H, Voltz, R, Gelderblom, H, et al. Spontaneous remission of anti-Ma associated paraneoplastic mesodiencephalic and brainstem encephalitis. J Neurol 2008;255:292294.Google Scholar
Ortega Suero, G, Sola-Valls, N, Escudero, D, Saiz, A, Graus, F. Anti-Ma and anti-Ma2-associated paraneoplastic neurological syndromes. Neurologia 2018;33:1827.Google Scholar
Hoffmann, LA, Jarius, S, Pellkofer, HL, et al. Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: twenty-two newly diagnosed patients and review of previous cases. J Neurol Neurosurg Psychiatry 2008;79:767773.Google Scholar
Dubey, D, Wilson, MR, Clarkson, B, et al. Expanded clinical phenotype, oncological associations, and immunopathologic insights of paraneoplastic Kelch-like protein-11 encephalitis. JAMA Neurol 2020;77:14201429.Google Scholar
Simard, C, Vogrig, A, Joubert, B, et al. Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7:e699.Google Scholar
Adams, C, McKeon, A, Silber, MH, Kumar, R. Narcolepsy, REM sleep behavior disorder, and supranuclear gaze palsy associated with Ma1 and Ma2 antibodies and tonsillar carcinoma. Arch Neurol 2011;68:521524.Google Scholar
Garcia-Reitboeck, P, Thompson, G, Johns, P, et al. Upbeat nystagmus in anti-Ma2 encephalitis. Practical Neurol 2014;14:3638.Google Scholar
Wagner, J, Schankin, C, Birnbaum, T, Popperl, G, Straube, A. Ocular motor and lid apraxia as initial symptom of anti-Ma1/Ma2-associated encephalitis. Neurology 2009;72:466467.Google Scholar
Barnett, M, Prosser, J, Sutton, I, et al. Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody. J Neurol Neurosurg Psychiatry 2001;70:222225.Google Scholar
Compta, Y, Iranzo, A, Santamaria, J, Casamitjana, R, Graus, F. REM sleep behavior disorder and narcoleptic features in anti-Ma2-associated encephalitis. Sleep 2007;30:767769.Google Scholar
Edvardsson, B. Anti-Ma2-positive paraneoplastic brainstem encephalitis associated with prostatic adenocarcinoma. Neurol India 2011;59:912913.Google Scholar
Rosenfeld, MR, Eichen, JG, Wade, DF, Posner, JB, Dalmau, J. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins. Ann Neurol 2001;50:339348.Google Scholar
Kraemer, M, Berlit, P. Anti-Ma2 antibodies in B-cell primary CNS lymphoma. J Neurol 2007;254:12861287.Google Scholar
Desestret, V, Didelot, A, Meyronet, D, et al. Neurosarcoidosis with diencephalitis and anti-Ma2 antibodies. Neurology 2010;74:772774.Google Scholar
Vogrig, A, Fouret, M, Joubert, B, et al. Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm 2019;6:e604.Google Scholar
Yshii, LM, Gebauer, CM, Pignolet, B, et al. CTLA4 blockade elicits paraneoplastic neurological disease in a mouse model. Brain 2016;139:29232934.Google Scholar
Greene, JJ, Keefe, MW, Harris, JP, Matsuoka, AJ. Paraneoplastic syndrome: a masquerade of autoimmune inner ear disease. Otol Neurotol 2015;36:e310.Google Scholar
Narayan, RN, McKeon, A, Fife, TD. Autoimmune vestibulocerebellar syndromes. Semin Neurol 2020;40:97115.Google Scholar
Budde-Steffen, C, Anderson, NE, Rosenblum, MK, et al. An antineuronal autoantibody in paraneoplastic opsoclonus. Ann Neurol 1988;23:528531.Google Scholar
Sutton, IJ, Barnett, MH, Watson, JD, Ell, JJ, Dalmau, J. Paraneoplastic brainstem encephalitis and anti-Ri antibodies. J Neurol 2002;249:15971598.Google Scholar
Kastrup, O, Meyring, S, Diener, HC. Atypical paraneoplastic brainstem encephalitis associated with anti-ri-antibodies due to thymic carcinoma with possible clinical response to immunoglobulins. Eur Neurol 2001;45:285287.Google Scholar
Boch, M, Rinke, A, Rexin, P, et al. Paraneoplastic brainstem encephalitis in a patient with exceptionally long course of a metastasized neuroendocrine rectum neoplasm. BMC Cancer 2014;14:691.Google Scholar
Kim, KJ, Yun, JY, Lee, JY, Kim, YE, Jeon, BS. Ondine’s curse in anti-Ri antibody associated paraneoplastic brainstem syndrome. Sleep Med 2013;14:382.Google Scholar
Casado, JL, Gil-Peralta, A, Graus, F, et al. Anti-Ri antibodies associated with opsoclonus and progressive encephalomyelitis with rigidity. Neurology 1994;44:15211522.Google Scholar
Thumen, A, Moser, A. An uncommon paraneoplastic Ri-positive opsoclonus-myoclonus-like syndrome and stiff-person syndrome with elevated glutamate/GABA ratio in the cerebrospinal fluid after breast cancer. J Neurol 2010;257:12151217.Google Scholar
Pittock, SJ, Parisi, JE, McKeon, A, et al. Paraneoplastic jaw dystonia and laryngospasm with antineuronal nuclear autoantibody type 2 (anti-Ri). Arch Neurol 2010;67:11091115.Google Scholar
Rojas-Marcos, I, Picard, G, Chinchon, D, et al. Human epidermal growth factor receptor 2 overexpression in breast cancer of patients with anti-Yo–associated paraneoplastic cerebellar degeneration. Neuro-oncology 2012;14:506510.Google Scholar
Kim, H, Lim, Y, Kim, KK. Anti-ri-antibody-associated paraneoplastic syndrome in a man with breast cancer showing a reversible pontine lesion on MRI. J Clin Neurol (Seoul, Korea) 2009;5:151152.Google Scholar
Tesseki, K, Kataoka, H, Terashima, M, et al. Biphasic paraneoplastic brainstem encephalitis associated with anti-Ri antibody. J Neurooncol 2010;100:141143.Google Scholar
Angstwurm, K, Schielke, E, Zimmer, C, Kivelitz, D, Weber, JR. Superficial siderosis of the central nervous system: response to steroid therapy. J Neurol 2002;249:12231225.Google Scholar
Wirtz, PW, Sillevis Smitt, PA, Hoff, JI, et al. Anti-Ri antibody positive opsoclonus-myoclonus in a male patient with breast carcinoma. J Neurol 2002;249:17101712.Google Scholar
Graus, F, Keime-Guibert, F, Rene, R, et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 2001;124:11381148.Google Scholar
Saiz, A, Bruna, J, Stourac, P, et al. Anti-Hu-associated brainstem encephalitis. J Neurol Neurosurg Psychiatry 2009;80:404407.Google Scholar
Montaut, S, Mallaret, M, Laguna, AE, et al. Anti-Hu-associated brainstem encephalitis with ganglioneuroblastoma in a young adult. J Neurol 2014;261:18221824.Google Scholar
Malek, N, Damian, M. Trismus caused by paraneoplastic brainstem encephalitis. Practical Neurol 2018;18:146150.Google Scholar
Mendoza, M, Latorre, JG. Pearls and oy-sters: reversible Ondine’s curse in a case of lateral medullary infarction. Neurology 2013;80:e13e16.CrossRefGoogle Scholar
Kay, L, Bauer, S, Koczulla, AR, et al. Ondine’s curse and temporal lobe seizures: anti-Hu- and Zic4-associated paraneoplastic brainstem and limbic encephalitis. Eur J Neurol 2018;25:e59e60.Google Scholar
Najjar, M, Taylor, A, Agrawal, S, et al. Anti-Hu paraneoplastic brainstem encephalitis caused by a pancreatic neuroendocrine tumor presenting with central hypoventilation. J Clin Neurosci 2017;40:7273.Google Scholar
Pittock, SJ, Debruyne, J, Krecke, KN, et al. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2010;133:26262634.Google Scholar
Dudesek, A, Rimmele, F, Tesar, S, et al. CLIPPERS: chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids. Review of an increasingly recognized entity within the spectrum of inflammatory central nervous system disorders. Clin Exp Immunol 2014;175:385396.Google Scholar
Taieb, G, Labauge, P. CLIPPERS, a possible symptomatic lymphohistiocytic immune reaction. Brain 2018;141:e5.Google Scholar
Taieb, G, Kaphan, E, Duflos, C, et al. Hemophagocytic lymphohistiocytosis gene mutations in adult patients presenting with CLIPPERS-like syndrome. Neurol Neuroimmunol Neuroinflamm 2021;8:e970.Google Scholar
Griffin, G, Shenoi, S, Hughes, GC. Hemophagocytic lymphohistiocytosis: an update on pathogenesis, diagnosis, and therapy. Best Pract Res Clin Rheumatol 2020;34:101515.Google Scholar
Benson, LA, Li, H, Henderson, LA, et al. Pediatric CNS-isolated hemophagocytic lymphohistiocytosis. Neurol Neuroimmunol Neuroinflamm 2019;6:e560.Google Scholar
Veerapandiyan, A, Chaudhari, A, Deo, P, Ming, X. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS): a pediatric case report with six year follow-up. Mult Scler Relat Disord 2017;17:9598.Google Scholar
Sa, M, Green, L, Abdel-Mannan, O, et al. Is chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) in children the same condition as in adults? Dev Med Child Neurol 2019;61:490496.Google Scholar
Ortega, MR, Usmani, N, Parra-Herran, C, et al. CLIPPERS complicating multiple sclerosis causing concerns of CNS lymphoma. Neurology 2012;79:715716.Google Scholar
Ferreira, RM, Machado, G, Souza, AS, Lin, K, Correa-Neto, Y. CLIPPERS-like MRI findings in a patient with multiple sclerosis. J Neurol Sci 2013;327:6162.Google Scholar
Blaabjerg, M, Ruprecht, K, Sinnecker, T, et al. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI. Neurol Neuroimmunol Neuroinflamm 2016;3:e226.Google Scholar
De Graaff, HJ, Wattjes, MP, Rozemuller-Kwakkel, AJ, Petzold, A, Killestein, J. Fatal B-cell lymphoma following chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids. JAMA Neurol 2013;70:915918.Google Scholar
Buttmann, M, Metz, I, Brecht, I, Bruck, W, Warmuth-Metz, M. Atypical chronic lymphocytic inflammation with pontocerebellar perivascular enhancement responsive to steroids (CLIPPERS), primary angiitis of the CNS mimicking CLIPPERS or overlap syndrome? A case report. J Neurol Sci 2013;324:183186.Google Scholar
Taieb, G, Uro-Coste, E, Clanet, M, et al. A central nervous system B-cell lymphoma arising two years after initial diagnosis of CLIPPERS. J Neurol Sci 2014;344:224226.Google Scholar
Taieb, G, Duflos, C, Renard, D, et al. Long-term outcomes of CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids) in a consecutive series of 12 patients. Arch Neurol 2012;69:847855.Google Scholar
Taieb, G, Allou, T, Labauge, P. Therapeutic approaches in CLIPPERS. Curr Treat Options Neurol 2017;19:17.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×