
J. Austral. Math. Soc. (Series A) 46 (1989), 296-301

AN ALGORITHM FOR THE EAR DECOMPOSITION
OF A 1-FACTOR COVERED GRAPH

C. H. C. LITTLE A N D F. RENDL

(Received 7 August 1987; revised 14 March 1988)

Communicated by Louis Caccetta

Abstract

We give a constructive proof for the theorem of Lovasz and Plummer which asserts the existence
of an ear decomposition of a l-factor covered graph.

1980 Mathematics subject classification (Amer. Math. Soc): 05 C 99.

1. Introduction

A l-factor in a graph G is a set F of edges such that each vertex is incident with
exactly one edge of F. We say that G is l-factor covered if for every e € E(G)
there exists a l-factor which contains e. In this paper we confine our attention
to such graphs.

We identify paths and circuits with their edge sets. A circuit is alternating
with respect to two given 1-factors if it is contained in their symmetric difference.
Note that if G is a l-factor covered graph and |£(G)| > 1, then for each edge e
there exists an alternating circuit containing e.

An ear is a path of odd cardinality.
Let H be a l-factor covered subgraph of a l-factor covered graph G. Let A

be an alternating circuit in G which includes E{G) - E(H) and meets E{H).
Then an AiJ-arc (or an H-axc) is a subpath of E(G) — E(H), of maximal length,
whose internal vertices are in V(G) —V(H). If there are n such arcs, and each is
an ear, then we say that G is obtained from H by an n-ear adjunction. An ear
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decomposition of G is a sequence Go, G\,..., Gt of 1-factor covered graphs such
that |£(Go)| = I, Gt = G and, for each i > 0, Gi is obtained from Gj_i by an
n-ear adjunction with n = 1 or n = 2. (Note that the definition in [4] permits a
2-ear adjunction only if neither ear can be used for a 1-ear adjunction.) It has
been shown by Lovdsz and Plummer [1] (see also [2]) that such a decomposition
exists, and an algorithm for its construction appears in [4]. Our purpose here is
to give an elementary constructive proof of the result of Lovasz and Plummer.

2. Proof of the theorem

Throughout this section we fix a 1-factor F i n a 1-factor covered graph G.
An alternating path in G (with respect to F) is a path P in which each internal
vertex is incident with an edge of P D F. We adopt as a lemma the following
statement which is proved in [4].

LEMMA 1. Let F be a 1-factor in a connected 1-factor covered graph G. Let
v € V(G) and w € V(G). Then there is an alternating path P joining v and w
such that an edge of PDF is incident on v.

The proof of this assertion given in [4] furnishes an efficient algorithm for the
construction of such a path.

If u and v are distinct vertices in a path P, then we denote by P[u, v] the
subpath of P joining them.

LEMMA 2. Let F be a 1-factor in a graph G. Let C be a circuit in G which
contains a unique vertex v not incident with an edge of F C\C. Let e € C, and
let e join vertices x and x', where x ^ v. Let R be a path in G — {e} which
is alternating with respect to F, joins v to a vertex w € V(C) — {v} and has
its terminal edges in F. Suppose that C'[w,x] D R = 0 , where C' = C — {a}
for some edge a € C incident on v. Then C U R includes a circuit which is
alternating with respect to F and contains e.

PROOF. We use induction on the number n of RC-aics (that is, maximal
subpaths of R whose edges and internal vertices are not in C).

Let C* = C — {e}, and let g be the edge of R incident on w. By symmetry
we can assume that geC*[v, x\. If C*[v, x'] n R = <j>, then R U C* [w, x] U {e} U
C*[z',t;] is the required alternating circuit. Thus in particular the lemma holds
if n = l.

We may now suppose that n > 1, that the lemma holds whenever the number
of RC-aics is less than n, and that there exists h € C* [v, x'\ D R. Let h join ver-
tices y and y', where h € C*[x',y']. We may assume h chosen so that |C*[a;', y}\
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is minimised. Thus h€ F. If ft € R[v, y], then the lemma holds by the induction
hypothesis applied to the path i2[u,j/]. (Note that R[y, w] contains an RC-axc
since e £ R.) Suppose therefore that h € R[v, y'\. Then the required alternating
circuit is R[y',w] UC'[w,y'}.

We are now equipped for our proof of the "2-ear theorem" of Lovasz and
Plummer.

THEOREM 1. Let F be a 1-factor in a 1-factor covered connected graph G.
Let H be a 1-factor covered connected proper subgraph of G such that E(H) ^ <p
and FnE(H) is a 1-factor ofH. Then G contains a circuit A which is alternating
with respect to F and admits just one or two AH-arcs.

REMARK. The AH-a.rcs constitute the ears featured in one step of an ear
decomposition of G.

PROOF. AS the theorem is vacuous if |.E(G)| < 1, we assume that each edge
of G belongs to a circuit which is alternating with respect to F. In particular,
let A be such an alternating circuit which contains an edge of E(G) — E(H)
incident on a vertex of H. Then there exists an AH-axe.

We now assume that A is chosen as a circuit, alternating with respect to F,
which has an AH-axc but as few AH-axcs as possible subject to this requirement.
If A has no more than two AH-arcs, then the theorem holds, and so we suppose
that A has at least three.

Let Pi,P2,P3 be AH-axcs, and let Pi join vertices Ui and Vi for each i G
{1,2,3}. We may assume that these vertices occur on A in the cyclic order
ui,vi,U2,V2,uz,vz. They are distinct, for each is incident on an edge of F
which must belong to A f~l E{H). For each i e {1,2,3}, we let P[ = A - Pt.

By Lemma 1 there exists a path QQ in H which is alternating with respect to
F and joins vertices in distinct components of the graph spanned by E(H) n A.
Without loss of generality we can therefore assume the existence of a subpath
Q of <2o joining a vertex q\ £ V(P^[vi,U2]) to a vertex 92 G V{P'l[v2,uz\) such
that Q n A = 4> and V{Q) n V{A) - {qi,q2}. Let 6X and b2 be the edges of
F incident on qi and qi respectively. If {61,62} C ^[91,92] then the choice of
A is contradicted by the circuit Q U P ^ i i ^ ] - Similarly {61,62} t- P'Aiiii'A-
We may therefore assume without loss of generality that 61 £ ^([91,92] and

62 ePi[to,ft]-
By Lemma 1, there exists a path R in H, alternating with respect to F, which

has 91 as a terminal vertex and has 61 and the edge of F incident on u\ as its
terminal edges. Choose g € /^[ui.ua] D R, and let g join vertices w and w',
where g 6 R[qi,w]. We may assume that g is chosen to minimise |i?[9i,w]|. If
g € PzluiiW1], then choose an edge e € Pi; otherwise choose e e P3. Applying
Lemma 2 to the circuit P j ^ i ' ^ J U Q and the alternating path R[qi,w], we deduce
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tha t P^qi, 92] U Q U R[qi, w] includes a circuit which is a l ternat ing with respect
to F and contains e. This circuit mus t include either P i or P3 bu t not P2, and
thereby contradicts the choice of A .

3. Constructing an ear decomposition

The proof of Theorem 1 suggests the following method for finding an n-ear
adjunction of Gj to obtain Gj+i such that the sequence {G,} is an ear decom-
position of G.

Suppose G is a 1-factor covered connected proper subgraph of G. Let F be a
given 1-factor in Gj that can be extended to a 1-factor F' in G.

Step 1. Use the following procedure to find a circuit A, alternating with
respect to F', having at least one AGj-a.rc. By assumption there exists v € V(Gj)
and e € E(G) - E(Gj) such that v meets e. Find a 1-factor K in G such that
e € K and let A be the alternating circuit in F' + K that contains e. Let n(A)
be the number of -4Gj-arcs. We will write n instead of n(A) if there is no risk
of confusion.

Step 2. If n = 1 then the .AGj-arc gives a 1-ear adjunction.

Step 3. If n = 2 then the AGj-arcs give a 2-ear adjunction.
(It is easy to test whether either of these ears can be used as a 1-ear adjunction.

We need merely test whether GjUPi or GjUP? is 1-factor covered where P\ and
P<x are the ears. This can be done by determining whether Gj U Pi, i € {1,2},
contains a 1-factor that uses a terminal edge of Pi.)

Step 4. If n > 3 then apply the steps implicit in the proof of Theorem 1
and Lemma 2 to transform A into an alternating circuit A' having one or two
A'GJ-BXCS. This is done as follows: as in the proof of Theorem 1 let Pi,P2,P3
be AGj-axcs and let Pi join vertices u,-, Vi for i € {1,2,3}, where the vertices
appear on A in the cyclic order «i, vi, 112, V?,us, V3.

(a) Using the labelling technique described in [4] find a path Qo in Gj which
is alternating with respect to F and joins v\ and v^- Let Q be a subpath of Qo
such that Q n A = 0 and V(Q) n V(A) = {91,92}, where q\ and q% are as in the
proof of the theorem. Denote the edges of F incident on q\ and qi by 61 and 62
respectively.

(b) If {61,b2) C Pa[?i.9a] t h e n l e t A> = QU Pafai, 02]. Similarly if {6i,62} C
Pi fail 92], then let A' = QUP([gi, ga]- Continue with Step 2, replacing A by A'.
(Note that in these cases n(A) > n(A') > 1.)
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(c) Without loss of generality assume 61 € P{[9i,92]- Find an alternating
path R in Gj starting at q\, containing 61 and having the edge of F incident
on ui as terminal edge. Choose g € P^fui,V3] D R where g joins vertices w and
w', g € R[qi,w], and |i?[9i,u;]| is minimised. If g € P ^ u ^ w ' ] choose an edge
e € P i ; otherwise choose e € P3.

(d) Apply the steps implicit in the proof of Lemma 2 to the circuit P'2 [91,92] U
Q, the alternating path R[qi,w] and the edge e to obtain an alternating circuit
A'. Again n(A) > n(A') > 1. Go to Step 2 with A replaced by A'.

LEMMA 3. An n-ear adjunction for a 1-factor covered connected subgraph H
of a 1-]'actor covered graph G, where n e {1,2}, can be found in 0{\V{G)\ \E(G)\)
worst case time.

PROOF. Due to Theorem 1, performing Steps 1-4 produces the required n-
ear adjunction. Analysing the computational effort we find that Steps 1 and 3
essentially require the computation of one or two 1-factors in G, and each step is
invoked no more than once. These 1-factors can be found in O(\V(G)\1^2\E(G)\)
time [3].

In Step 4 we first have to find two alternating paths Qo and R in Gj. This is
done in O(\E(Gj)\) time by the labelling process described in [4]. In Step 4(d)
we have to apply the steps implicit in the proof of Lemma 2. This amounts to
determining an edge h £ R closest to a certain vertex on the circuit P^fai, 92] UQ
and can be done in O(|i?|) time. Thus one execution of Step 4 requires only
O(\E(G)\) time. To complete the proof, note that Step 4 is invoked no more
than 0{\V{G)\) times.

REMARK. It should be pointed out that the method described in [4] to find
an n-ear adjunction requires one to find O(\E(G)\) minimum weight 1-factors,
and therefore has running time O(\E{G)\ \V{G)\3).
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