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1. Introduction

Various extensions and generalizations of Bernstein polynomials have been
considered among others by Szasz [13], Meyer-Konig and Zeller [8], Cheney and
Sharma [1], Jakimovski and Leviatan [4], Stancu [12], Pethe and Jain [11].
Bernstein polynomials are based on binomial and negative binomial distributions.
Szasz and Mirakyan [9] have defined another operator with the help of the Pois-
son distribution. The operator has approximation properties similar to those of
Bernstein operators. Meir and Sharma [7] and Jain and Pethe [3] deal with gen-
eralizations of Szasz-Mirakyan operator. As another generalization, we define
in this paper a new operator with the help of a Poisson type distribution, consider
its convergence properties and give its degree of approximation. The results for
the Szasz-Mirakyan operator can easily be obtained from our operator as a
particular case.

2. The operator and its convergence

The operator and its convergence are based on the following two lemmas:

LEMMA 1. ForO < a < oo, |/?| < 1, let

(2.1) (O0(k, a) = oc^ + kpf-'e-^^lkl; k = 0, 1, 2, • • •

then

(2.2) £ a>,(fc,a) = l.
* = o

It may be mentioned that (2.1) is a Poisson-type distribution which has been
considered by Consul and Jain [2].

The proof of the lemma may be based upon results given by Jensen [5]. If
we start with Lagrange's formula
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(2.3) 4>{z) =
*=i fc! ldzk

 z 0 / ( )
and proceed by setting

<j)(z) = exz and /(z) = e"z

we shall get

(2.4) eaz = f a(oi + kpf-luklk\, u = ze~*z,
k = 0

where z and M are sufficiently small such that |/?M| < e " 1 and |/?z| < 1.

By taking z = 1, the lemma in (2.2) is obvious.

LEMMA 2. Let

(2.5) S(r,tx,p) = f > + ^ ) * + r - 1 e - ( " + / " 0 / / c ! , > - = 0 , 1 , 2 , • • •
k = 0

and

(2.6)

(2.7) S(r, a, ^) = J f(« + kp)S(r-l, a + kp, p),
k = 0

PROOF. It can easily be seen that the functions S(r, a, p) satisfy the reduction
formula

(2.8) S{r, a, p) = aS(r - l , a, ^) + /?S(r, a + j5, /?).

By a repeated use of (2.8), the proof of the lemma is straightforward.
From (2.7) and (2.6) when j? < lwe get

(2.9) S(l,a,j8) = f / J*= 1/(1-/?),
k = O

and

(2.10) S(2, a,p) = I ^
^ ^ (1.to (1-/?) (i-/?)2 (1- /0 3

We may now define the operator as

(2.11) PlfXf; x) = £ %(/c,,

where 1 > P ^ 0 and w#(k, nx) has been defined in (2.1).
The parameter P may depend on the natural number n. It is easy to see that

for p — 0, (2.11) reduces to Szasz-Mirakyan operator [9].
The convergence property of the operator P^(f:x) is proved in the following

theorem:
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THEOREM (2.1). If fe C[0, oo) and /? -> 0 as n -> oo then the sequence
{PlfXf; x)} converges uniformly to f(x) in [a, b], where 0 ^ a < b < oo.

PROOF. Since P^\f, x) is a positive linear operator for 1 > /? ̂  0, it is
sufficient, by Korovkin's result, to verify the uniform convergence for test func-
tions/^) = 1, fand t2.

It is clear from (2.2) that

(2.12)

Going on to f(t) = t and using (2.9) we have

(2.13) W. *) = *» £
/c!

Proceeding to the function/(?) = t2, it can easily be shown that

2k=o fc! n

= — [S(2, nx + ip, fi) + S(l, nx + p, P)~\
n

and a use of (2.9) and (2.10) yields

(2.14) PlfV; x) = — ^ + x
 3 .

Thus combining the results of (2.12), (2.13) and (2.14) we have

Lim P^](f2; JC) = xr, r = 0, 1, 2, as yS ->• 0
n-*oo

and hence by Korovkin's theorem the proof of theorem (2.1) is complete.

3. Order of approximation

THEOREM (3.1). Iffe C[0, X] and 1 > jS'/n ^ j8 ^ 0

where w(5) = sup |/(x")-f(x')\; x', x" e [0, X], 8 being a positive number such
that\x"-x'\ < 3.

PROOF. By using the properties of modulus of continuity

(3-1) \f(x")-f(x')\ £ w(\x"-x'\);
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(3.2) w(y8)£(y+l)w(8),y>0

and noting the fact that

00

£ o)p(k, nx) = 1 and co0(k, nx) ^ 0, Vn, k
* = o

it can easily be seen, by the application of Cauchy's inequality, that

(3.3) | / ( x ) - p t « ( / ; x ) | < ; ( i + i k
x co(5)

Now by linearity of the operator and by using (2.12), (2.13) and (2.14) we have

f nx(wX + fc/?)
 e-<"*+"> ( x - - V = x2F"Xl; x)-2xP[»Xt; x) + Pi"(t2; x)

k=o k\ \ nl

(3.4) = x2/?2/( l- /02+x/n(l-j8)3 ^

^ X[l+Xpp']/n.

Hence using (3.4) in (3.3) and choosing 8 = 1/V" we prove

(3.5) l/(x)

For P = 0, the expression (3.5) reduces to an inequality for the Szasz-Mirakyan
operator obtained earlier by Miiller.

THEOREM (3.2). If fe C"[0, X], 1 > P'/n ̂  P ̂  0, /Aen rAe following in-
equality holds

\f{x)-P{n{f; x)\ S A*(l+A/?/J')*[l+A*(l + W')*>iO/V»)/>/B.

where w1(5) is the modulus of continuity off.

PROOF. For definiteness, we prove the theorem for f(x) ^ 0 but it also
applies to f'(x) < 0. By the mean value theorem of differential calculus, it is
known that

where £ = n̂> k(x) is an interior point of the interval determined by x and kjn.
Now

-p n
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Multiplying both sides of the inequality by xn(xn + fikf 1e <-nx+pk)/k\, sum-

ming over k and using (2.13) we get

(3.6)

But by (3.1) and (3.2)

GO

Jt = O
X —

k
—
n

S
- x W);

I

where <5 is a positive number not depending on k.

A use of this in (3.6) gives

\f(x)-F"Xf;x)\Z £ y _ _

v f c - l

k\

Hence by applications of Cauchy's inequality and (3.4)

(3.7) + J
.,(1) .

Choosing 5 = l/y/n, theorem (3.2) is proved.

We may put P = 0, d = 1/V« in (3.7) to get the expression for Szasz-Mirakyan

operator. The substitutions reduce (3.7) to

in agreement with Stancu [12].
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