APPROXIMATION OF FUNCTIONS BY A NEW CLASS OF LINEAR OPERATORS

G. C. JAIN

(Received 24 April 1970) Communicated by B. Mond

1. Introduction

Various extensions and generalizations of Bernstein polynomials have been considered among others by Szasz [13], Meyer-Konig and Zeller [8], Cheney and Sharma [1], Jakimovski and Leviatan [4], Stancu [12], Pethe and Jain [11]. Bernstein polynomials are based on binomial and negative binomial distributions. Szasz and Mirakyan [9] have defined another operator with the help of the Poisson distribution. The operator has approximation properties similar to those of Bernstein operators. Meir and Sharma [7] and Jain and Pethe [3] deal with generalizations of Szasz-Mirakyan operator. As another generalization, we define in this paper a new operator with the help of a Poisson type distribution, consider its convergence properties and give its degree of approximation. The results for the Szasz-Mirakyan operator can easily be obtained from our operator as a particular case.

2. The operator and its convergence

The operator and its convergence are based on the following two lemmas:

LEMMA 1. For $0 < \alpha < \infty$, $|\beta| < 1$, let

(2.1)
$$\omega_{\beta}(k,\alpha) = \alpha(\alpha+k\beta)^{k-1}e^{-(\alpha+k\beta)}/k!; \ k=0,1,2,\cdots$$

then

(2.2)
$$\sum_{k=0}^{\infty} \omega_{\beta}(k, \alpha) = 1.$$

It may be mentioned that (2.1) is a Poisson-type distribution which has been considered by Consul and Jain [2].

The proof of the lemma may be based upon results given by Jensen [5]. If we start with Lagrange's formula

271

G. C. Jain

(2.3)
$$\phi(z) = \phi(0) + \sum_{k=1}^{\infty} \frac{1}{k!} \left[\frac{d^{k-1}}{dz^{k-1}} \left((f(z))^k \right) \phi'(z) \right]_{z=0} \left(\frac{z}{f(z)} \right)^k$$

and proceed by setting

$$\phi(z) = e^{\alpha z}$$
 and $f(z) = e^{\beta z}$

we shall get

(2.4)
$$e^{\alpha z} = \sum_{k=0}^{\infty} \alpha (\alpha + k\beta)^{k-1} u^k / k!, \ u = z e^{-\beta z},$$

where z and u are sufficiently small such that $|\beta u| < e^{-1}$ and $|\beta z| < 1$.

By taking z = 1, the lemma in (2.2) is obvious.

LEMMA 2. Let

(2.5)
$$S(r, \alpha, \beta) = \sum_{k=0}^{\infty} (\alpha + \beta k)^{k+r-1} e^{-(\alpha + \beta k)} / k!, r = 0, 1, 2, \cdots$$

and

(2.6)
$$\alpha S(0, \alpha, \beta) = 1.$$

Then

(2.7)
$$S(r, \alpha, \beta) = \sum_{k=0}^{\infty} \beta^{k} (\alpha + k\beta) S(r-1, \alpha + k\beta, \beta),$$

PROOF. It can easily be seen that the functions $S(r, \alpha, \beta)$ satisfy the reduction formula

(2.8)
$$S(r, \alpha, \beta) = \alpha S(r-1, \alpha, \beta) + \beta S(r, \alpha + \beta, \beta)$$

By a repeated use of (2.8), the proof of the lemma is straightforward. From (2.7) and (2.6) when $\beta < 1$ we get

(2.9)
$$S(1, \alpha, \beta) = \sum_{k=0}^{\infty} \beta^k = 1/(1-\beta),$$

and

(2.10)
$$S(2, \alpha, \beta) = \sum_{k=0}^{\infty} \frac{\beta^k (\alpha + k\beta)}{(1-\beta)} = \frac{\alpha}{(1-\beta)^2} + \frac{\beta^2}{(1-\beta)^3}.$$

We may now define the operator as

(2.11)
$$P_{n}^{[\beta]}(f;x) = \sum_{k=0}^{\infty} \omega_{\beta}(k,nx) f(k/n),$$

where $1 > \beta \ge 0$ and $w_{\beta}(k, nx)$ has been defined in (2.1).

The parameter β may depend on the natural number *n*. It is easy to see that for $\beta = 0$, (2.11) reduces to Szasz--Mirakyan operator [9].

The convergence property of the operator $P_n^{[\beta]}(f:x)$ is proved in the following theorem:

THEOREM (2.1). If $f \in C[0, \infty)$ and $\beta \to 0$ as $n \to \infty$ then the sequence $\{P_n^{[\beta]}(f; x)\}$ converges uniformly to f(x) in [a, b], where $0 \leq a < b < \infty$.

PROOF. Since $P_n^{[\beta]}(f; x)$ is a positive linear operator for $1 > \beta \ge 0$, it is sufficient, by Korovkin's result, to verify the uniform convergence for test functions f(t) = 1, t and t^2 .

It is clear from (2.2) that

(2.12)
$$P_n^{[\beta]}(1; x) = 1.$$

Going on to f(t) = t and using (2.9) we have

(2.13)
$$P_n^{[\beta]}(t;x) = xn \sum_{k=1}^{\infty} \frac{(nx+\beta k)^{k-1}}{k!} e^{-(nx+\beta k)} \left(\frac{k}{n}\right)$$
$$= xS(1, nx+\beta, \beta) = \frac{x}{1-\beta}.$$

Proceeding to the function $f(t) = t^2$, it can easily be shown that

$$P_{n}^{[\beta]}(t^{2}; x) = xn \sum_{k=0}^{\infty} \frac{(nx+\beta k)^{k-1}}{k!} e^{-(nx+\beta k)} \frac{k^{2}}{n^{2}}$$
$$= \frac{x}{n} [S(2, nx+2\beta, \beta) + S(1, nx+\beta, \beta)]$$

and a use of (2.9) and (2.10) yields

(2.14)
$$P_n^{[\beta]}(t^2; x) = \frac{x^2}{(1-\beta)^2} + \frac{x}{n(1-\beta)^3}.$$

Thus combining the results of (2.12), (2.13) and (2.14) we have

$$\lim_{n\to\infty} P_n^{[\beta]}(t^2; x) = x^r, r = 0, 1, 2, \text{ as } \beta \to 0$$

and hence by Korovkin's theorem the proof of theorem (2.1) is complete.

3. Order of approximation

THEOREM (3.1). If
$$f \in C[0, \lambda]$$
 and $1 > \beta'/n \ge \beta \ge 0$ then

$$|f(x) - P_n^{[\beta]}(f; x)| \le [1 + \lambda^{\frac{1}{2}}(1 + \lambda\beta\beta')^{\frac{1}{2}}] \cdot \omega(1/n^{\frac{1}{2}}).$$

where $w(\delta) = \sup |f(x'') - f(x')|; x', x'' \in [0, \lambda], \delta$ being a positive number such that $|x'' - x'| < \delta$.

PROOF. By using the properties of modulus of continuity

(3.1)
$$|f(x'')-f(x')| \leq w(|x''-x'|);$$

G. C. Jain

(3.2)
$$w(\gamma\delta) \leq (\gamma+1)w(\delta), \gamma > 0$$

and noting the fact that

$$\sum_{k=0}^{\infty} \omega_{\beta}(k, nx) = 1 \text{ and } \omega_{\beta}(k, nx) \ge 0, \forall n, k$$

it can easily be seen, by the application of Cauchy's inequality, that

$$(3.3) \quad |f(x) - P_n^{[\beta]}(f;x)| \leq \left\{ 1 + \frac{1}{\delta} \sum_{k=0}^{\infty} \frac{nx(nx + \beta k)^{k-1}}{k!} e^{-(nx + \beta k)} \left| x - \frac{k}{n} \right| \right\} \omega(\delta)$$
$$\leq \left\{ 1 + \frac{1}{\delta} \left[\sum_{k=0}^{\infty} \frac{nx(nx + \beta k)^{k-1}}{k!} e^{-(nx + \beta k)} \left(x - \frac{k}{n} \right)^2 \right]^{\frac{1}{2}} \right\} \omega(\delta).$$

Now by linearity of the operator and by using (2.12), (2.13) and (2.14) we have

$$\sum_{k=0}^{\infty} \frac{nx(nx+k\beta)^{k-1}}{k!} e^{-(nx+k\beta)} \left(x-\frac{k}{n}\right)^2 = x^2 P_n^{[\beta]}(1;x) - 2x P_n^{[\beta]}(t;x) + P_n^{[\beta]}(t^2;x)$$
(3.4)
$$= x^2 \beta^2 / (1-\beta)^2 + x/n(1-\beta)^3 \leq \lambda [\lambda\beta\beta'/(1-\beta)^2 + 1/(1-\beta)^3]/n$$

$$\leq \lambda [1+\lambda\beta\beta']/n.$$

Hence using (3.4) in (3.3) and choosing $\delta = 1/\sqrt{n}$ we prove

(3.5)
$$|f(x) - P_n^{[\beta]}(f; x)| \leq [1 + \lambda^{\frac{1}{2}} (1 + \lambda \beta \beta')^{\frac{1}{2}}] \omega(1/\sqrt{n}).$$

For $\beta = 0$, the expression (3.5) reduces to an inequality for the Szasz-Mirakyan operator obtained earlier by Müller.

THEOREM (3.2). If $f \in C'[0, \lambda]$, $1 > \beta'/n \ge \beta \ge 0$, then the following inequality holds

$$|f(\mathbf{x}) - P_n^{[\beta]}(f;\mathbf{x})| \leq \lambda^{\frac{1}{2}} (1 + \lambda\beta\beta')^{\frac{1}{2}} [1 + \lambda^{\frac{1}{2}} (1 + \lambda\beta\beta')^{\frac{1}{2}}] \omega_1(1/\sqrt{n})/\sqrt{n},$$

where $w_1(\delta)$ is the modulus of continuity of f'.

PROOF. For definiteness, we prove the theorem for $f'(x) \ge 0$ but it also applies to f'(x) < 0. By the mean value theorem of differential calculus, it is known that

$$f(x)-f\left(\frac{k}{n}\right)=\left(x-\frac{k}{n}\right)f'(\xi),$$

where $\xi \equiv \xi_{n,k}(x)$ is an interior point of the interval determined by x and k/n. Now

$$f(x)-f\left(\frac{k}{n}\right) \leq \left(x-\frac{k}{n}\right) \left[f'(\xi)-f'(x)\right] + \left[\frac{x}{1-\beta}-\frac{k}{n}\right] f'(x).$$

274

Multiplying both sides of the inequality by $xn(xn+\beta k)^{k-1}e^{-(nx+\beta k)}/k!$, summing over k and using (2.13) we get

(3.6)
$$|f(x) - P_n^{[\beta]}(f:x)| \leq \sum_{k=0}^{\infty} \left| x - \frac{k}{n} \right| \frac{nx(nx + \beta k)^{k-1} e^{-(nx + \beta k)}}{k!} |f'(\xi) - f'(x)|.$$

But by (3.1) and (3.2)

$$|f'(\xi) - f'(x)| \leq \omega_1(|\xi - x|) \leq \left(1 + \frac{1}{\delta} |\xi - x|\right) \omega_1(\delta)$$
$$\leq \left(1 + \frac{1}{\delta} \left|\frac{k}{n} - x\right|\right) \omega_1(\delta);$$

where δ is a positive number not depending on k.

A use of this in (3.6) gives

$$|f(x) - P_n^{[\beta]}(f; x)| \leq \left\{ \sum_{k=0}^{\infty} \left| x - \frac{k}{n} \right| \frac{nx(nx + \beta k)^{k-1}}{k!} e^{-(nx + \beta k)} + \frac{1}{\delta} \sum_{k=0}^{\infty} \left(x - \frac{k}{n} \right)^2 \frac{nx(nx + \beta k)^{k-1}}{k!} e^{-(nx + \beta k)} \right\} \omega_1(\delta).$$

Hence by applications of Cauchy's inequality and (3.4)

(3.7)
$$|f(x) - P_n^{[\beta]}(f;x)| \leq \frac{\lambda^{\frac{1}{2}}(1+\lambda\beta\beta')^{\frac{1}{2}}}{n^{\frac{1}{2}}} \left[1 + \frac{\lambda^{\frac{1}{2}}(1+\lambda\beta\beta')^{\frac{1}{2}}}{\delta n^{\frac{1}{2}}}\right] \omega_1(\delta).$$

Choosing $\delta = 1/\sqrt{n}$, theorem (3.2) is proved.

We may put $\beta = 0, \delta = 1/\sqrt{n}$ in (3.7) to get the expression for Szasz-Mirakyan operator. The substitutions reduce (3.7) to

$$|f(x) - P_n^{[\beta]}(f; x)| \leq \frac{1}{\sqrt{n}} (\lambda + \sqrt{\lambda}) \omega_1(1/\sqrt{n}); x \in [0 \ \lambda]$$

in agreement with Stancu [12].

References

- E. W. Cheney and A. Sharma, 'On a Generalization of Bernstein Polynomials', Rev. Mat. Univ. Parma (2) 5 (1964), 77-84.
- [2] P. C. Consul and G. C. Jain, 'On a Generalized Poisson Distribution', Submitted (1970).
- [3] G. C. Jain and S. P. Pethe, 'On a Generalization of Szasz-Mirakyan operator', Mathematica (Cluj) (2) 35 (1970), 313–318.
- [4] A. Jakimovski and D. Leviatan, 'Generalized Bernstein Polynomials', Math. Z. 93 (1966), 411-426.
- [5] J. L. W. V. Jensen, 'Sur une identité, d'Abel et sur d'autres formules analogues', Acta Math. 26, (1902), 307-318.
- [6] P. P. Korovkin, *Linear Operators and Approximation Theory* (translated from Russian edition of 1959, Delhi, 1960.)

- [7] A. Meir and A. Sharma, 'Approximation Methods by Polynomials and Power Series', Koninkl. Nederl. Akademie Van Wetenschappen. Amsterdam, Reprinted from Proceedings, Series A, 70, No. 4 and Indag. Math. 29 (1967), 77-84.
- [8] W. Meyer-König and K. Zeller, 'Bernsteinsche Potenzreihen', Studia Math. 19 (1960), 89-94.
- [9] G. Mirakyan, 'Approximation des Fonctions Continues au Moyen de Polynomes de la Forme', Dokl. Akad. Nauk. SSSR 31 (1941), 201-205.
- [10] M. Müller, Die Folge der Gamma Operatoren, Dissertation, Stuttgart, 1967).
- [11] S. P. Pethe and G. C. Jain, 'Approximation of functions by Bernstein type operator', *Canad. Math. Bull.*, to appear.
- [12] D. D. Stancu, 'Approximation of functions by a New Class of Linear Polynomial Operators', Revue Roumaine de Mathématique Pures et Appliquées 8 (XIII) (1968), 1173-1994.
- [13] O. Szasz, 'Generalization of S. Bernstein's Polynomials to the Infinite Interval', J. of Research of the Nat. Bur. of Standards, 45, (1950) 239-245; Collected Mathematical Works (Cincinnati 1955, 1401-1407).

University of Calgary Alberta, Canada