1. Introduction

Various extensions and generalizations of Bernstein polynomials have been considered among others by Szasz [13], Meyer-Konig and Zeller [8], Cheney and Sharma [1], Jakimovski and Leviatan [4], Stancu [12], Pethe and Jain [11]. Bernstein polynomials are based on binomial and negative binomial distributions. Szasz and Mirakyan [9] have defined another operator with the help of the Poisson distribution. The operator has approximation properties similar to those of Bernstein operators. Meir and Sharma [7] and Jain and Pethe [3] deal with generalizations of Szasz-Mirakyan operator. As another generalization, we define in this paper a new operator with the help of a Poisson type distribution, consider its convergence properties and give its degree of approximation. The results for the Szasz-Mirakyan operator can easily be obtained from our operator as a particular case.

2. The operator and its convergence

The operator and its convergence are based on the following two lemmas:

Lemma 1. For $0 < \alpha < \infty, |\beta| < 1$, let

\[
\omega_{\beta}(k, \alpha) = \alpha^{(\alpha + k\beta)} - (\alpha + k\beta) / k!; \quad k = 0, 1, 2, \ldots
\]

then

\[
\sum_{k=0}^{\infty} \omega_{\beta}(k, \alpha) = 1.
\]

It may be mentioned that (2.1) is a Poisson-type distribution which has been considered by Consul and Jain [2].

The proof of the lemma may be based upon results given by Jensen [5]. If we start with Lagrange's formula
(2.3) \[\phi(z) = \phi(0) + \sum_{k=1}^{\infty} \frac{1}{k!} \left[\frac{dz^{k-1}}{dz} ((f(z))^k) \phi'(z) \right] \bigg|_{z=0} \left(\frac{z}{f(z)} \right)^k \]

and proceed by setting

\[\phi(z) = e^{az} \text{ and } f(z) = e^{\beta z} \]

we shall get

\[e^{az} = \sum_{k=0}^{\infty} a(x+k\beta)^{k-1} u^k/|k|, u = ze^{-\beta z}, \]

where \(z \) and \(u \) are sufficiently small such that \(|\beta u| < e^{-1} \) and \(|\beta z| < 1 \).

By taking \(z = 1 \), the lemma in (2.2) is obvious.

Lemma 2. Let

(2.5) \[S(r, x, \beta) = \sum_{k=0}^{\infty} (x+\beta)^{k+r-1} e^{-(x+\beta)|k|}, r = 0, 1, 2, \cdots \]

and

(2.6) \[xS(0, x, \beta) = 1. \]

Then

(2.7) \[S(r, x, \beta) = \sum_{k=0}^{\infty} \beta^k (x+k\beta)S(r-1, x+k\beta, \beta). \]

Proof. It can easily be seen that the functions \(S(r, x, \beta) \) satisfy the reduction formula

(2.8) \[S(r, x, \beta) = xS(r-1, x, \beta) + \beta S(r, x+\beta, \beta). \]

By a repeated use of (2.8), the proof of the lemma is straightforward.

From (2.7) and (2.6) when \(\beta < 1 \) we get

(2.9) \[S(1, x, \beta) = \sum_{k=0}^{\infty} \beta^k = 1/(1-\beta), \]

and

(2.10) \[S(2, x, \beta) = \sum_{k=0}^{\infty} \beta^k (x+k\beta) (1-\beta) = \frac{\alpha}{(1-\beta)^2} + \frac{\beta^2}{(1-\beta)^3}. \]

We may now define the operator as

(2.11) \[P^\beta_n(f; x) = \sum_{k=0}^{\infty} w_n(k, nx)f(k/n), \]

where \(1 > \beta \geq 0 \) and \(w_n(k, nx) \) has been defined in (2.1).

The parameter \(\beta \) may depend on the natural number \(n \). It is easy to see that for \(\beta = 0 \), (2.11) reduces to Szasz--Mirakyan operator [9].

The convergence property of the operator \(P^\beta_n(f; x) \) is proved in the following theorem:
THEOREM (2.1). If \(f \in C[0, \infty) \) and \(\beta \to 0 \) as \(n \to \infty \) then the sequence \(\{P_n^{(\beta)}(f; x)\} \) converges uniformly to \(f(x) \) in \([a, b]\), where \(0 \leq a < b < \infty \).

PROOF. Since \(P_n^{(\beta)}(f; x) \) is a positive linear operator for \(1 > \beta \geq 0 \), it is sufficient, by Korovkin's result, to verify the uniform convergence for test functions \(f(t) = 1, t \) and \(t^2 \).

It is clear from (2.2) that

\[
P_n^{(\beta)}(1; x) = 1.
\]

Going on to \(f(t) = t \) and using (2.9) we have

\[
P_n^{(\beta)}(t; x) = \frac{x}{1 - \beta}.
\]

Proceeding to the function \(f(t) = t^2 \), it can easily be shown that

\[
P_n^{(\beta)}(t^2; x) = \frac{x^2}{(1 - \beta)^2} + \frac{x}{n(1 - \beta)^3}.
\]

Thus combining the results of (2.12), (2.13) and (2.14) we have

\[
\lim_{n \to \infty} P_n^{(\beta)}(t^2; x) = x^r, \quad r = 0, 1, 2, \text{ as } \beta \to 0
\]

and hence by Korovkin's theorem the proof of theorem (2.1) is complete.

3. Order of approximation

THEOREM (3.1). If \(f \in C[0, \lambda] \) and \(1 > \beta'/n \geq \beta \geq 0 \) then

\[
|f(x) - P_n^{(\beta)}(f; x)| \leq [1 + \lambda^4(1 + \lambda \beta')^3] \cdot \omega(1/n^3),
\]

where \(\omega(\delta) = \sup |f(x') - f(x'')|; x', x'' \in [0, \lambda], \delta \) being a positive number such that \(|x'' - x'| < \delta \).

PROOF. By using the properties of modulus of continuity

\[
|f(x'') - f(x')| \leq \omega(|x'' - x'|);
\]
and noting the fact that
\[\sum_{k=0}^{\infty} \omega_\rho(k, nx) = 1 \quad \text{and} \quad \omega_\rho(k, nx) \geq 0, \forall n, k \]
it can easily be seen, by the application of Cauchy's inequality, that
\[|f(x) - P_n^{\beta}(f; x)| \leq \left(1 + \frac{1}{\delta} \sum_{k=0}^{\infty} \frac{n(x + \beta k)^{k-1}}{k!} e^{-(x + \beta k)} \right) \omega(\delta) \]
\[\leq \left(1 + \frac{1}{\delta} \sum_{k=0}^{\infty} \frac{n(x + \beta k)^{k-1}}{k!} e^{-(x + \beta k)} \left(x - \frac{k}{n} \right)^2 \right)^{\frac{1}{2}} \omega(\delta). \]

Now by linearity of the operator and by using (2.12), (2.13) and (2.14) we have
\[\sum_{k=0}^{\infty} \frac{n(x + \beta k)^{k-1}}{k!} e^{-(x + \beta k)} \left(x - \frac{k}{n} \right)^2 = x^2 P_n^{\beta}(1; x) - 2x P_n^{\beta}(t; x) + P_n^{\beta}(t^2; x) \]
\[= x^2 \beta^2 / (1 - \beta)^2 + x/n(1 - \beta)^3 \leq \lambda [\lambda \beta^{\prime} / (1 - \beta)^2 + 1 / (1 - \beta)^3] / n \]
\[\leq \lambda [1 + \lambda \beta^{\prime}] / n. \]

Hence using (3.4) in (3.3) and choosing \(\delta = 1/\sqrt{n} \) we prove
\[|f(x) - P_n^{\beta}(f; x)| \leq \left[1 + \lambda \beta^{\prime} (1 + \lambda \beta^{\prime}) \right] \omega(1/\sqrt{n}). \]

For \(\beta = 0 \), the expression (3.5) reduces to an inequality for the Szasz-Mirakyan operator obtained earlier by Müller.

Theorem (3.2). If \(f \in C'[0, \lambda], 1 > \beta/n \geq \beta \geq 0 \), then the following inequality holds
\[|f(x) - P_n^{\beta}(f; x)| \leq \lambda \beta^{\prime} (1 + \lambda \beta^{\prime}) \left[1 + \lambda \beta^{\prime} (1 + \lambda \beta^{\prime}) \right] w(x / \sqrt{n} / \sqrt{n}, \sqrt{n}), \]
where \(w_1(\delta) \) is the modulus of continuity of \(f^{\prime} \).

Proof. For definiteness, we prove the theorem for \(f^{\prime}(x) \geq 0 \) but it also applies to \(f^{\prime}(x) < 0 \). By the mean value theorem of differential calculus, it is known that
\[f(x) - f \left(\frac{k}{n} \right) = \left(x - \frac{k}{n} \right) f'(\xi), \]
where \(\xi \equiv \xi_{n,k}(x) \) is an interior point of the interval determined by \(x \) and \(k/n \). Now
\[f(x) - f \left(\frac{k}{n} \right) \leq \left(x - \frac{k}{n} \right) [f'(\xi) - f'(x)] + \left[\frac{x}{1 - \beta} - \frac{k}{n} \right] f'(x). \]
Multiplying both sides of the inequality by \(x_n(x_n + \beta k)^{k-1} e^{-(nx + \beta k)/k!} \), summing over \(k \) and using (2.13) we get

\[
|f(x) - P_n^{[\beta]}(f; x)| \leq \sum_{k=0}^{\infty} \left| x - \frac{k}{n} \right| \frac{n x (nx + \beta k)^{k-1} e^{-(nx + \beta k)/k!}}{k!} |f'(\xi) - f'(x)|.
\]

But by (3.1) and (3.2)

\[
|f'(\xi) - f'(x)| \leq \omega_1(|\xi - x|) \leq \left(1 + \frac{1}{\delta} |\xi - x| \right) \omega_1(\delta)
\]

\[
\leq \left(1 + \frac{1}{\delta} \left| \frac{k}{n} - x \right| \right) \omega_1(\delta);
\]

where \(\delta \) is a positive number not depending on \(k \).

A use of this in (3.6) gives

\[
|f(x) - P_n^{[\beta]}(f; x)| \leq \left[\sum_{k=0}^{\infty} \left| x - \frac{k}{n} \right| \frac{n x (nx + \beta k)^{k-1} e^{-(nx + \beta k)/k!}}{k!} + \frac{1}{\delta} \sum_{k=0}^{\infty} \left(x - \frac{k}{n} \right)^2 \frac{n x (nx + \beta k)^{k-1} e^{-(nx + \beta k)/k!}}{k!} \right] \omega_1(\delta).
\]

Hence by applications of Cauchy's inequality and (3.4)

\[
|f(x) - P_n^{[\beta]}(f; x)| \leq \frac{\lambda^{\frac{1}{2}}(1 + \lambda \beta')^{\frac{1}{2}}}{n^{\frac{1}{2}}} \left[1 + \frac{\lambda^{\frac{1}{2}}(1 + \lambda \beta')^{\frac{1}{2}}}{\delta n^{\frac{1}{2}}} \right] \omega_1(\delta).
\]

Choosing \(\delta = 1/\sqrt{n} \), theorem (3.2) is proved.

We may put \(\beta = 0, \delta = 1/\sqrt{n} \) in (3.7) to get the expression for Szasz-Mirakyan operator. The substitutions reduce (3.7) to

\[
|f(x) - P_n^{[\beta]}(f; x)| \leq \frac{1}{\sqrt{n}} (\lambda + \sqrt{\lambda}) \omega_1(1/\sqrt{n}); \ x \in [0, \lambda]
\]

in agreement with Stancu [12].

References

https://doi.org/10.1017/S1446788700013689 Published online by Cambridge University Press

University of Calgary
Alberta, Canada