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Abstract
We developed a method to generate omnidirectional depth maps from corresponding
omnidirectional images of cityscapes by learning each pair of an omnidirectional and a
depth map, created by computer graphics, using pix2pix. Models trained with different
series of images, shot under different site and sky conditions, were applied to street view
images to generate depthmaps. The validity of the generated depthmaps was then evaluated
quantitatively and visually. In addition, we conducted experiments to evaluate Google Street
View images using multiple participants. We constructed a model that predicts the prefer-
ence label of these images with and without the generated depth maps using the classifica-
tion method with deep convolutional neural networks for general rectangular images and
omnidirectional images. The results demonstrate the extent to which the generalization
performance of the cityscape preference predictionmodel changes depending on the type of
convolutional models and the presence or absence of generated depth maps.

1. Introduction
This study develops and verifies a new spatial modeling method for cityscapes that
can handle the features of the space, which is generally expressed separately as
image information and geometric information of an image collectively, by using
multiple deep learning techniques.

1.1. Image analyses for architecture and urban planning

In the fields of architecture and urban planning, analysis is commonly performed to
examine the impression of space. For example, the sky ratio and greenery view index
are commonly used; these metrics indicate the amount of visible sky (e.g., Kokalj,
Zakšek, & Oštir, 2011) and amount of green (e.g., Li et al., 2015), respectively. To
conduct such research, a comprehensive image database linked to a map is required.
Because large-scale image data, such as street view (SV) are available, image analysis is
becoming feasible. For example, research studies with Google Street View (GSV) by
Gebru et al. (2017), Rzotkiewicz et al. (2018) and Steinmetz-Wood, Velauthapillai, &
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O'Brien (2019). In general, when image analysis method for spaces is conducted,
meaningful and calculable features must be extracted from the images in advance.
However, since space has not only such colour and texture characteristics but also
has various geometric characteristics as described in Section 1.2; features that affect
the impression of space are not always exhaustive and could not thus be defined
explicitly.

In recent years, there have been rapid advances in convolutional neural
networks (CNN; Karpathy, 2019). These networks, which automatically extract
features from images are used for classification, regression and other tasks. CNNs
have become a fundamental technology in the field of artificial intelligence because,
unlike conventional statistical analysis and machine learning methods, CNNs
automatically learn image data features, thereby eliminating the need to prepare
features in advance and creating new tasks, such as object detection and semantic
segmentation (SS) and highly accurate recognition. Given these advantages, CNNs
have been increasingly applied to various fields, even in the spatial analysis of cities.
For example, CNNs have been applied to the SS task, which classifies images into a
finite number of labels by pixel. With a CNN, SS accuracy has improved to the
extent that the results can be applied to practical situations. Helbich et al. (2019)
applied SS to a SV image, extracted the quantity corresponding to the above-
mentioned greenery view index and examined the relationship to depression. Fu
et al. (2019) extracted greenery, sky and building view indexes using SS for SVs in
large cities in China and analysed the relationship between these indexes and land
prices. Yao et al. (2019) proposed a method to predict the relationship between a
human examiner’s space preference results and the quantity of some components
by machine learning by applying SS to urban SV images.

These studies use images of urban space as explanatory variables by labelling
major components. However, as mentioned above, the quality of urban space
cannot be explained entirely by such explicit features. The biggest advantage of
deep learning is that the feature quantity can be extracted automatically. A previous
study by Liu et al. (2017) exploited the advantages provided by deep learning. They
conducted an impression evaluation experiment of SVs in Chinese city space,
performed by experts and predicted the impression directly from SV images using
a representative CNN, such as AlexNet (Krizhevsky, Ilya, & Geoffrey, 2012).
Seresinhe, Preis, & Moat (2017) also explored whether ratings of over 200,000
images ofGreat Britain from the online game, Scenic-Or-Not (Data Science Lab, n.d.),
combined with hundreds of image features extracted using the Places Convolu-
tional Neural Network (Zhou et al., 2014), in order to understand what beautiful
outdoor spaces are composed of. Law, Paige, & Russell (2019) showed that land
prices could be estimated with higher accuracy than general GIS data by extracting
features from London SV and satellite images using a simple CNN with a hedonic
model.

1.2. Isovist versus image analysis for spatial analysis

As described above, many studies have been investigated using CNNs and SVs and
various approaches have been developed. However, all these studies use standard
angle-of-view images. An image of space is considered suitable for capturing colour
and textural features of space. However, geometric features, such as openness and
size are also important for space. Conventionally, these features have been studied
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using a space analysis method called Space Syntax (Hillier & Hanson 1989).
Geometric features handled by space syntax are mainly calculated from the depth
of space. On the other hand, current image analysis method like SS divides each
pixel of an image into a belonging class. That is, SS can extract geometric features
related to the shape of objects but not depth information.

Among spatial analysis methods of space syntax, an isovist (Benedikt, 1979) is
fundamental and important as a model expressing local features of space. A single
isovist shows a polygon in the case of two-dimensions (see Figure 1) or a
polyhedron in the case of three-dimensions of the visible area or volume, which
can be viewed from a vantage point. There have beenmany studies dealing with the
two-dimensional isovist since it was proposed by Benedikt. For example, Batty
(2001) proposed various spatial feature quantities, such as mean distance and area
of the two-dimensional isovist. Ostwald &Dawes (2018) have clarified that there is
a correlation between human behaviour and isovists.

Recently, the research on extracting and utilizing the three-dimensional
(3D) isovist has increased (Chang & Park 2011; Garner & Fabrizio 2015; Lone-
rgan & Hedley 2016; Krukar et al. 2017; Kim, Kim, & Kim, 2019), since perfor-
mance improvement of the computer and utilization of the 3D space data have
become easy. In the case of the two-dimensional isovist, geometrically exact shape
of the isovist can be obtained by using an algorithm based on the plane scanning
method (Suleiman et al. 2012). On the other hand, in the case of 3D isovist, since
the calculation method for obtaining its exact shape becomes complicated, some
approximate methods have been generally used. Among them, the method, which
approximately obtains the 3D isovist as a set of visual lines radiated omnidirec-
tionally from a vantage point at a fixed angle and they touch the nearest obstacle, is
widely used. Here, we call such isovist as ‘approximate isovist’.

Figure 2 illustrates an isovist and visual lines for creating the approximate
isovist. This approximate isovist is equivalent to adding the value of the length of
each visual line as depth to the intersection of the line and a small projected sphere
centred on the vantage point. In computer graphics, the depth of the space seen
from a camera can be obtained very quickly from the pipeline of a graphics
processing unit (GPU) as a depth map. When the camera is rotated to the vantage
point as much as necessary, and the depth map obtained at every angle is projected
on the sphere, the information equivalent to the approximate isovist can be
obtained without generating visual lines. In this way, Chirkin, Pishniy, & Sender
(2018) proposed a real-time method for obtaining the approximate 3D isovist and
its feature quantities at the same time by using a GPU.

Figure 1. Example of two-dimensional isovists.
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Although the technology to obtain an isovist has steadily evolved as just
described, since an isovist itself can be considered a mold of the space, it can easily
become a complicated shape, and the approach that clarifies the feature quantity of
the shape has the same limitation as the image analysis. The problems associated
with complicated shapes become particularly significant with the 3D isovist.
However, the depth maps projected on the sphere can be used as an omnidirec-
tional depthmap. An omnidirectional image is generally saved as equal rectangular
projection. In this paper, we call the usual omnidirectional image in Red-Green-
Blue (RGB) format simply as an ‘omnidirectional image’ and corresponding
omnidirectional depth map as a ‘depth map’. By using a CNN, it is possible to
directly input the omnidirectional depth map itself without clarifying the feature
quantity of the isovist necessary for an analysis until now. In addition, it opens up
the possibility of constructing a model that naturally combines the depth map and
corresponding omnidirectional RGB image.

Based on the above background, Takizawa & Furuta (2017) captured a large
number of omnidirectional images and their depth maps in a virtual urban space
constructed using the Unity game engine (Unity Technologies, 2019) in real time.
Then, using these images as input data, they constructed a model to predict the
results of the preference scoring experiment of a virtual urban landscape with a
CNN. Their results revealed that adding depth maps to ordinal omnidirectional
images made it possible to construct a CNN with higher precision and easier
interpretation. However, in that study, the quality of the virtual space usedwas low,
and the preference scoring experiment was conducted only in the virtual space in
which the generation of the depth map was easy but not in the real world.

1.3. Purpose

In this study, we developed amethod to generate omnidirectional depthmaps from
corresponding omnidirectional images of cityscapes by learning each pair of
images created by CG using pix2pix (Isola et al. 2017), a general-purpose image
translationmethod based on deep learning. Anothermethod for performing image
translation using GAN, such as pix2pix, there is CycleGAN (Zhu et al., 2017).
pix2pix is different from CycleGAN, in that it learns pairs of one-to-one images,

Figure 2. An isovist, finite visual lines for creating its approximate isovist and its
projection on a sphere with cameras.
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while CycleGAN learns two sets of unpaired images. We use pix2pix because only
one depth map corresponds to its RGB image.

Then, models trained with different series of images, shot under different site
and sky conditions, were applied to the omnidirectional images of GSV to generate
their depth maps. The validity of the generated depth maps was then evaluated
quantitatively and visually. In addition, we conducted preference scoring experi-
ment of GSV images using multiple participants. We constructed a model that
predicts the preference label of these images with and without the depth maps
using the classification method with CNNs for general rectangular images and
omnidirectional images. The results demonstrate the extent to which the general-
ization performance of the preference prediction model changes depending on the
type of convolutional models, and the presence or absence of depth maps. Finally,
we evaluated the efficiency of the proposed method.

This study was developed from our previous study (Kinugawa & Takizawa,
2019). The main differences from the previous study are the introduction of CNNs
corresponding to omnidirectional images, as well as general rectangular images,
the accuracy evaluation of generated depth maps and the change of the preference
prediction problem to a simple classification problem. By these modifications, this
paper intends to validate the proposed method more strictly.

1.4. Related studies

Recently, in relation to research into autonomous vehicles, methods to estimate the
depthmap of a given space from conventional images in RGB format without using
a laser scanner have been investigated. This type of research is categorized by the
number of cameras and whether the camera is moving or stationary. We deal with
the problem of estimating depth map from a single RGB image taken by a
monocular and still camera. Similar studies have been conducted by Saxena
et al. (2005) using a Markov random field, Mancini et al. (2016) using a deep
neural network, Hu et al. (2018) using a CNN and Pillai, Ambru, & Gaidon (2019)
tried super resolution depth estimation. However, only Zioulis et al. (2018) dealt
with omnidirectional images. Since that study focuses on estimating the depth of
indoor images, it is unclear whether it is applicable to the street spaces that are the
focus of this study.

The SYNTHIA dataset, developed by Ros et al. (2016), is a pioneering attempt
to generate artificial images, including omnidirectional depth maps, of a large
number of urban landscapes, using CG to train a deep learning model. However,
there are several differences between their study and the present study. Specifically,

Figure 3. Omnidirectional image (left) and corresponding depth map (right) of a
cityscape in a computer graphics model (©NONECG).
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our study targets cityscapes in Japan and the shooting height of an image was set to
the height of the GSV on-board camera, which is 2.05m (Google Japan, 2009). In
addition, only the depthmap of the built and natural environmentwithout cars and
pedestrians is required. Thus, we can construct a unique dataset of urban spaces
and use it for learning depthmaps. Law et al. (2018) also generated a virtual 3D city
model using a software called Esri City Engine (ESRI, 2013) and took many
cityscape images. Then, these images were learned by the CNN model and image
classification of GSV was carried out. Their study is similar to our study, in that it
applies models learned with a lot of synthetic images of street space to GSV images.

1.5. Organization of the paper

The remainder of this paper is organized as follows. The next section explains the
proposed method. Next, the results of the proposed method are described through
learning pix2pix and applying it to GSV images used for the experiment of
preference scoring. Then, the results are discussed, and conclusions and sugges-
tions for future work are presented.

2. Proposed method
The framework of the proposed method is shown in Figure 4. The proposed
method is roughly divided into two parts. First, a CG-based urban space model
is prepared. Omnidirectional images and depth maps are captured in real time in a
virtual space and their pair images are collected. Using pix2pix, amodel to generate
the depth map from an omnidirectional image is constructed. Then preference
scoring experiments of the cityscape images of GSV in Japan is conducted. For each
omnidirectional image of GSV used for the experiment, its depth map is generated
using the pix2pixmodel learned in the previous part and, after filtering the noise by
SS, a four-channel Red-Green-Blue-Depth (RGBD) image is produced. The use-
fulness of the depth maps is verified by classification models, which predict the
class label of the preference of the GSV images.

2.1. Part 1: generating depth maps

The following is a step-by-step explanation of our research method.

Step 1.1: Building 3D urban space models
As used in previous studies (Takizawa & Furuta, 2017; Kinugawa & Takizawa,
2019), the game engine Unity was used to develop 3D models of the target city. In
this study, we used two 3D urban models available from commercial CG content
providers that are realistic and faithful to the actual Japanese urban space. The
urbanmodels used include the Shibuyamodel (NoneCG, n.d.), which simulates the
central zone of the Shibuya area and a local city model (NoneCG, n.d.), which
simulates a suburban district in Japan (Figure 5). To apply GSV images to the
trained model, we added pedestrian and car models to the street and attempted to
reproduce an actual urban space. Because the area of the original 3D models was
not sufficiently wide to shoot depth maps, each model was copied and the street
area was expanded multiple times. As mentioned previously, to acquire only the
fixed spatial information of the built and natural environment, the depth maps
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Figure 4. Framework of the proposed method.

(a) Shibuya model (bird’s-eye view) (b) Local city model (bird’s-eye view)

(c) Shibuya model (layout view) (d) Local city model (layout view)

Figure 5. Two city models for training pix2pix (©NONECG).
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used as training data excluded objects that may have served as obstacles in the
space, such as pedestrians and cars. In addition, because actual photos of street-
scapes vary greatly depending on weather, season and time, even for a single
location, we used the Unity game engine’s Tenkoku Dynamic Sky (Tanuki Digital,
n.d.) weather asset to modify the environmental conditions. Specifically, because
sky conditions greatly affect the generation of depthmaps, two sky conditions, that
is, blue and cloudy were considered.

Step 1.2: shooting omnidirectional images
For each of the two city models, the camera height was set to 2.05m, which is the
height of the GSV shooting car’s camera in Japan as described in Section 1.4. Next,
as shown in Figure 6, a planar image of a 3Dmodel was input to the GIS and a large
number of shooting locations were randomly set on the road from the center area
of the space (see Figure 5) with 500 points for eachmodel. As described in Step 1.1,
each urban model is created by copying the original 3D model and pasting it
around to obtain a perspective image. Even if the number of shooting points is
increased in the surrounding space, a similar close-up image is obtained and a
sufficient distant view cannot be obtained. Therefore, the shooting points are set
only in the center of the space.

The coordinates of the shooting points were imported into Unity and an
omnidirectional image and its depth map were captured at each point. To capture
omnidirectional images, we used a camera asset of Unity called Spherical Image
Cam (which is no longer available). The number of the original dataset was
increased by shooting 20 omnidirectional images by rotating the camera 18° at a
single point. As a result, we obtained 20� 500= 10,000 images for each 3D model.
The rotation operation of an image is a kind of data augmentation technique for
image and essentially new information is not added. However, on a general CNN
assuming rectangular images such as pix2pix, since large change of pixels at the
right and left boundary of an image to be replaced by the rotation operation occurs,
improvement on robustness of the model learned by these images can be expected.

For learning pix2pix, we split the datasets into training, validation and test set,
the numbers of which are 300, 100 and 100 respectively, and coloured red, green
and purple, respectively, in Figure 6. They are coloured with red, green and purple,
respectively, in Figure 6. Spatial data have spatial auto-correlation and adjacent
data often have similar features. In the case of CG images, in this study, since the
distance to an adjacent shooting point is close to several meters, the problem of
spatial autocorrelation cannot be ignored. Therefore, if images are randomly
divided into learning, validation and test ones without considering the position
of shooting points, similar images could bemixed in each data set. As a result, while
validation and test become easy, realistic accuracy evaluation becomes hard.
Therefore, the space is largely divided for each data set. The comparison of the
generalization performance with the model based on the general randomization,
which does not consider the spatial property may become a theme to be studied in
future. Figure 7 shows an example of the image shoot in a local city model. The
upper image is the original omnidirectional image and the lower part is the images
cut by the general angle of view.

For generating a depth map from the depth buffer of a GPU, it is necessary to
decide to what extent the depth is measured and distance conversion function to be
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used.Human sensory scales are often approximated by logarithmic scales but when
we try to functionalize them with a logarithmic function, we need to determine
some parameters. Therefore, we simply assume a linear function for distance. Since
the information quantity per channel of a general image is eight-bit (i.e., 256
gradations), the resolution of the distance becomes coarse when the maximum

(a) Shibuya model (b) Localcity model

Figure 6. Shooting points in each city model. Red points are for training, green ones
are for validation and purple ones for test (©NONECG).

Figure 7.An omnidirectional image of local city model (top) and its four-way images
at normal angle of view (©NONECG).
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distance is set long. To determine the critical distance, depth maps were generated
with the maximum values of 100, 250 and 500m as shown in Figure 8. In the depth
maps, white colour denotes the depth is 0 and black colour denotes the depth is the
maximum distance. The depth per 1 pixel value in each maximum value is 0.39,
0.98 and 1.96m, respectively. When these figures are compared, there are differ-
ences in resolution for near objects and in recognition range for far objects, as well
as there is a trade-off between them. The space handled in this study is mainly
urban area and objects tend to concentrate in comparatively short distance.
Therefore, this time, the limit distance was set to the shortest 100m and the
distance images were generated.

Step 1.3: Implementing datasets for pix2pix and learning
Using pix2pix, we trained the model to generate depth maps from the omnidirec-
tional images. pix2pix is an image translation model based on deep learning that
generates images by learning the relationship between pairs of images. pix2pix
comprises a generator (G) that generates an image and a discriminator (D) that
discriminates whether the image is real or fake (Figure 9). In addition, pix2pix is a
type of deep learning method to generate images called conditional generative
adversarial networks (conditional GAN) (Mirza & Osindero, 2014). A conditional
GAN learns mapping from input image, x, and noise vector, z, to output image, y,
by G, that is, G : x,zf g! y. The difference between the conditional GAN and
pix2pix is that the latter generates the corresponding image based on the relation-
ship between pair images while the conditional GAN generates the corresponding
image based on the noise. pix2pix does not use a noise vector but it uses dropout,
which randomly inactivates some nodes in training for relaxing overfitting,
instead. The pix2pix loss function is the weighted sum of the loss function of the
conditional GAN (LcGAN) and the L1 error between x and y (LL1Þ. The L1 error
prevents blurring of the generated image. Let G∗ be the pix2pix loss function.
Together with the other loss functions, they are given by the following formula

(a) Omnidirectional image (b) Depth map of
(a), maximum distance is 100m

(d) Depth map of
(a), maximum distance is 500m

(c) Depth map of
(a), maximum distance is 250m

Figure 8. Comparison of shades of depth maps at different maximum distances
(©NONECG).
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where λ is a hyperparameter that determines which loss is more important. Note
that λ was set to 100, which is the same value used in our initial study.

LcGAN G,Dð Þ¼Εx,y logD x,yð Þ½ �þΕx,z log 1�D x,G x,zð Þð Þð �,½

LL1 Gð Þ¼Εx,y,z y�G x,zð Þk k1
� �

,

G∗ ¼ argmin
G

max
D

LcGAN G,Dð Þþ λLL1 Gð Þ:

Here,D attempts to make the correct veracity decision as much as possible. On
the other hand, G avoids the correctness of the judgment as much as possible and
attempts to match the original image with the generated image to some extent.
These objectives are set alternately to learn the model parameters.

pix2pix uses U-Net (Ronneberger et al. 2015) as an image generator. U-Net
captures both the local and overall features of an image. In addition, pix2pix does
not judge the authenticity of the whole image, rather it divides the image into
several patches, evaluates the authenticity of the patches and finally judges the
average of all patches to improve learning efficiency. This process is called
patchGAN. In our implementation of pix2pix, the input image size is 256� 256
pixels and the input images are divided into same 70� 70 patch images, which are
of the same size as the original pix2pix paper (Isola et al. 2017).

Figure 9. Outline of pix2pix process.

11/36

https://doi.org/10.1017/dsj.2020.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.27


We prepared three types of spatial datasets for learning: Shibuya, a local city
and a mix of the Shibuya and local city datasets. We also prepared three sky
conditions: blue, cloudy and a mix of blue and cloudy. By combining the datasets,
we generated nine training datasets, as listed in Table 1. As a reference, we add a
supplementary file (supplement_a.pdf), including sampled 48 pairs of omnidirec-
tional images, and their depthmaps shoot in each citymodel on each sky condition
as a supplemental material.

Finally, to evaluate the generalization performance of pix2pix, the error at the
pixel level for the correct image of the generated image is evaluated by root mean
squared error (RMSE). Let X,Y ,Z denote the ordered input image set, output
image set and noise data set, respectively, n denote the number of images in a data
set andm denote the number of pixels in an image. RMSE for each generated image
G x∈X,z∈Zð Þ and corresponding output image y∈Y at the pixel is defined as
follows:

RMSE x,y,zð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

y�G x,zð Þk k2:
r

Then, we obtain mean RMSE for all images X,Y ,Z as follows:

RMSE X,Y ,Zð Þ¼ 1
n

X
x∈X,y∈Y ,z∈Z

RMSE x,y,zð Þ:

The procedure of the accuracy evaluation is to obtain mean RMSE of the
validation data for each pix2pix model learned by the designated epoch unit. Then,
the depth maps are generated from the test data by the model of the epoch, whose
value is minimum, and the mean RMSE is obtained and regarded as the general-
ization performance of the model.

Step 1.4 Generating GSV depth maps with the learned pix2pix
We input the omnidirectional GSV images to the trained pix2pix model and
obtained a generated depth map. As described in 4.1, although the depth maps exist
in GSV, the generated depth map of GSV cannot be evaluated by RMSE since the
depth maps of GSV are practically useless. Therefore, we visually evaluated how
realistic the generated depth map is. A total of 100 images were used to generate
depth maps and the preference experiment described in Step 2.1. Fifty GSV images
were sampled from both a local area (Neyagawa and Sumiyoshi) and an urban area
(Umeda and Namba), respectively. Both areas were located in the Osaka Prefecture.

Table 1. Nine models used for training; In each cell, M__ denotes a model name and lower values
denote the number of training data/validation data/test data.

Spatial model

Sky condition

a. Blue b. Cloudy c. Mix of a and b

Shibuya M1a (6000 | 2000 | 2000) M1b (6000 | 2000 | 2000) M1c (12,000 | 4000 | 4000)

Local city M2a (6000 | 2000 | 2000) M2b (6000 | 2000 | 2000) M2c (12,000 | 4000 | 4000)

Mix of 1 and 2 M3a (12,000 | 4000 | 4000) M3b (12,000 | 4000 | 4000) M3c (24,000 | 8000 | 8000)
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2.2. Part 2: predicting the preference class of GSV images using
estimated depth maps

Using the estimated depth images, we predicted the preference label of the GSV
images.

Step 2.1: preference scoring experiment
Each GSV image described in Section 1.4 was projected via an Oculus Rift, and a
preference scoring experiment was conducted to generate the classification model.
The cityscape of the collected GSV images was evaluated as good=4, moderately
good=3, moderately bad=2 and poor=1. Twenty university students majoring in
architecture were selected as participants, and each participant evaluated 50 GSV
images fromall 100 images.Note that participant fatiguewas considered. Each image
was presented to exactly 10 participants. Of the 20 participants, six were undergrad-
uate students and 13 graduate students majoring in interior and housing design, and
the other was a graduate student majoring in urban planning. Although all partic-
ipants are involved in the design of space in a broad sense, the design of urban-scale
space, in this study, ismostly out of the field.Whenwe imagine the situation inwhich
the preference prediction system of cityscape is used, the standard of the preference
scoring seems to be different by the evaluator.We considered that it was better not to
give bias to the preference scoring, and carried out the preference scoring experiment
without clarifying the standard of the preference.

Figure 10 shows an example of an image of theGSVprojected. The upper image is
the original omnidirectional image and the lower part is the images cut by the general
angle of view. Of course, the image that moves to the head-mounted display becomes
a visually natural image, such as the lower one, depending on the viewing direction.

Step 2.2: generation and filtering of RGBD images from GSV
Using the trained depth map generation models by pix2pix described above, depth
maps were generated for each of the 100GSV images used in the preference scoring
experiment. Generating depth maps was performed using the M2c model, as it
produced superior results by visual observation (Step 1.4). However, the sky area
was estimated incorrectly (Figure 11b); therefore, the sky area of 9(a) was extracted
by SS 9(c) and the value of the corresponding pixel was changed to black 9(d). For
the SS model, the xception71_dpc_cityscapes_trainval model (Tensorflow, n.d.) of
DeepLab v3+ (Chen et al., 2018) was used. The outline of DeepLab v3+ is described
in the appendix.

When we use filtered depth maps, the omnidirectional images of the original
GSV in RGB format were converted to RGBA format with 4 eight-bit channels and
were resized to 256� 256 pixels for ResNet (He et al., 2016) and 512� 256 pixels
for UGSCNN (Jiang et al., 2019) described in Step 2.3. Then, the depth value of the
corresponding filtered depth map was stored to the A channel of the RGBA format
image, thereby creating an RGBD image.

Step 2.3: classification model for estimating subjective preference using CNNs
for rectangular and omnidirectional images
We construct CNN models that predict each preference label obtained in the
preference scoring experiment using those RGB and RGBD images of GSV. In the
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preliminary experiment, the preference prediction model was defined and learned
as a regressionmodel with themean of the preference score as an objective variable
but the predicted score tended to gather around the mean value and the perfor-
mance of the regressionmodel was difficult to understand, therefore the preference
prediction model is defined as a classification model. Although the validity of
modeling the preference scores in two classes remains controversial, this study
aims to model the preference in the framework of the simplest two-class classifi-
cation problem. As future works, there remain studies such as introducing a
classification problem of three classes of bad, moderate and good, and devising a
way of giving training data to a regression model so that the above-mentioned
problem of concentration of prediction scores hardly occurs.

Figure 10. An example of an omnidirectional image of GSV (top) and its four-way
images at normal angle of view (©Google, 2020).

Figure 11. Filtering operation of a generated depthmap for sky area using SS with the
image of GSV (©Google, 2020).
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For the classification model, ResNet, for the rectangular image and UGSCNN,
which shows good performance in current spherical CNNs (Taco et al., 2018) are
used and the accuracy is compared.

ResNet model We used ResNet-50 pretrained with ImageNet (Deng et al., 2009)
on 1000 classes and performed learning by fine-tuning all of model parameters.
However, wemodified the ResNet-50 input and output layers slightly. The number
of channels of the image input layer was changed from three to four because an
RGBD image has four channels. After the pretrained weights with RGB images
were loaded, the layer was replaced. Therefore, the weights of not only D channels
but also RGB channels were randomly initialized for the input layer. Furthermore,
because our model is a two-class classification model, we changed the final layer of
Resnet-50, which is composed of all connected layers with 1000 output nodes, to
with two output nodes (Figure 12). The reason why the number of classes
(i.e., preference rank) is set to two instead of four is described in Section 3.4.

Although the number of GSV images was increased by 40 times by data
augmentation, the original number of GSV images is 100 images, and there are
few objective variables for learning a complex CNN model. As a result, the risk of
over-fitting might increase. ResNet-152 was used for CNN in our past study
(Kinugawa & Takizawa, 2019), but, in this study, the CNN was changed to
ResNet-50 in which the number of parameters is about 40 % of ResNet-152 in
order to reduce the risk of the over-fitting.

UGSCNNmodel UGSCNN is a spherical CNNbased on a polyhedron subdivided
from a regular icosahedron. We used UGSCNN among some spherical CNNs
proposed recently (Cohen et al., 2018; Coors, Condurache, &Geiger, 2018; Tateno,

Figure 12.Modified Resnet-50 for RGB/RGBD image. The first and last parts noted
in red are modified from original ResNet-50.
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Navab, & Tombari, 2018) since UGSCNN is relatively new and has good perfor-
mance. As illustrated in Figure 13, to each vertex of a polyhedron constituted by
subdividing a regular icosahedron, information of pixels of a corresponding image
is allocated by spherical mapping.

Then, mesh convolution is performed to convolve the information of each
vertex and its adjacent vertices and the level of the polyhedron is reduced by one
step. The division level of the icosahedron is set to 0 and the level increases one by
one every time the subdivision is carried out and each time the polyhedron
approximates a sphere. In this study, a mesh with a level of 7 was used as an initial
polyhedron andmesh convolution was repeated until the level became 1. Referring
to the example (exp2_modelnet 40) attached to the implementation of UGSCNN
(maxjiang93, 2019), a CNN illustrated in Figure 14 was defined and used for
classification.

To perform spherical mapping of an equirectangular image, the original RGB
and RGBD images are resized to 512� 256. Then, let λ,φð Þ radians denote the pair
of longitude and latitude of each vertex of the polyhedron, and x,yð Þ denote the pair
of the plane coordinate of a pixel of the image. The corresponding values of both
coordinate systems are given by the following equations, where roundðÞ is a
function that returns an integer rounded to the nearest whole number.

x¼ 255 � round λð Þ,

y¼ 255 � round φð Þ:
Loss function With the above CNN settings, we learn the two-class classification
problem. The cross-entropy is used for the loss function. Let I denote the image
dataset of GSV, J∈ Bad,Goodf g denote the set of class labels, yi∈J denote the class
label of image i∈I,byij∈ℝ denote the output of the log-softmax function of class j∈J
of image i∈I through a CNN. In 100 images of GSV, since the number of images of
each class Bad and Good is 54 and 46, respectively, the images are not heavily
skewed to one class. However, considering that the accuracy of the model is finally
evaluated using the F1 score, which balances the number of data of each class, the

Figure 13. Mesh convolution of UGSCNN.
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learning is carried out with the following weights in order to give the effect that the
number of data of each class becomes equal. Let w j denote the weight of class j∈J
for relaxing the imbalance of image size for each class. That is, the learning is
performed so that the loss of the minor class becomes relatively large. Let I j⊂I
denote the image dataset of class j∈J . Weight w j of class j∈J is given by

w j ¼ min IBadj j, IGoodj jð Þ
I j
�� �� :

Finally, the loss function is given by

loss¼� 1P
i∈Iwyi

X
i∈I

wyibyij:

Figure 14. UGSCNN used in this study.
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3. Results
Here, we describe the results of the proposed method.

3.1. Result of learning pix2pix (Step: 1.3)

We used the PyTorch implementation (Junyanz, n.d.) of pix2pix for training and
verification. To improve learning speed and performance in different areas of CG
and real images, we changed batch size from 1 to 50 and normalization method
from batch normalization to instance normalization; however, the other pix2pix
hyperparameter default values were used. These learning settings of pix2pix are
summarized in Table A1 in Appendix.

We performed learning for each model. In this study, we confirmed the
accuracy of the model from the convergence of the loss function of the generator
and discriminator. Figure 15 presents an example of the convergence of the loss
function whenM2c was trained up to 200 epochs. In Figure 15, G_L_cGAN equals
LcGAN G,Dð Þ andG_L_L1 equals LL1 Gð Þ. D_Real andD_Fake are the cross-entropy
loss of the discriminator when an actual image and generated image are input,
respectively. As the epoch progresses, the losses of the discriminator decrease
almost monotonically. On the other hand, the L1 loss of the generator takes a
constant value after about 50 epochs. The GAN loss increases as the epoch pro-
gresses, which is a general tendency of a GAN learning process.

Table 2 lists RMSE of test data generated by each pix2pix model. Test data of
each model and M3c with the most various kinds of images were used. The mean
error is about five pixel values and the error is about 2m when it is converted into
the distance. An example of a generated depth map of a test data is shown in
Figure 16. Since the error is relatively low and visual similarity is high, it is
concluded that the distance estimation by pix2pix has high generalization perfor-
mance in the case of same domain images.

3.2. Result of verification of trained pix2pix model by GSV
(Step: 1.4)

Comparison of depth maps of a GSV generated by each model is presented in
Figure 17. The common feature is that relatively reasonable depth maps can be

Figure 15. Example of convergence process of loss functions (M2c).
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generated when the sky is cloudy or mixed whereas the depth maps generated by
the model trained with clear sky images are not practical.

Since themost visually valid result was the result byM2c for 100 images of GSV,
the depthmap generated byM2c is used in the following. Figure 18 shows examples
of depth maps of GSV images generated by M2c and their filtered depth maps. We
also give all generated and filtered depth images of GSV as a supplementary
material (supplement_b.pdf).

3.3. Result of the preference scoring experiment (Step 2.1)

Themean preference score of eachGSV image from 10 participants was used as the
original value of the class label of the classification model described in Step 2.1.
Table 3 lists the basic statistics of the preference score for 100 GSV images. The
median and mean scores are 2.4 and 2.45, respectively, and there was no location
that gave full marks to all subjects. The mean standard deviation (Std) of the score
between examinees is 0.74; thus, it is evident that examinees’ preferences varied.

Table 2. RMSE of test data generated by each pix2pix model.

Model Best epoch at validation

Test data of each model Test data of M3c

Mean Std Mean Std

M1a 70 3.44 0.47 6.13 2.22
M1b 20 3.69 0.56 6.20 1.58
M1c 40 3.38 0.56 4.47 1.36
M2a 70 4.37 0.31 6.36 2.14
M2b 80 4.68 0.41 6.40 1.10
M2c 80 4.40 0.49 5.04 1.34
M3a 100 3.93 0.68 5.67 1.88
M3b 70 4.18 0.64 6.01 1.90

M3c 50 4.22 0.71 4.23 0.71

Bold is the best value.

(a) Omnidirectional image (b) Actual depth map of (a) (c) Generated depth map 

Figure 16. Example of a generated depth map of a test data (©NONECG) by M2c,
RMSE=4.37.
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Figure 19 shows a histogram for each mean preference score of 100 GSV
images. The frequency of the mean score is more around the median 2.4 while
the number of cases in which the mean score is high or low is small, and there is a
tendency of normal distribution although it is uneven. As described in Step 2.3, this
distribution seems to be one of the reasons why predicted scores by a regression
model tended to gather around the mean score in the preliminary experiment.

Examples of images of places that received good, moderate and poor preference
scores from all participants are shown in Figure 20. The images that received good
preference score indicate that the subjects felt that the buildings in the images are
not considered oppressive and that there is significant greenery and blue sky. On
the other hand, in images that received poor preference score, houses and asphalt
roads are evident.

3.4. Result of classification model (Step 2.3)

We think that it is more natural for a person to answer the preference scoring of the
cityscape in four grades rather than to simply answer in two grades, that is, good or
bad. On the other hand, in the classification problem, if the size of the data for each
class is unbalanced, appropriate learning becomes difficult. The results of 10 eval-
uators were averaged for each image of GSV. When the mean preference scores of
GSV were classified into four classes with the class boundary values as for example
{1.5, 2.5, 3.5}, the corresponding number of cases of each class were 2, 52, 45 and
1 in ascending order from the class Bad, and most sites became moderately bad or

Figure 17. Comparison of depth maps of the same GSV image (©Google, 2020)
generated by each model.
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(a1) Omnidirectional image (b1) Generated depth map    (c1) Filtered depth map

   (a2) Omnidirectional image (b2) Generated depth map (c2) Filtered depth map

(a3) Omnidirectional image (b3) Generated depth map    (c3) Filtered depth map

(a4) Omnidirectional image (b4) Generated depth map    (c4) Filtered depth map

Figure 18. Example of depth maps of GSV (©Google, 2020) generated by M2c and
their filtered depth maps.
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Figure 19. Histogram for each mean preference score of 100 GSV images.

(Good 1) 3.5/0.81 (Good 2) 3.4/0.66 (Good 3) 3.4/0.66

(Moderate 1) 2.5/0.92 (Moderate 2) 2.5/0.92 (Moderate 3) 2.5/0.81

(Poor 1) 1.4/0.49 (Poor 2) 1.4/0.49 (Poor 3) 1.5/0.92

Figure 20. Examples from GSV (©Google, 2020) preference scoring experiment in
Osaka. The values are the mean/std of every 10 subjects’ scores.
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moderately good. Since there is such unbalance in the number of each class, the
problem was simplified to the two-class classification one.

According to Table 3, the median and mean preference scores are 2.4 and 2.45,
respectively. From Figure 19, it can be seen that the distribution is spread in a form
close to the right and left equally, with the median and mean values as the peak.
Therefore, images with values greater than or equal to 2.5 or less were labelled
Good or Bad, respectively. As a result, of 100 GSV images, 46 images have Good
label and the remaining 54 images have Bad label. The image of GSV can be divided
into two classes so that it is not perfectly uniform but not extremely imbalanced.

Then, 100 GSV images were divided into 80 images for learning, 10 images for
validation and remaining 10 images for testing, so that the ratio of the number of
each class was as uniform as possible in each data set, and fivefold cross validation
datasets were constructed. In addition, in these five datasets, the roles of validation
and testing were switched, and finally 10-fold cross-validation was performed. In
each validation, the validation data were applied for each learning epoch, and the
model of the epoch in which the loss value was minimum was used as the best
model and the best model was applied to the test data, as well as the accuracy
evaluation of the preference prediction was carried out. Since the classification
performance is difficult to understand by the value of the loss function used in the
learning, the final accuracy evaluation was carried out using the F1 score. The F1
score is the accuracy evaluation index for classification models considering the
trade-off between precision and recall, and it shows that the classification perfor-
mance is high as the value is close to 1, as well as the classification performance is
low as it is close to 0. In the case of two-class classification problem, the F1 score in
the case of random classification becomes 0.5. Therefore, an F1 score greater than
0.5 at the minimum is not an appropriate classification model.

Data augmentation was performed on 100 GSV images that are too small
number for learning a CNN by the following procedure. To begin with, the images
that were inverted right and left for the original image were generated. Then, these
images, including the original ones, were made into images of the effect of rotating
the camera by 18 degrees on the vertical axis. An omnidirectional image was saved
in rectangular form as an equirectangular projection. Each image was divided into
20 equal parts in the vertical direction, and the left-end section of the image was
moved to the right-end section for emulating camera rotation. As a result, 20� 2=
40 images, including the original, were generated for each GSV image. Therefore,
learning, validation and training images were 40� 80= 3200, 40� 10= 400 and
40� 10= 400, respectively, and totally we have 4000 RGB and RGBD images.

PyTorch was used as the framework to implement the learning task. The
hyperparameters of ResNet-50 were as follows: number of epochs, 30; optimization
method, Momentum SGD; moment, 0.9; learning rate, 0.05 (1–10 epochs), 0.025
(11–20 epochs) and 0.0125 (21–30 epochs); batch size, 200. Among the

Table 3. Basic statistics of preference score of 100 GSV images.

Min Median Mean Max Std

Mean of 10 subjects’ scores 1.40 2.40 2.45 3.50 0.48
Std of the 10 subjects’ scores 0.45 0.75 0.74 1.14 0.16
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hyperparameters of UGSCNN, those which are different from those of ResNet-50
are as follows: learning rate, 0.12 (1–10 epochs), 0.06 (11–20 epochs) and 0.03 (21–
30 epochs); batch size, 50. These learning settings of ResNet-50 and UGSCNN are
summarized in Tables A2 and A3 in Appendix, respectively.

Figures 21 and 22 show the convergence process of the loss value in the learning
and validation data of the RGBD images by ResNet-50 andUGSCNN, respectively.
Although the learning data converge in about 20 epochs, the loss of the validation
data inverts from about 10–15 epochs.

Figure 23 shows the distribution of F1 scores in the test data of each CNN by
10-fold cross validation. Table 4 lists the basic statistics of their F1 scores. Table 5 lists
the decision limits of the analysis ofmeans (Nelson,Wludyka,&Copeland, 1987) for
all CNNs and each type ofCNNs. ResNet-50 ismore accurate thanUGSCNN.When
all models are compared, the mean value of ResNet-50 with RGBD is superior to
other models, and there is a statistically significant difference. On the other hand, in
each type of CNNs while the mean and median values of the models trained by
RGBD are higher, there are no significant differences statistically.

Figure 21. Example of the convergence process of loss functions of ResNet-50
with RGBD.

Figure 22. Example of the convergence process of loss functions of UGSCNN
with RGBD.
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From the above results, it was shown that the classification accuracy of theCNN
for usual rectangular image was higher than that of spherical CNN for prediction
problem of spatial preference scoring of GSV. And, it is also concluded that the
addition of depth maps to this problem may contribute to the improvement in the
classification accuracy, but, at present, the effect of statistically significant differ-
ence could not be obtained.

4. Discussion
In this study, we demonstrated that depth maps are useful to evaluate street-level
spatial images. In the following, we consider potential directions for future
research.

Figure 23. Distribution of F1 score of 10-fold cross validation for each CNN, X
denotes mean.

Table 4. Descriptive statistics of F1 score of 10-fold cross validation for each CNN.

CNN N Min Mean Median Max Std

ResNet-50 with RGB 10 0.344 0.558 0.539 0.837 0.143
ResNet-50 with RGBD 10 0.333 0.631 0.691 0.817 0.143
UGSCNN with RGB 10 0.327 0.478 0.487 0.586 0.086

UGSCNN with RGBD 10 0.310 0.488 0.515 0.589 0.087

Table 5. Decision limit of analysis of means of F1 score for sets of CNNs, significance level = 0.05.

CNN Lower decision limit (LDL) Mean Upper decision limit (UDL)

All CNNs 0.450 0.534 0.627

ResNet-50 0.523 0.594 0.665

UGSCNN 0.440 0.483 0.526
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4.1. Quality of the generated depth maps

In this study, the accuracy evaluation was carried out on the depth maps of CG
generated with pix2pix by cross validation. The mean error of the depth for each
pixel was about 2m (= 5 pixel values) and it was visually acceptable to roughly
grasp the depth of the cityscape.

It is important to confirm how much the error of the generated depth maps
changes by the distance when considering the practicability and improvement
policy of the model. Then, using the best M2c model used in the depth map
generation of GSV, the absolute values of the error of pixel unit between generated
depth maps and correct images for the test images of M3c were obtained. Next, the
mean value and the standard deviation of the error were visualized for each
distance in pixel value units (see Figure 24). The dotted graphs show the range
of absolute error� standard deviation. The error is small when the distance from
the shooting point is close or far but the error becomes large as about 60 pixel value
in the vicinity of 200 pixel value where the distance is a little far, and the error
becomes unbalanced by the distance. The yellow area of the graph shows the
logarithm of the number of pixels per distance. There are very many pixels that are
close or far and few pixels whose distance is around 175 pixel value. It is considered
that the difference of this number causes the unbalance of the error by the distance.
The loss function of pix2pix has a term, LL1 Gð Þ, whichminimizes the error between
the correct image and the generated image. In order to eliminate unbalance of error
due to distance, it is considered to modify LL1 Gð Þ so that it is weighted considering
the number of pixels due to distance.

In Table 2, RMSE of Shibuya model (M1*) was less than that of local cities
(M2*). When the mean depth of the images of each 500 observation points in
Shibuya and local city was calculated, it was about 77.6 pixel unit in Shibuya and
89.0 in the local city, and the openness of the space was better in the local city. As
shown here, except for the sky part, the farther the pixel value is, the larger the
estimation error tends to be. Therefore, it is considered that the value of RMSE is
smaller in the Shibuya model where the pixels are relatively close.

On the other hand, since there was no ground-truth dataset to verify the depth
map generated from the GSV images, the model that generated the most

Figure 24. Mean absolute error of pixel unit between generated depth maps and
correct images and number of pixels for each distance.
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appropriate depth maps was chosen from nine pix2pix models subjectively by visual
judgment. The noise in the sky part was almost eliminated by the SS. As for the depth
of buildings, etc., the image is subjectively reasonable to some extent, but the accuracy
is worse than that of CG images. When these depth maps were incorporated into the
preference predictionmodel, the accuracy of the model was slightly improved, so it is
not likely to be at least a random depth map. However, it cannot be said that the
accuracy of the preference prediction model is high because the mean F1 score of the
cross verification is 0.63 at the maximum. Thus, for example, if the model is used for
site recommendations, false-positive results will be noticeable. In the future, it will be
necessary to fill the gap of the accuracy of the depth map of CG and GSV by utilizing
the technology of domain adaptation (Wang & Den Wang & Deng, 2018), etc.

In fact, there exist depth maps in GSV (nøcomputer, 2017) but it is difficult to
evaluate the depth map using it since there are no depth information (see
Figure 25), or even if there are only a partial depth information of the short
distance part and it is very simplified. To quantitatively evaluate the depth of the
space, it is necessary tomeasure the space using an outdoor laser scanner. However,
the laser range is only a few hundred metres at the most; therefore, the measure-
ment distance may be insufficient to this study, which deals with outdoor visibility.
Recently, photogrammetry technology has been developed andGoogle Earth offers
detailed 3D urban models of large cities, such as London (Google, n.d.). Depth
maps should be verified quantitatively, considering the effectiveness of such related
technology and the availability of data.

4.2. Potential of SS in spatial preference scoring

We extracted the part of the image classified as sky using an existing SS method and
removed the noise of the corresponding part of each depth map. However, verifi-
cation is necessary because the image data obtained via SS may be related to human
spatial preference, such as those studied in this paper. It is possible that, to some
extent, our preference scoring experiment results suggest that the openness of the
space and the abundance of green are related to human spatial preference. It is
necessary to clarify what type of spatial information image is related to such spatial
preference by constructing a preference prediction model that uses SS images.

4.3. Possibility of spherical CNNs

In fact, the preliminary experiment had been carried out not only with pix2pix but
alsowithOminiDepth corresponding to anomnidirectional image for generating the

(a) Original image (b) Depth map of same shooting point of (a)

Figure 25. Example of a depth map of GSV (©Google, 2020).
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depth map of GSV. However, OmniDepth had generated blank images. That is,
although pix2pix has some robustness for images of different domains, OmniDepth
has no robustness. The possible reason for this is that pix2pix uses the instance
normalization, which is used in style conversion of CNNs, and has a complicated
evaluation structure that does not simply minimize the error with the ground truth
image. Combining pix2pix’s learning strategy with the convolution method of
OmniDepth may enable more accurate omnidirectional depth map generation.

In addition, the UGSCNN, used as the preference prediction model of GSV,
predicts with low accuracy. UGSCNN outperforms other well-known spherical
CNNs in several benchmarks for omnidirectional images but it was not effective for
our data. For this reason, it is considered that the structure of the UGSCNNhas not
been sufficiently examined yet. At present, the structure of UGSCNNwas designed
by referring to an implementation example for image classification but it is
necessary to find a structure more suitable for our dataset by trial and error. In
addition, since the research of CNNs for general rectangular images is greatly
advanced in comparison with that of spherical CNNs, it is considered that the
performance of ResNet was more easily obtained even if it was applied to omni-
directional images. Finally, street space is generally composed of ground at the foot
and sky at the top. Therefore, perfect sphericity may not always be necessary to
model it and an approximate method, such as panoramic projection, may be
enough. This raises the question of how well geometrically sophisticated spatial
analysis techniques, such as spherical CNNs and 3D isovist, are effective, for what
scale and type of space. Further research is necessary.

4.4. Need for problem setting in which spatial attributes are more
dominant

As described in Section 2.2, this time, the preference scoring experiment of GSV was
carried out in accordance with individual sensibilities without intentionally giving
uniform criterion. Therefore, there were some examples in which it was guessed that
the image was evaluated by the attribute except for the space, for example, to prefer
the image containing the blue sky. This may be one reason why the prediction
accuracy of GSV was not greatly improved even with the estimated depth maps.
Therefore, some guidance may be better to verify the effectiveness of depth map. In
relation to this issue, most of the images of GSV used this time were taken from the
roadby the automobile and the diversity of the near viewmight be lacking in the sense
of spatial composition. The GSV includes images of narrow alleys, which cannot be
shot by automobiles. Especially in cityscapes in Japan, suchnarrow spaces are likely to
be preferred by pedestrians. Based on the above points, it is necessary to improve the
problem setting so that the spatial attribute becomes a more important factor.

4.5. Need for larger dataset

In this study, 20 subjects learned their preferences for GSV images on CNNs at a
total of 100 sites. Although, the number of images was increased from 100 to 4000
for learning, validation and test by the data augmentation but the classification
accuracy was not high. It seems to be not sufficient size as a data set of the deep
learning model of two-class classification. Since it is not easy to increase the data of
preference experiments, it may be necessary to devise an online service, such as
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Scenic-Or-Not to create a large data set. On the other hand, objective and large-
scale data related to space, such as land prices and real estate rents are already
available. Although it is another problem setting, it may be necessary to examine
the use of such dataset for the verification of our proposed method.

5. Conclusion
In this study, we developed a method for generating omnidirectional depth maps
from the corresponding omnidirectional images of cityscapes by learning each pair
of omnidirectional images and depth maps created by CG using pix2pix. Models
trained with different series of images shot under different site and sky conditions
were applied to GSV images to generate depth maps. The validity of the generated
depth maps was then evaluated quantitatively and visually. Then, we conducted
experiments to score cityscape images of GSV using multiple participants. We
constructed models that predict the preference class of these images with and
without the depth maps using the classification method with CNNs for general
rectangular images and omnidirectional images. The results demonstrated the
extent to which the generalization performance of the preference predictionmodel
of the cityscape changes depending on the type of CNNs and the presence or
absence of depth maps. As a result, we have the following conclusions.

The depth of CG images was quantitatively evaluated and the mean error is
about 2m per image. In the sense of street-scale spatial analysis, such an error is
acceptable. However, when the error of the pixel was examined according to the
distance, the error of the pixels in the slight distant was relatively large.

On the other hand, on the generated depth maps of GSV, which is a real image,
visual evaluation was carried out, and it was confirmed that the accuracy was inferior
comparedwith CG, even if the noise of sky part was ignored. However, the qualitative
tendency of the space, such as near and far of the object was able to be grasped.

In the preference prediction problem of GSV images, the best classification
accuracy was achieved by ResNet-50 for the general rectangular image with RGBD
images, and the accuracy of the UGSCNN for omnidirectional images was bad in
either images. Although the effect of the depthmap was not statistically significant,
the result implies the necessity of considering the depth maps for modelling visual
preference of space. Since the absolute accuracy of the image classification model
itself is not high, it is necessary to increase the data and to find the problem of the
space where the geometrical feature is more important, such as complex indoor
space. These results support the findings of a previous study (Takizawa & Furuta,
2017). That is, an automatic preference prediction model for street space should
consider the colour, texture and geometric properties of the space.

The points to be improved in the future are as follows.
We improved the accuracy of depth maps by expanding pix2pix for omnidi-

rectional images, considering the unbalance of estimated depth error by distance
and improving the estimation accuracy between CG and real images by domain
adaptation.

Since the classification accuracy of CNNs for predicting preference of GSV
images, especially that of the spherical CNN, was low, the model should be
improved by grasping which part of the image CNN pays attention to by tech-
niques such asGradCAM (Selvaraju Selvaraju et al., 2017), by dimension reduction
technique such as principal component analysis, etc. In this connection, what kind
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of feature of the space is deeply related to recognition and preference should be
grasped by novel approach different from the conventional isovist analysis tech-
niques, and the proposed model should be improved to the spatial analysis model
with higher explanatory power.

We should compare the result with other machine learning models with
conventional image features, such as scale-invariant feature transform (SIFT;
Lowe, 2004) and/or the images of SS.

It is necessary to find the network structure of the CNN that matches this
problem more.

It is necessary to improve the problem setting of the preference scoring
experiment of space so that the spatial attribute becomes a more important factor.
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Appendices

About learning settings of CNNs
Learning settings of our deep learning S models for learning are listed in
Tables A1–A3.

Table A1. Learning settings of the pix2pix model

Category Description

General Number of epochs: 200
Batch size: 50
λ (weight of LL1 Gð Þ): 100.0

Image Loaded image size: 256� 256
Image processing: A loaded image is resized to 286� 286 and cropped to a size of
256� 256.

Number of images for learning: See Table 1.

Generator Architecture: U-Net 256
Dropout rate: 0.5
Type of the normalization layers: instance normalization

Discriminator Architecture: Patch GAN (Isola et al. Isola et al., 2017)
Patch size: 70� 70

Optimizer Type: Adam (Kingma & Ba, 2015)
Learning rate: 0.0002
β1: 0.5
β2: 0.999
Learning schedule: We keep the initial learning rate for the first 100 epochs and
linearly decay the rate to zero over the next 100 epochs.

Computational
timea

About 160minutes (M1a, M1b, M2a, M2b), 587minutes (M1c, M2c, M3a, M3b) and
1357minutes (M3c) for learning 200 epochs.

aCPU, Intel Core i9 7940�; memory DDR4 2400 16GB�8=128GB, GPU, Nvidia TITAN RTX (24GBMemory)�2; Windows 10 Professional, CUDA
10.1, cuDNN 7.6.5, PyTorch 1.4.0.
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About DeepLab v3+
Many semantic segmentation models are based on the encoder-decoder structure
(Figure A1a) as well as pix2pix. This structure can obtain sharp object boundaries
at high speed, but hierarchical information is easily lost at the encoding stage. The
Spatial pyramid pooling model (Figure A1b) is suitable to hold hierarchical
information, but, conversely, the boundary part of the generated image tends to
be blurred. DeepLab v3+ is a segmentation model that integrates the advantages of
bothmethods (Figure A1c). In addition, DeepLab v3+ features convolution at high
speed with explicit control of resolution by using an atrous depthwise convolution,
which can parametrically change adjacent pixels through the channel direction,
instead of the usual convolution (Figure A2).

Table A2. Learning settings of ResNet-50 model

Category Description

General Epoch: 30
Batch size: 200

Image Loaded image size: 256� 256
Image processing: Center cropped to a size of 224� 224.
Number of images per one-fold: Training, validation, test = 3200, 400, 400.

Optimizer Architecture: Momentum SGD (Qian, 1999)
Learning rate: 0.05
Momentum: 0.9
Learning schedule: From 1 to 10 epochs, the learning is carried out at the initial
learning rate. From 11 to 20 epochs, the initial learning rate is halved. From 21 to 30
epochs, the learning rate is further halved.

Computational
time

About 12minutes for learning 30 epochs.

Table A3. Learning settings of UGSCNN model

Category Description

General Epoch: 30
Batch size: 50

Image Loaded image size: 512� 256 (The pixel value of the image is assigned to the
corresponding vertex by the way described in Step 2.3 UGSNN model.)

Image processing: None
Number of images per one-fold: Same with the value of ResNet-50

Optimizer Architecture: Momentum SGD
Learning rate: 0.12
Momentum: 0.9
Learning schedule: Same with the setting of ResNet-50

Computational
time

About 77minutes for learning 30 epochs.
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(a) Encoder-decoder (b) Spatial pyramid pooling (c) DeepLab v3+

Figure A1. Structure of semantic segmentation models.

(a) Standard depthwise convolution (b) Atrous depthwise convolution
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