ON THE QUOTIENTS OF INDECOMPOSABLE INJECTIVE MODULES

A.K. Tiwary

(received October 5, 1965)

It is well known that $Z(p^{\infty})$ is isomorphic to each of its non-zero homomorphic images [3]. The aim of the present note is to generalize this fact about $Z(p^{\infty})$ to indecomposable injective modules over rings more general than the ring of integers which will include Dedekind domains as a special case.

I should like to thank Professor B. Banaschewski for his help and guidance.

Throughout this paper we consider R to be an integral domain and $P \subseteq R$ a maximal ideal.

Let R_p denote the ring of quotients of R with respect to P and define $\varphi: R/P \longrightarrow R_p/R_pP$ by $\varphi(x+P) = x + R_pP$. The mapping φ is clearly an R-module homomorphism and is one-to-one since $x + R_pP = 0$ implies $x \in R_pP \cap R = P$. To show that it is an epimorphism, let $(r/s) \in R_p$. Then, since R = Rs + P, there exist $a \in R$, $b \in P$ such that 1 = as + b. Hence $(r/s) + R_pP = ra + (r/s)b + R_pP = ra + R_pP = \varphi(ra + P)$. Thus φ is an R-isomorphism. Since R_p/R_pP is an R_p -module, this shows that R/P can be made into an R_p -module by (1/s)(r+P) = ra + P if $s \in R \setminus P$ and 1 = as + bas above, such that φ is an R_p -isomorphism. This fact extends as follows to E, the R-injective hull of R/P:

LEMMA By extending the R_P -module structure of R/P, E can be made into an R_P -module such that it is isomorphic to the R_P -injective hull of R_P/R_PP .

Canad. Math. Bull. vol. 9, no. 2, 1966

187

<u>Proof.</u> We first show that for $s \in \mathbb{RNP}$, the R-module homomorphism f:x \longrightarrow sx, is an automorphism of E. Let $0 \neq x \in E$, then since E is an essential extension of R/P, there exists a non-zero element $rx \in \mathbb{Rx} \cap \mathbb{R}/\mathbb{P}$ and since f is one-to-one on \mathbb{R}/\mathbb{P} we have $0 \neq f(rx) = srx$ which implies that $sx \neq 0$ and so f is one-to-one on E. The fact that E is indecomposable [2] and f(E) is isomorphic to E and hence injective, gives f(E) = E. f is, therefore, an automorphism of E. Thus for any $x \in E$, $s \in \mathbb{RNP}$, there exists a unique element $y \in E$ such that x = sy and we can define (1/s)x = ywhich makes E into an \mathbb{R}_{p} -module.

Finally, to prove the required isomorphism, let E' be an R_{p} -injective hull of $R_{p}/R_{p}P$ and j: $R/P \longrightarrow E$ and i: $R_{D} / R_{D} P \longrightarrow E'$ the natural injections. From the R-injectivity of E it follows that there exists an R-homomorphism $\psi: E' \longrightarrow E$ such that $j \circ \varphi^{-1} = \psi \circ i$ with φ as defined above. Take $x' \in \ker \psi$ and suppose $x' \neq 0$. Then $R_{p}x' \int R_{p}/R_{p}P \neq 0$ since E' is an R_p -essential extension of R_p/R_pP . Hence there exists a non-zero element $rx' \in Rx' \cap R_p/R_pP$. As ψoi is a monomorphism, we have $0 \neq \psi oi(\mathbf{rx'}) = \psi(\mathbf{rx'}) = \mathbf{r}\psi(\mathbf{x'}) = 0$, a contradiction. Hence ψ is a monomorphism. Now, if $s \in \mathbb{R} \setminus \mathbb{P}$, $x' \in \mathbb{E}'$, then there exists a unique element $y \in \mathbb{E}$ such that: $sy = \psi(x') = \psi(s(1/s)x') = s(\psi(1/s)x)$ whence (l/s) ψ (x') = ψ ((l/s)x'). This shows that ψ is $R_{\rm p}\text{-linear.}$ It follows that $\psi(E'$) is $R_{\rm p}\mbox{-injective}$ and therefore an $R_{\rm p}\mbox{-direct}$ summand of E. In particular $\psi(E')$ is an R-direct summand of E. Hence $\psi(') = E$. Thus $\psi: E' \longrightarrow E$ is the desired R_D-isomorphism.

Proposition. Let R_p be a principal ideal ring. Then the injective hull of R/P is isomorphic to any of its quotients by a proper submodule.

<u>Proof.</u> Here $R_{P}^{P} = R_{P}^{\pi}$ for some $\pi \in R_{P}^{P}$, and $R_{P}^{/R} R_{P}^{\pi}$ has $E = R_{P}^{(\pi^{-1})/R} R_{P}^{\pi}$ as its injective hull [1] where $R_{P}^{(\pi^{-1})}$ is generated by π^{-1} as a ring extension of R_{P}^{P} in the quotient field of R. By the lemma it suffices to consider this R-nodule E. We first show that every R-submodule of E is also an R_p -submodule which will imply that the R_p -submodules are the same as the R-submodules. For this, it is sufficient to prove that if $S \subseteq E$ is any R-submodule and $s \in R/P$, then $(1/s_0) S \subseteq S$. Now, $R[\pi^{-1}] = \bigcup_{k \ge O} R_p \pi^{-k}$ implies that any element in S is of the form $x = (a/s)\pi^{-k} + R_p\pi$ where $a \in R$, $s \in R \cap P$ and k an integer. From $R = Rs_0 + P^{k+1}$ [4], we get $1 = s_0 t + u$ with $t \in R$, $u \in P^{k+1}$ and, therefore, $(1/s_0)x = tx + (1/s_0)ux = tx + (u/s_0)((a/s)\pi^{-k} + R_p\pi) = tx \in S$. Hence $(1/s_0)S \subseteq S$ and we can talk about the submodules of E without reference to R or R_p .

We next show that every submodule of E is of the form $R_p \pi^{-n}/R_p \pi$. The lattice of all submodules of E is isomorphic to the lattice of R_p -submodules of $R_p[\pi^{-1}]$ which contain $R_p \pi$. Hence any submodule of E corresponds to exactly one fractional ideal S of R_p with $R_p \pi \subseteq S \subseteq R_p[\pi^{-1}]$. Let $S_k = S \cap R_p \pi^{-k}$ then $R_p \pi \subseteq S_k \subseteq R_p \pi^{-k}$ which implies $R_p \pi^{k+1} \subseteq S_k \pi^k \subseteq R_p$. By the fact that R_p is a principal ideal ring, one has $S_k \pi^k = R_p \pi^{\ell_k}$ for some ℓ_k with $0 \le \ell_k \le k+1$. Therefore, $S_k = R_p \pi^{\ell_k} k$. If S corresponds to a proper submodule of E, then $S \subset R_p[\pi^{-1}]$ and since $S = \bigcup_{k \ge 0} S_k$ and the S_k 's form an ascending sequence, one has $S = R_p \pi^{-n}$ for some integer n. Thus every proper submodule of E is of the form $R_p \pi^{-n}/R_p \pi$, and any quotient of E by such a submodule may be expressed as $R_p[\pi^{-1}]/R_p \pi^{-n}$.

Now, if we compose the homomorphism $x \longrightarrow \pi^{-(n+1)} x$ of $R_{p}[\pi^{-1}]$ into itself, with the natural homomorphism $y \longrightarrow y + R_{p}\pi^{-n}$ from $R_{p}[\pi^{-1}]$ to $R_{p}[\pi^{-1}]/R_{p}\pi^{-n}$, we get an

189

epimorphism $R_{p}[\pi^{-1}] \longrightarrow R_{p}[\pi^{-1}]/R_{p}\pi^{-n}$ whose kernel is $R_{p}\pi$. This shows that E is isomorphic to $R_{p}[\pi^{-1}]/R_{p}\pi^{-n}$.

<u>Remark.</u> If R is a Dedekind domain then each proper prime ideal P of R is maximal, and R_p is a principal ideal ring [4]; therefore, the Proposition then applies to any R/P. It follows from this that the indecomposable injective torsion modules over a Dedekind domain all have the property that they are isomorphic to any of their non-zero homomorphic images.

In conclusion we provide an example where an indecomposable injective module has a quotient module which is neither zero nor isomorphic to itself:

Let R be a Noetherian domain, P a non-zero, nonmaximal prime ideal in R and E an injective hull of R/P. Then there exists a maximal ideal M such that $O \subset P \subset M \subset R$ and so $E \supseteq R/P \supseteq M/P \ddagger 0$. Hence $E/(M/P) \ddagger 0$. We will show that E is not isomorphic to E/(M/P). Assume the contrary. Then E/(M/P) is indecomposable injective and contains (R/P)/(M/P) which is isomorphic to $R/M \ddagger 0$, and hence E/(M/P) is isomorphic to the injective hull of R/M. This implies that R/M and R/P have isomorphic injective hulls which leads to a contradiction since P and M are different prime ideals [2]. Thus the quotient module E/(M/P)is neither zero nor isomorphic to E and we have a counterexample where the above proposition fails to be true.

REFERENCES

- B. Banaschewski, On Coverings of Modules, Math. Nachr. (to appear).
- E. Matlis, Injective Modules Over Noetherian Rings, Pacific J. Math., volume 8, (1958), pp. 511-528.
- I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, (1954).
- 4. P. Samuel and O. Zarisky, Commutative Algebra, volume 1, Princeton (1958).

McMaster University

1