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Abstract
Rehabilitation robots help the treatment of diseases by performing cyclic exercises for a long period of time. These
exercises must perform movements of the patient’s limbs; thus, the robots are required to be flexible and safe.
Among rehabilitation robots, cable robots are widely used due to their unique properties, such as being lightweight
and the possibility of being equipped with magnetic hooks to improve both safety and ease of use. However, the
elasticity and flexibility of cables result in vibrations of the payload and hooks. In this paper, the forced vibrations
due to rehabilitation exercises are studied. Since the previous studies of the authors showed a weak coupling between
longitudinal and transverse vibrations, a two-cable planar model for the study of transverse vibrations is developed.
The model makes it possible to study the forced transverse vibrations due to both cable motion and robot motion.
Stiffness and damping of the patient’s arm are considered. Results show that the cable system exhibits a simple
linear behavior when excited by robot motion and a non-linear behavior when excited by cable motion.

1. Introduction
Various movement-related disabilities are experienced each year by millions of individuals in the world
[2] frequently as a result of sensory impairments, traumatic brain injuries, and musculoskeletal and
neurological disorders [8, 20]. The benefits of rehabilitation and medical robotics are considered in
many review articles, and meta-analyses [4, 7, 33, 37] demonstrating as robotic rehabilitation devices
(RRDs) are well-suited to assist patients, based on their ability to carry out simple and repetitive tasks
with consistency.

Cable-driven rehabilitation robots (CDRR) are commonly used in the rehabilitation field (e.g.,
Carex [21], CUBE [6], NereBot [14], CADEL [19, 35]), offering several promising features such as
low inertia, high payload-to-weight ratio, and large workspace [5, 13, 16]. These advantages are largely
due to the position of the actuators which are usually fixed to the ground, strongly reducing the mass to
be moved: pulleys are used to make possible variations in the orientation of the cables, while the payload
is connected to the cables via hooks.

Although CDRRs have a lot of promising features, there are also some limitations and deficiencies
due to the intrinsic properties of cables, which result in unidirectional power transmission, vibrations,
and maintenance. These limitations increase the complexity of kinematic and dynamic modeling of
CDRRs [30]. The elasticity or flexibility of cables of CDRRs causes undesirable vibrations, which may
generate position and orientation errors and compromise patient comfort. The importance of magnetic
hooks is mostly related to operational flexibility. In fact, the orthosis (i.e., the payload of the rehabilita-
tion robot) can be detached and can be fitted to a patient while another one is performing an exercise.
Moreover, thanks to the hooks, different orthoses can be installed, both passive [28] and active [26].

Since there is a strong interaction between the patient and the robotic platform, it is fundamental to
consider the characteristics of the patient’s dynamics [32]. The literature provides different values of
the human arm dynamic properties, in particular for the stiffness kh and damping factor ch, depending
on the field of application and therefore on the investigated population. The diversity in the fields of
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application leads to different postures assumed by the individuals which imply different values of the
parameters.

Dolan et al. [9] focused on characterizing arm dynamics in order to properly design human-robot
interaction systems. In particular, the authors provided experimental measurements of the damping and
mass parameters, both in the unloaded and loaded cases. Dyck et Tavakoli [12] proposed a method to
measure the dynamic impedance of the human arm to assess the motor function and muscle tone of
impaired individuals. Since the sensors may increase the costs and complexity of these systems, the
authors proposed a sensorless approach based on a virtual sensor derived from the robot’s kinematic
and dynamic models. Woo and Lee [34] proposed a dynamic model of the human arm to describe the
dynamic behavior of a haptic system interacting with the patient. The model, represented by a second-
order mass-damper-spring system, shows that it is possible to exploit the patient’s damping to maintain
passivity in the haptic system. To estimate the impedance parameters, the authors measured the force-
displacement data when the patient was excited by small external disturbances during the interaction
with the haptic device.

Human dynamic models are also frequent in vehicle dynamics, where the human body influences the
dynamic behavior of the vehicle by means of both voluntary reactions and passive responses to vehi-
cle oscillations. In particular, Doria et al. [11] presented different lumped-mass models to explain the
measured behavior of the rider in experimental tests. The authors developed modular testing equipment
composed of a hydraulic shaker and a motorcycle mockup to replicate the oscillation of a motorcy-
cle, in particular roll oscillations. To identify the human mechanical parameters, the authors fitted
the motion and torque frequency response functions with the developed models. Lastly, Höhne [15]
expanded existing biomechanical pilot models to properly model the human dynamics and reduce the
possibility of aircraft-pilot coupling problems. In particular, the author adopted data from the literature
and a maximum likelihood cost function to identify the model parameters.

To the best of the author’s knowledge, no previous work on CDRRs has discussed the forced vibra-
tions of cable robots equipped with hooks. Hence, this paper aims at filling this research gap. Another
motivation behind this paper is to carry out the analysis of forced vibrations of CDRR due to rehabilita-
tion exercises, considering also the stiffness and damping of the patient’s arm. Since massless cables are
assumed, cable sagging is negligible. This assumption is acceptable for applications that do not involve
large workspaces [17, 25].

Starting from the cable system of the Maribot, which is a typical cable-suspended rehabilitation robot,
in Section 2, possible simplifications of the dynamic model are analyzed. The forced vibrations due to
robot arm motion during rehabilitation exercises are studied in Section 3. In Section 4, the model is
extended to simulate forced vibrations due to cable motion. In both cases, a harmonic input is considered,
but in Section 5, the analysis is extended considering a polynomial input. Finally, in Section 6, results
are discussed, and future applications of the cable models are illustrated.

2. Models for the analysis of vibrations of cable robots with hooks
The Maribot [27, 29] (Fig. 1a) is a 5-degrees-of-freedom (DOF) CDRR composed of a rigid planar
jointed arm robot (2-DOF) and of a payload driven by cables (3-DOF). The three cables are controlled
by DC motors fixed to the robot links, and they support an orthosis used to hold up the patient’s arm
during rehabilitation exercises (Fig. 1b). Cable length and orientation are determined by the presence of
pulleys. To improve the ease of use, each cable is connected to a magnetic hook near the orthosis, which
makes the instantaneous release of the cable possible when a safety-limit force is overcome. Magnetic
hooks are used in other CDRR like [3, 21, 23, 28].

To analyze the vibrations of this CDRR, first a single cable analysis was performed [38]. The math-
ematical model considered the elastic deformation of the cables and the inertia of the pulleys and had
4 DOFs. Figure 2 depicts the model and its DOFs: pulley rotation θ1, rotation α3 of the upper cable,
vertical translation of the orthosis yG, and vertical translation of the hook y3.
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Figure 1. Maribot rehabilitation robot: (a) Maribot; (b) orthosis and cable system of the robot.

Figure 2. Single cable model: (a) longitudinal vibration; (b) transverse vibration.

Using the parameters of the single cable reported in Table I [38], the analysis of this model showed
that:

• Transverse vibrations of the hook (caused by rotation α3) are completely uncoupled with
longitudinal vibrations.

• Longitudinal vibrations are very little affected by pulley moment of inertia.
• The first longitudinal mode of vibration is very little affected by the hook mass.
• The natural frequencies of the longitudinal modes of vibration are higher than the natural

frequency of the transverse modes of vibration.
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Table I. Parameters of free vibration
mathematical model.

Parameter Value
I1[kg · m2] 6.84 · 10−6

m3[kg] 0.08
M[kg] 0.596
g[m/s2] 9.81
R1[m] 0.018
L1[m] 0.415
L3[m] 0.345
L5[m] 0.110
k1[N/m] 4.245 · 104

k3[N/m] 5.106 · 104

k5[N/m] 1.428 · 104

Single Cable Model
4 DOFs - [38]

High frequency
longitudinal modes
Negligible effects due
to pulleys

•
•

Two Cables Planar Model
5 DOFs - [36]

•

•
•

Weak or null coupling
between longitudinal
and translational
vibrations
Four-bar mode and
hooks mode

•

Two Cables Planar Model
3 DOFs - Sec. 4
Forced transverse
vibrations due
to cable motion

•

Two Cables Planar Model
3 DOFs

Considers the stiffness
and damping of the
patient's arm

•

Two Cables Planar Model
3 DOFs - Sec. 3
Forced transverse
vibrations due
to motion of the
planar robot

Figure 3. Flowchart of the evolution of the mathematical model of the cable rehabilitation robot.

Some experimental tests were carried out to find the natural frequencies of the system [38]. The
measured results confirmed the calculated results.

Then, accordingly to the flowchart in Fig. 3, the model was extended considering two and three cables
[36], but, in agreement with the results obtained with the single model, the moments of inertia of the
pulleys were neglected.

The planar model, which is depicted in Fig. 4, has 5 DOF: rotation θ1 of the left link of the four-
bar linkage composed by the base, the two left cables (L3 + L5), the orthosis and the two right cables
(L4 + L6); rotations α3 and α4 of the cables that connect the base with the hooks; elongation of the left
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Figure 4. Planar model of the four-bar linkage with elongations and rotations of links.

cable s9; elongation of the right cable s10. Simulations showed the presence of two longitudinal modes
of vibration and of three transverse modes of vibration. The most important results were:

• The transverse modes include the hook modes, in which the hooks move sideways whereas the
orthosis essentially stands still, and a four-bar mode in which the left cable, the orthosis, and the
right cable move as a four-bar linkage.

• The two hook modes have essentially the same natural frequency, which is much higher than the
one of the four-bar mode.

• There is a weak or null coupling between the longitudinal and the transverse modes of vibration,
the degree of coupling depends on the initial configuration of the system (if the system is a
parallelogram the coupling is null).

• The natural frequencies of the longitudinal modes are higher than the natural frequencies of the
transverse mode.

The last results actually confirmed and extended the results obtained by means of the single cable
model. Then, some assumptions were made and the planar model of [36] was extended to study the free
vibrations of a 3D symmetric system.

The aim of the present research is the study of the forced vibrations of the suspended system caused by
rehabilitation exercises. Rehabilitation exercises are performed cyclically varying both the vertical and
horizontal position of the orthosis. The vertical motion is obtained by changing the length of the cables,
whereas the horizontal motion is performed by the joints of the planar robot. Both motions can excite
the vibrations of the suspended system, that is, both the cables and the orthosis. In typical rehabilitation
exercises, the motions of the cables and of the robot are periodic with very low fundamental frequency

https://doi.org/10.1017/S0263574723001248 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001248


Robotica 3707

Figure 5. Model of transverse forced vibration due to robot arm motion. The input motion is represented
in red and the DOFs θ3, α3, and α4 in blue.

(0.01–0.1 Hz) [28]. According to the results obtained with the single cable model and the planar model,
these low-frequency motions cannot excite the longitudinal modes of the suspended system but can
excite the transverse modes of vibrations.

For this reason, longitudinal compliance of the cables was neglected, and from the 5 DOF planar
model of Fig. 4, a 3-DOF planar model of Figs. 5 and 9 was developed. Moreover, in the new model,
the effect of patient arm stiffness and damping was added. The model was derived with the Langrange’s
approach, and small modifications in the formulas of velocity make it possible to take into account both
excitation due to robot motion (Section 3) and excitation due to cable motion (Section 4).

The rehabilitation robot holds the patient’s arm during the exercise. However, the arm must not be
simply considered as a lumped mass: in fact, the arm is attached to the patient’s body, which is then
supported by the ground. As a result, the mass M of the orthosis (with the arm) is connected to the
ground also via a linear spring with stiffness kh and a damper with damping coefficient ch.

To define the values of kh and ch, many tests and models have been proposed during the years
(Table II). In [11], the stiffness and damping of the arm are calculated considering the series between
the upper arm and the forearm stiffness of a single upper limb, and the series between the upper arm and
the forearm damping of a single upper limb. In [15], the stiffness of the arm is calculated considering the
series between the translatory and the rotatory stiffness of the arm (the last one defined with a mean arm
length of 0.7 m). A similar approach was adopted to evaluate arm damping. Ref. [34] presents sets of
values of arm stiffness and damping of three subjects for different positions of the hand in the workspace
and intensities of interaction force. Among those sets, the one with an interaction force set to zero and
the location that most resembles the one depicted in Fig. 1 was considered. Therefore, the stiffness and
damping of the patient’s arm are set equal to the mean value between the stiffness and damping of the
arm of the three subjects, respectively.

The measured values vary widely, due to the different anatomical characteristics of the tested subjects
and postures [18, 22], with an average value of kh = 78.66 N/m and ch = 7.40 Ns/m. In the model
presented in this work, the stiffness and damping along the x-axis (kx and cx) and along the y-axis (ky

and cy) are needed.
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Table II. Stiffness and damping of the patient’s arm.

Paper kh [N/m] ch [Ns/m]
Doria et al. [11] 123.12 0.08
Hohne [15] 86.00 19.58
Woo et al. [34] 78.29 3.15
Dyck et al. [12] 27.22 6.82
Mean 78.66 7.40

It is worth noticing that the values of Table II are found by experiments in which the movements
of the arm are mostly restricted to the arm plane (i.e., the plane containing the arm and forearm axes)
when the arm is horizontal. Very little literature has investigated arm stiffness in directions outside of
such a plane [1, 31]. Indeed, the Maribot (Fig. 1a) is designed in such a way that motions in 3D space
can be achieved. In this sense, the values of kh and ch of Table II should be adopted only for motions
performed in the arm plane. However, [31] highlights that the impedance of the arm in the 3D space is
characterized by components in x-y-z-axis which are on the same order of magnitude. As a result, the
values of Table II are considered as an overall representation of the arm suspended by the orthosis.

Finally, the Maribot is a 3-cable robot, but the behavior of a 3-cable robot can be studied by consid-
ering solely two cables [36]. As a result, kh and ch used in the following simulations will be considered
as 2/3 of the values of Table II, since only 2/3 of the effect of the arm on the orthosis is supported by
two cables.

3. Transverse vibration due to robot arm motion
3.1. Model description
When the robot moves in the horizontal plane with motion law xb(t), the suspended orthosis behaves
like a pendulum. To describe the transverse vibrations, the planar model with two cables of Fig. 5 was
developed. The planar model is composed of two upper cables (L30 and L40) which connect the pulleys
to the magnetic hooks (mass m3 and m4). The negligible influence of the pulleys makes it possible to
neglect the effect of the horizontal cables L1 and L2 that connect the motors to the pulleys, since they
do not influence transverse vibrations. A payload equivalent to 2/3 of the expected load on the orthosis
(mass M) is supported by two lower cables with length L50 and L60. Similarly, the values of kx, ky and
cx, cy adopted in the simulations are 2/3 of the values in Table II.

In the present analysis, the system is considered symmetric with L30 = L40, L50 = L60 and m3 = m4.
In the reference configuration, the rotations of the payload and the cables are equal to ϕ2 = 0 and ϕ3 =
ϕ4 = 3

2
π . The quadrilateral OABC is a parallelogram. The vibrations of the system about the reference

configuration are described by the three coordinates depicted in Fig. 5 (θ3, α3 and α4). α3 and α4 are
the rotations of the upper cables due to the lateral motion of the hooks. Since small oscillations are
considered, these simple relations between the rotations of the upper and lower cables hold:

L30α3 = L50α5 (1)

L40α4 = L60α6 (2)

θ3 is the rotation of the quadrilateral OABC with respect to the reference configuration. Rotations θ2 and
θ4 are always related to θ3 by the loop equations of quadrilateral OABC.{

OA cos (ϕ3 + θ3) + b cos (ϕ2 + θ2) − CB cos (ϕ4 + θ4) − c = 0

OA sin (ϕ3 + θ3) + b sin (ϕ2 + θ2) − CB sin (ϕ4 + θ4) = 0
(3)

where b is the length of the payload and c is the distance between cable pulleys.
If α3 and α4 are small, the variations in the lengths of sides OA and CB due to the lateral motion of

the hooks are small. Length OA is given by:

OA = L30cos(α3) + L50cos(α5) (4)
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The Taylor’s expansion shows that the lateral motion of the hook has a second-order effect on length
OA.

OA = L30

(
1 − α2

3

2

)
+ L50

(
1 − α2

5

2

)
(5)

OA = (L30 + L50)

(
1 − L30

2L50

α2
3

)
(6)

A similar equation holds true for CB:

CB = (L30 + L50)

(
1 − L30

2L50

α2
4

)
(7)

If the symmetry conditions are introduced in the loop equations, the following equations hold:

θ4 = θ3 (8)

θ2 = (L30 + L50)(α2
4L2

30 − α2
3L2

30)

2bL30L50

(9)

It is worth noticing that the payload rotation is a second-order term.
The equations of motion of the cable system are developed with the Lagrange’s approach.
The system kinetic energy (Ek) is equal to:

Ek = 1

2
m3

(
ẋ2

3 + ẏ2
3

) + 1

2
m4

(
ẋ2

4 + ẏ2
4

) + 1

2
M

(
ẋ2

G + ẏ2
G

)
(10)

The velocities of masses are calculated using first-order approximations:{
ẋ3 = L30α̇3 + L30θ̇3 + ẋb

ẏ3 = 0
(11)

{
ẋ4 = L30α̇4 + L30θ̇3 + ẋb

ẏ4 = 0
(12)

{
ẋG = (L30 + L50) θ̇3 + ẋb

ẏG = 0
(13)

The springs and the dampers that represent the stiffness and the damping properties of the human
arm have the first end-point fixed to the body and the second end-point fixed to the center of the orthosis
(point G). The elastic potential energy (Ep,el) is given by:

Ep,el = 1

2
kx

(
xG − b

2

)2

+ 1

2
ky (yG + (L30 + L50))2 (14)

where kx and ky are the horizontal and vertical arm stiffness; the gravity potential energy (Ep,g) is
given by:

Ep,g = m3gy3 + m4gy4 + MgyG (15)

where the coordinates of the masses are given by:

y3 = L30sin (3π/2 + θ3 + α3) = −L30cos(θ3 + α3) (16)

y4 = L30sin (3π/2 + θ3 + α4) = −L30cos(θ3 + α4) (17)
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xG = OAcos (3π/2 + θ3) + xb + b

2
cos (θ2) = (L30 + L50)

(
1 − L30

2L50

α2
3

)
sinθ3 + xb + b

2

yG = OAsin (3π/2 + θ3) + b

2
sin (θ2) = −(L30 + L50)

(
1 − L30

2L50

α2
3

)
cosθ3 + (L30 + L50)

(
α2

4 − α2
3

)
L30

4L50

(18)

If second-order Taylor’s expansions of the trigonometric functions are adopted, the coordinates
needed for the calculations of the potential energy are given by the following equations:

y3 = −L30

(
1 − (θ3 + α3)2

2

)
(19)

y4 = −L30

(
1 − (θ3 + α4)2

2

)
(20)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xG = (L30 + L50) θ3 + xb + b

2

yG = − (L30 + L50)

(
1 − θ 2

3

2
− L30

2L50

α2
3

)
+ (L30 + L50)

(
α2

4 − α2
3

)
L30

4L50

(21)

where in Equation 21, the term proportional to α2
3θ

2
3 has been neglected since it is a fourth-order term.

Using the Lagrange’s approach, the equations of forced damped vibrations in matrix form are as
follows:

Ms · q̈ + Cs · q̇ + Ks · q = T (22)

where Ms is the mass matrix and Cs is the damping matrix, whereas T is the forcing torque and q =
{θ3, α3, α4}T . Since the stiffness matrix Ks includes both the elastic and the gravitational terms, two
matrices Ke and Kg are introduced to represent the elastic and gravitational parts, respectively. The mass,
damping and the two stiffness matrices and the forcing torque of the model have the following form:

Ms =

⎡
⎢⎢⎣

L2
30 (m3 + m4) + M (L30 + L50)

2 L2
30m3 L2

30m4

L2
30m3 L2

30m3 0

L2
30m4 0 L2

30m4

⎤
⎥⎥⎦ Cs =

⎡
⎢⎢⎣

cx (L30 + L50)
2 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦
(23)

Ke =

⎡
⎢⎢⎣

kx (L30 + L50)
2 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦ (24)

Kg =

⎡
⎢⎢⎢⎢⎣

g [L30 (m3 + m4) + M (L30 + L50)] m3gL30 m4gL30

m3gL30

(2L50m3 + M (L30 + L50)) L30g

2L50

0

m4gL30 0
(2L50m4 + M (L30 + L50)) L30g

2L50

⎤
⎥⎥⎥⎥⎦

(25)

T = −

⎧⎪⎪⎨
⎪⎪⎩

[L30 (m3 + m4) + M (L30 + L50)] ẍb + cx (L30 + L50) ẋb + kx (L30 + L50) xb

L30m3ẍb

L30m4ẍb

⎫⎪⎪⎬
⎪⎪⎭ (26)
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Table III. Parameters of the mathematical
model for the transverse forced vibration
due to robot arm motion.

Parameter Value
M [kg] 1.192
m3 = m4 [kg] 0.080
g [m/s2] 9.81
L3 = L4 [m] 0.380
L5 = L6 [m] 0.110
b = c [m] 0.3
ϕ3 = ϕ4 [rad] 3
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Figure 6. Influence of the human arm stiffness kx on the natural frequency of first transverse mode
(pendulum mode) (a) and of the second and third modes (hook modes) (b).

Substituting Equation (21) into Equation (14), the difference (yG + (L30 + L50)) leads to fourth-order
terms in ky, which are neglected in Ke. A proportional damping assumption is made [24] and the damping
matrix is assumed proportional to Ke. It is worth noticing that the matrices are constant and the equations
of motion describing the forced vibrations due to robot arm motion are a system of linear coupled
differential equations.

The natural frequencies and the modes of vibration of this model are calculated solving the eigenvalue
problem. The first mode is a pendulum mode of the whole system, whereas the second and third modes
are the hook modes dominated by the transverse vibrations of the hook; they are similar to the modes
found in [36] where a 5 DOF model of the free vibrations of a cable robot was developed.

As reported in Table II, very different values of the human arm stiffness kh and damping factor ch

are present in the literature. The influence of arm stiffness on the natural frequencies of the modes of
vibration is depicted in Fig. 6, considering the parameters of the planar model reported in Table III.
The natural frequency of the pendular mode increases from 0.72 Hz (when arm stiffness is 0) to 1.48 Hz
when the arm stiffness reaches the maximum value of Table II. Conversely, the variations in the natural
frequencies of the 2nd and 3rd modes are negligible.

https://doi.org/10.1017/S0263574723001248 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001248


3712 Giacomo Zuccon et al.

0 5 10 15 20 25 30

Time [s]

-6

-4

-2

0

2

4

6

T
3

 [
N

m
]

Doria et al.(2/3)

Dyck et al.(2/3)

k
avg

, c
avg

 (2/3)

20(k
h
 = 0, c

h
 = 0)

0 5 10 15 20 25 30

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

T
3

 [
N

m
]

10
-3

Doria et al.(2/3)

Dyck et al.(2/3)

k
avg

, c
avg

 (2/3)

k
h
 = 0, c

h
 = 0

0 5 10 15 20 25 30

Time [s]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

3
 [

ra
d

]

Doria et al.(2/3)

Dyck et al.(2/3)

k
avg

, c
avg

 (2/3)

k
h
 = 0, c

h
 = 0

0 5 10 15 20 25 30

Time [s]

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

3
 [

ra
d

]
Doria et al.(2/3)

Dyck et al.(2/3)

k
avg

, c
avg

 (2/3)

20(k
h
 = 0, c

h
 = 0)

(a) (b)

(c) (d)

Figure 7. Transverse forced vibration due to robot motion for four values of stiffness and damping of
patient’s arm: (a) amplitude of forcing Tθ3 for θ3; (b) amplitude of forcing Tα3 for α3; (c) time history of
θ3; (d) time history of α3.

3.2. Response to robot arm motion
The simulated input motion of the robot xb is a sinusoidal signal:

xb(t) = x0sin(ωt) (27)

with amplitude x0 set to 0.150 m and angular frequency ω set to 0.6283 rad/s, corresponding to a
frequency of 0.1 Hz. The reason for choosing such input motion is twofold:

• It is a realistic input;
• Since the system is linear, harmonic analysis can be used to study the effect of more complex

inputs (e.g., periodic inputs)

Figure 7 deals with the forced vibration due to the robot motion considering four different models
of arm stiffness and damping. Figure 7a and b represents the amplitude of the forcing torque T for each
DOF. Figure 7c and d represents the time histories of θ3 and α3, respectively. α4 is not represented since
it behaves as α3 (since the only difference in the equations of motion disappears due to the assumption
m3 = m4).

The first stiffness and damping values are the ones from Doria et al. [11] and from Dyck et al. [12],
since they present maximum stiffness (Doria et al.) and minimum stiffness (Dyck et al.), respectively.
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Figure 8. Transverse forced vibration due to robot motion: (a) FFT of θ3 for the four cases considered
and (b) of α3 for the four cases considered.

The third set of values includes the average values of kh and ch (kavg = 78.66 N/m and cavg = 7.40 Ns/m).
In the fourth model, the stiffness and damping values of the arm and forearm are set to zero, representing
the absence of any reactions of the human arm.

The forcing torques are harmonic functions. The forcing torque Tθ3 on θ3 largely depends on arm
stiffness and damping. In fact, for kh and ch = 0 the value is very small (in Fig. 7a it is amplified by a
factor of 20). Moreover, since in this case Tθ3 depends only on ẍb, it is in opposition with respect to the
torques referring to the other cases. The amplitude of the forcing torque Tα3 acting on α3 is very small
and constant, since Equation (26) states that it depends only on L3, m3 and on the acceleration of the
robot ẍb.

The time domain response does not highlight resonance phenomena. θ3 chiefly oscillates at the forcing
frequency (0.1 Hz). When arm damping is small, small amplitude transient vibrations at the frequency
of the pendular mode appear as well. The response of α3 depicted in Fig. 7d is characterized by the
presence of vibrations at the forcing frequency. There are small high-frequency vibrations at the natural
frequency of the hook modes. When stiffness is large and damping is small, there are some vibrations
at the frequency of the pendular mode as well. The amplitude of the main harmonic at the forcing
frequency decreases if arm stiffness decreases and becomes very small when kh and ch are null (the
corresponding curve in Fig. 7d is multiplied by a factor of 20). It is worth noticing that this phenomenon
happens because, even if torque Tα3 does not depend on the stiffness and damping of the human arm,
the equations of motion (22) are coupled by the mass and stiffness matrices.

These results are confirmed when the responses are analyzed in the frequency domain (Fig. 8). The
main peak of the spectrum appears at the forcing frequency, and the peaks at the natural frequencies of
the pendular mode and of the hook modes are very small.

4. Forced vibrations due to cable motion
4.1. Model description
The two-cable model can be used to study the transverse forced vibrations due to cable motions having
amplitude δ. In this case, the source of excitation is the periodic variation in the length of the upper
cables, whereas the robot is considered steady (xb = 0), as shown in Fig. 9. In typical rehabilitation
exercises, the cables move with the same motion law to keep the orthosis horizontal [28]; therefore, in
the model L4(t) = L3(t). Kinematic equations (1-9) and (19-21) dealing with the position of the masses
and the rotations of the cables still hold true if L30 is replaced by L3(t) and if xb is set to zero.
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Figure 9. Model of transverse forced vibration due to cables’ elongation. The input is represented in
red, and the DOFs θ3, α3, and α4 are represented in blue.

The equations of the elastic potential energy (14) and gravity potential energy (15) still hold true, but
it is assumed that the human spring is unloaded when the orthosis is at the lowest height.

The equation of the kinetic energy (10) still holds true, but new expressions of velocity are needed to
take into account the elongation velocity of the cables (L̇4(t) = L̇3(t)). The hooks have both elongation
velocity (L̇) and tangential velocity,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋG = L̇3θ3 + (L3 + L50) θ̇3 − 1

2
bθ2θ̇2

ẏG = θ3 (L3 + L50) θ̇3 − 1

2
L̇3 + 1

4

(−2L̇3 + 2θ 2
3 L̇3

) + 2α4L3(L3 + L50)α̇4 + α2
4L3L̇3 + α2

4 (L3 + L50) L̇3

4L50

+2α3L3(L3 + L50)α̇3 + α2
3L3L̇3 + α2

3 (L3 + L50) L̇3

4L50

(28)

{
ẋ3 = L3

(
α̇3 + θ̇3

)
cos (α3 + θ3) + L̇3sin (α3 + θ3)

ẏ3 = L3

(
α̇3 + θ̇3

)
sin (α3 + θ3) − L̇3cos (α3 + θ3)

(29)

{
ẋ4 = L3

(
α̇4 + θ̇3

)
cos (α4 + θ3) − L̇3sin (α4 + θ3)

ẏ4 = L3

(
α̇4 + θ̇3

)
sin (α4 + θ3) + L̇3cos (α4 + θ3)

(30)

The equations of motions of forced damped vibrations in matrix form are derived using the
Lagrange’s approach and neglecting third (and higher) order terms. They have the form of Equation (22).
Again the stiffness matrix KS is split into two matrices Ke and Kg including the elastic and gravitational
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terms, respectively. The mass, damping, and stiffness matrices and the forcing torque of the model have
the following forms:

Ms =

⎡
⎢⎢⎢⎢⎣

L2
3 (m3 + m4) + M (L3 + L50)

2 L2
3m3 L2

3m4

L2
3m3 L2

3m3 0

L2
3m4 0 L2

3m4

⎤
⎥⎥⎥⎥⎦ (31)

Cs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cx (L30 + L50)
2 − cy (L3 + L50) (L3 − L30 − δ) 0 0

0
−cy (L3 + L50) (L3 − L50 − δ) L3

2L50
0

0 0
−cy (L3 + L50) (L3 − L50 − δ) L3

2L50

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(32)

Kg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g [L3 (m3 + m4) + M (L3 + L50)] m3gL3 m4gL3

m3gL3
(2L50m3 + M (L3 + L50)) L3g

2L50
0

m4gL3 0
(2L50m4 + M (L3 + L50)) L3g

2L50

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(33)

Ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

kx (L3 + L50)
2 − ky (L3 + L50) (L3 − L30 − δ) 0 0

0
−ky (L3 + L50) (L3 − L30 − δ) L3

2L50
0

0 0
−ky (L3 + L50) (L3 − L30 − δ) L3

2L50

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(34)

T = −

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2L3L̇3

(
m3

(
α̇3 + θ̇3

) + m4

(
α̇4 + θ̇3

)) + 2M (L3 + L50) L̇3θ̇3

2m3L3L̇3

(
α̇3 + θ̇3

) − 1

2

M (L3 + L50) α3L3L̈3

L50

2m4L3L̇3

(
α̇4 + θ̇3

) − 1

2

M (L3 + L50) α4L3L̈3

L50

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(35)

Due to the variation in cable lengths, the matrices of the systems depend on the configuration. It
is worth noticing that the forcing torque on θ3 includes non-linear Coriolis terms, whereas the forcing
torques on α3 and α4 include both Coriolis terms and terms related to cable acceleration. All the forcing
terms depend either on θ̇3, α̇3, α̇4 or on α3, α4. Hence, a non-null initial condition is needed to initiate
the forced vibrations.

The natural frequencies and the modes of vibrations of this model are calculated by solving the
eigenvalue problem for assigned configurations (cable lengths). Figure 10 shows the effect of cable
length (L4 = L3) on the natural frequencies of the transverse modes of vibration. It is interesting to note
that the natural frequencies of the second and third transverse mode fn2 and fn3 assume the same value
regardless of kh for a certain cable length, which corresponds to the lowest position of the orthosis
(where the cable length is maximum). Indeed, in that point L3 = L30 + δ, meaning that the terms in ky in
the elastic part Ke of the stiffness matrix are null.
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Figure 10. Influence of the human arm stiffness kh on the natural frequency of first (a), second (b), and
third (c) transverse mode.

On the other hand, the natural frequencies of the first transverse mode fn1 for different values of kh do
not reach a common value, but change during time keeping different values. This is reasonable as the
first term of the elastic part Ke of the stiffness matrix presents a component (kx (L3 + L50)

2) which does
not become zero during the cycle.

Figure 11 represents influence of L3 on the natural frequencies of the transverse modes. All the natural
frequencies decrease as cable length increases. The natural frequencies of the second and third transverse
modes (hook modes) assume the same value for the maximum elongation regardless of the human arm
stiffness kh. On the other hand, the curves representing the value of the natural frequency of the first
transverse mode for different values of kh do not intersect. It is worth noticing that the values of the
natural frequencies for null values of the human arm stiffness and for L3 = 0.380 m are equal to the ones
obtained in [36].

4.2. Response to cable motion
The simulated input motion of the cables is sinusoidal:

L3(t) = L30 + δ sin (ωLt) (36)

amplitude δ is set to 0.150 m and angular frequency ωL to 0.6283 rad/s, corresponding to 0.1 Hz. Initial
cable length L30 is set to 0.345 m.
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Figure 11. Influence of the cable length L3 on the natural frequency of first transverse mode (a), of the
second one (b), and of the third one (c) for different human arm stiffness kh.

Figure 12 deals with the forced vibration due to cable motion considering different models of arm
stiffness and damping. Differently from Section 3.2, only two stiffness and damping models are con-
sidered, that is, the model provided by Doria et al. [10], which features large stiffness and minimum
damping, and the model with null stiffness and damping. The results obtained considering the other
models are deemed uninteresting since they show only an initial transient, due to the large damping
values.

Moreover, only the forcing torques and the responses of θ3 and α3 are discussed, since α4 has almost
the same behavior of α3 due to the symmetric configuration of the system. Figure 12a and b depict the
forcing torques pf θ3 and α3 in the time domain, whereas Fig. 12c and d depict the same torques in the
frequency domain. Differently from the previous scenario (Fig. 7), the forcing torques have complex
waveforms with the presence of a beating phenomenon. This result can be explained by looking at the
typical forcing term due to Coriolis acceleration, for example, the term

T∗
θ3

= 2M(L3(t) + L50)L̇3θ̇3 (37)

in Equation (35).
If Equation (36) is inserted in (37), the following result holds:

T∗
θ3

= 2M(L3 + L50)δωLcos(ωLt)θ̇3 + 2Mδ2sin(ωLt)ωLcos(ωLt)θ̇3 (38)
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Figure 12. Transverse forced vibration due to cable motion considering two values of stiffness and
damping of patient’s arm: (a) amplitude of forcing Tθ3 for θ3; (b) amplitude of forcing Tα3 for α3;
(c) FFT of Fθ3 ; (d) FFT of Fα3 .

Since harmonic oscillations of θ3 at the natural frequency (ωn = 2π fn1) are expected

θ3 = θ30sinωn1t (39)

Equation (38) becomes:

T∗
θ3

= 2M(L30 + L50)δθ30ωLωn1cos(ωLt)cos(ωn1t) + Mδ2θ30ωLωn1sin(2ωLt)cos(ωn1t) (40)

where the second term has been modified using the double-angle formula. Then, the Werner’s formulae
are used to transform the products of trigonometric functions into sums:

T∗
θ3

= 2M [L30 + L50] δθ30ωLωn1

1

2
[cos((ωn1 + ωL)t) + cos((ωn1 − ωL)t)] +

+ Mδ2θ30ωLωn1

1

2
[sin((ωn1 + 2ωL)t) − sin((ωn1 + ωL)t)] (41)

Since in the present case ωL << ωn1, Equation (40) states that the terms cos(ωLt) and sin(2ωLt) mod-
ulate the input torque generating the beating phenomenon. Moreover, Equation (41) states that the
modulated input torque consists of two harmonics, the former having frequency ωn1 − ωL, the latter
having frequency ωn1 + ωL (if the modulation frequency is 2ωL the two frequencies are ωn1 − 2ωL and
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Figure 13. Transverse forced vibration due to cable motion for two values of stiffness and damping of
patient’s arm: (a) time history of θ3; (b) time history of α3; (c) FFT of θ3; (d) FFT of α3.

ωn1 + 2ωL). This result is in agreement with the spectra depicted in Fig. 12c and d that show the pres-
ence of clusters of harmonics around the natural frequencies of the system. It is worth noticing that the
behavior of the actual system is made more complex by some factors:

• the presence of damping;
• the coupling between the various DOFs;
• the variation of natural frequencies with cable length, which is a non-linear effect.

For the above-mentioned reasons, there are clusters of harmonics instead of two harmonics around
the natural frequencies.

Figure 12 shows that the main effect of arm stiffness is the shift of the cluster of harmonics corre-
sponding to fn1 toward higher frequencies. Figure 12 highlights that the introduction of arm damping
has a large effect on the torques on θ3 and α3 causing in the frequency domain a large reduction in the
torque components having frequencies around fn2 and fn3.

The responses of the system in the time and in the frequency domains are depicted in Fig. 13. The
amplitude of the pendulum motion of the whole system (rotation θ3) is much smaller than the rotation
of the upper cable caused by the lateral motion of the hook (rotation α3). If there is no arm damping, the
vibrations are periodic and are characterized by beating phenomenon caused by the particular waveforms
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Figure 14. Comparison between the polynomial motion law and the sinusoidal one adopted in the
previous sections.
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Figure 15. Comparison of the responses due to robot arm motion for different input motions.

of the forcing torques. In the presence of arm damping, the oscillations quickly extinguish. In particular,
the spectra depicted in Fig. 13c and d show that the high-frequency vibrations of the upper cables are
more affected by arm damping than the low-frequency pendulum vibrations.

5. Forced vibrations caused by a polynomial motion law
From a practical point of view, it is interesting to analyze the response of the system to a generic input
typical of an actual rehabilitation scenario [27, 28]. The input consists of a polynomial motion law having
the same amplitude and fundamental frequency of the sinusoidal input. It is calculated interpolating
with cubic splines n via points defined along a cycle of oscillation. This kind of interpolation yields
very regular trajectories with null speeds at each via point. In Fig. 14, the polynomial motion law and
the sinusoidal one are compared. Figure 15 deals with the excitation caused by robot motion which is
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Figure 16. Generic cable motion. Transverse forced vibration due to cable motion for two values of
stiffness and damping of patient’s arm: (a) time history of Tθ3 ; (b) time history of Tα3 ; (c) time history
of θ3; (d) time history of α3.

described by a linear model. The polynomial motion law has only the beneficial effect of reducing the
vibrations at the natural frequencies of the transverse modes.

The excitation by cable motion, which is described by a non-linear model, could be more affected
by the shape of the motion law. Figure 16 shows the forcing torques Tθ3 and Tα3 and the responses of
θ3 and α3 in the time domain. The overall behavior of the system is similar to the one obtained with
sinusoidal input in terms of vibration amplitudes and frequencies. But the different motion law causes
modifications in the waveform of the torques that, in turn, cause modifications in the waveforms of the
responses.

6. Discussion and conclusions
A planar two-cable model for the study of transverse vibrations of the CDRR has been developed. The
matrices of the model can be quickly modified to simulate both the forced vibrations due to the lateral
motion of the arm and the forced vibrations due to the variations in cable length (cable motion). First
harmonic inputs were considered since they are realistic and useful to highlight the main features of the
system’s response.
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The system excited by arm motion has a linear behavior and shows the presence of lasting vibrations at
the forcing frequency. The most important vibration is the pendulum motion of the whole cable system;
there are also small transverse vibrations of the hooks.

The system excited by cable motion exhibits a non-linear behavior since the natural frequencies
depend on cable lengths and the forcing torques include terms depending on cable rotations and angular
velocities (Coriolis terms). With this excitation, hook modes are more excited than the four-bar mode.
If realistic values of arm damping are considered, transverse vibrations quickly extinguish and have lit-
tle effect on the rehabilitation exercise. The effect of the waveform of the input motion was considered
as well. Results show that, if the amplitude of the input motion does not change, a sinusoidal and a
polynomial motion law generate similar responses in terms of amplitudes and frequencies.

Future development will be the experimental validation of the forced model, assuming different
motion laws and durations of the rehabilitation exercises. Moreover, a 3D model of the forced vibrations
of the cable system will be developed, exploiting the symmetry properties of the system.
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