U.S.R. Murty

1. Introduction. Let A be an $m \times n(0,1)$-matrix. Let
$C_{1}, C_{2}, \ldots, C_{n}$ denote its columns. A sequence of distinct columns $C_{i_{1}}, C_{i_{2}}, \ldots, C_{i_{k}}$ is said to form a chain if the inner product of C_{i} and C_{i+1} (for $1 \leq t \leq k-1$) is at least one. $k-1$ is called the length of the chain and this chain is said to connect $C_{i_{1}}$ and $C_{i_{k}}$, and $C_{i_{1}}$ and $C_{i_{k}}$ are said to be connected. As can be easily seen, connectedness is an equivalence relation on the set of columns. A matrix is called connected if all its columns belong to the same equivalence class. If C_{i} and C_{j} belong to the same equivalence class, then $s\left(C_{i}, C_{j}\right)$ will denote the length of the shortest chain between C_{i} and C_{j}. We define the distance between any two columns C_{i} and C_{j}, to be denoted by $d\left(C_{i}, C_{j}\right)$, in the following manner.

$$
d\left(C_{i}, C_{i}\right)=0
$$

and if i $\neq j$

$$
d\left(C_{i}, C_{j}\right)= \begin{cases}s\left(C_{i}, C_{j}\right) & \text { if } C_{i} \text { and } C_{j} \text { belong to the } \\ & \text { same connected component } \\ \infty, & \text { otherwise. }\end{cases}
$$

The diameter of the matrix, to be denoted by $d(A)$, is defined as

$$
\begin{aligned}
d(A)= & \max \quad d\left(C_{i}, C_{j}\right) . \\
& 1 \leq i \leq m \\
& 1 \leq j \leq n
\end{aligned}
$$

The diameter of a disconnected matrix is infinite. 2 (R, S) denotes the class of matrices with R and S as row and column sum vectors respectively (as in [1]), and \widetilde{d} denotes min $d(A)$.

$$
A \in)_{\sim}(R, S)
$$

[^0]The aim of this note is to obtain some bounds of \tilde{d} of $2 \gamma(\tilde{K}, \tilde{K})$ where K is the n coordinate vector (k, k, \ldots, k), k being a positive integer ≥ 2. We shall also consider a related extremal problem involving generalized inner products. We shall observe that incidence matrices of (v, k, λ)-designs are in some sense extremal matrices of diameter 1 .
2. Bounds for \tilde{d} and a related problem. In this section we shall consider the class $2 \delta(\tilde{K}, \tilde{K})$ of $(0,1)$-matrices. The matrix exhibited below belongs to $2 \varsigma(\widetilde{\mathrm{~K}}, \tilde{\mathrm{~K}})$.

where J_{1}, J_{2}, and J_{3} are blocks of $1^{\prime} s$, and $0^{\prime} s$ are blocks of zeros. The diameter of this matrix is $\left[\frac{\left[\frac{n}{2}\right]}{k-1}\right]^{*}$. ([x] denotes the greatest integer $\leq x$ and $[x] *$ denotes the least integer $\geq x$.) Hence we have

$$
\begin{equation*}
\tilde{\mathrm{d}} \leq\left[\frac{\left[\frac{\mathrm{n}}{2}\right]}{\mathrm{k}-1}\right]{ }^{*} \tag{1}
\end{equation*}
$$

The upper bound in (1) is attained in the case of $k=2$ but if $k \geq 3$ this upper bound may be higher than the actual value. For example if $n{\underset{\sim}{~}}^{7}$ and $k=3$ the number on the right side of (1) is equal to 2 whereas \tilde{d} is equal to 1 , as the incidence matrix of projective plane of order 2 is of diameter 1. It may easily be noted that if $n \leq 2 k-1$ then $\tilde{d}=1$.
The above example shows that even if $n>2 k-1, \tilde{d}$ can be equal to 1 . We may now ask ourselves the question: What is the maximum value of n such that there exists a matrix of diameter 1 in the class $25(\tilde{\mathrm{~K}}, \tilde{\mathrm{~K}})$. We shall see that this problem is a particular case of the following more general problem.

Let $A=\left\{a_{i j}\right\}$ be an $m \times n$ matrix. The generararizedinner product of r columns, say $C_{j_{1}}, C_{j_{2}}, \ldots, C_{j_{r}}$ is defined as $\sum_{i=1} \prod_{k=1} a_{i j_{k}}$. An integer n is said to have the property $P(k, r, t)$ if there exists a matrix A in the class (\tilde{K}, \tilde{K}) such that the generalized inner product of any r columns of A is at least t. Obviously if n is too large compared to k, r and t it will not have the property $P(k, r, t)$. What then is the maximum value of the integer n which has the property $P(k, r, t)$? We shall denote this maximum by $M(k, r, t)$.

$$
\text { THEOREM 1. } \mathrm{M}(\mathrm{k}, \mathrm{r}, \mathrm{t}) \leq \frac{\mathrm{k}(\mathrm{k}-\mathrm{r}+1)}{\mathrm{t}}+\mathrm{r}-1
$$

Proof. The above problem is equivalent to asking for the maximum value of n such that there exists a matrix in the class $2 \delta(\tilde{K}, \tilde{K})$ in which the partial row sum vector of every set of r columns has at least t r's. Let A be a matrix in $\int_{w}(\tilde{K}, \tilde{K})$ which has this property. Consider the first r-1 columns of A. Suppose that the row sum vector of the submatrix constituted by these $r-1$ columns has p r-1's. Each of these p rows will have $k-r+1$ 1's in the r th, $(r+1)$ th, ..., nth columns. And each of the $r t h,(r+1) t h, \ldots, n t h$ columns will have at least $t 1^{\prime} s$ in these p rows. We therefore have

$$
\begin{equation*}
\mathrm{p}(\mathrm{k}-\mathrm{r}+1) \geq(\mathrm{n}-\mathrm{r}+1) \mathrm{t} \tag{2}
\end{equation*}
$$

as $k \geq p$, it follows from (2) that

$$
k(k-r+1) \geq(n-r+1) t
$$

or

$$
\mathrm{n} \leq \frac{\mathrm{k}(\mathrm{k}-\mathrm{r}+1)}{\mathrm{t}}+\mathrm{r}-1
$$

This completes the proof of the theorem.
We have in particular proved that $M(k, 2, \lambda) \leq \frac{k(k-1)}{\lambda}+1$. But the incidence matrix of a $(\mathrm{v}, \mathrm{k}, \lambda)$-design, if it exists, will have the property $P(k, 2, \lambda)$ and will have $\frac{k(k-1)}{\lambda}+1$ columns and will imply $M(k, 2, \lambda)=\frac{k(k-1)}{\lambda}+1$. On the other hand if there is a matrix with property $P(k, 2, \lambda)$ and having as many as $\frac{k(k-1)}{\lambda}+1$ columns then it is easy to observe that it will have to be incidence matrix of a BIB design. This establishes that

$$
M(k, 2, \lambda)=\frac{k(k-1)}{\dot{\lambda}}+1
$$

if and only if there exists a (v, k, λ)-design (k and λ being the fixed quantities).

THEOREM 2.

Proof. With each matrix in the class $2(\tilde{K}, \tilde{K})$ we can associate a graph in the following way. We have a vertex corresponding to each column and two vertices are joined if and only if the corresponding columns have a 1 in the same row. The diameter of a matrix is the same as the diameter of the graph thus associated with it. In the class of graphs corresponding to different matrices in $2 \sqrt{(\widetilde{K}, \tilde{K})}$, the degree of any vertex is at most $k^{2}-1$. It can be verified that no such graph can have diameter less than the left hand side of (3). This proves the result.

REFERENCE

1. H.J. Ryser, Combinatorial properties of matrices of zeros and ones. Canadian Journal of Mathematics, 9 (1957) 371-377.

University of Waterloo
Waterloo, Ontario

[^0]: *This work was done while the author was at the University of Alberta, Edmonton.

