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Higher Connectedness Properties of
Support Points and Functionals of
Convex Sets
Carlo Alberto De Bernardi

Abstract. We prove that the set of all support points of a nonempty closed convex bounded set C
in a real infinite-dimensional Banach space X is AR(σ-compact) and contractible. Under suitable
conditions, similar results are proved also for the set of all support functionals of C and for the domain,
the graph, and the range of the subdifferential map of a proper convex lower semicontinuous function
on X.

Introduction

Let C be a nonempty closed convex set in a real Banach space X, with continuous
dual X∗. If x ∈ C and x∗ ∈ X∗ \ {0} are such that x∗(x) = sup x∗(C), we say that x is
a support point of C and x∗ is a support functional of C . Let supp(C) and Σ(C) denote
respectively the set of all support points of C and the set of all support functionals of
C . Moreover we denote by Supp(C) the set{

(x, x∗) ∈ supp(C)× Σ(C); x∗(x) = sup x∗(C)
}
.

By using a parametric smooth variational principle, L. Veselý [15] proved that
if C is nonempty closed convex and does not contain any hyperplane, then the set
supp(C) is pathwise connected (this was proved for bounded sets in [4]). In [10, 11],
G. Luna published some results about higher connectedness properties of the set of
all support points of a convex closed set in a Banach space. In particular, he stated
that if C is a nonempty closed convex boundedly w-compact (that is, the intersection
of C with any closed ball is w-compact) set in X, not containing any closed affine
subset of finite codimension, then every continuous map defined on the unit sphere
of Rn and with values in supp(C) can be extended to a continuous map with values
in supp(C) and defined on the unit ball of Rn. However, the proof of this result is not
correct; in fact, if we put

C =
{

(xn)n ∈ l2 ; 0 ≤ x1 ≤ 1, |xn| ≤ 1/n (n > 1)
}
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and a = 0, it is easy to see that [10, Lemma 3] is false. After some preliminaries,
contained in Section 1, we prove in Section 2 the result of Luna, cited above, but
without the strong assumption that C is boundedly w-compact. In the case C is
bounded, C = −C and X is infinite-dimensional, we obtain that supp(C) is AR (cf.
Theorem 2.9 and Definition 2.1). Moreover, under the hypothesis that the space X
admits an equivalent Fréchet differentiable norm, we prove similar results for the sets
Supp(C) and Σ(C). Similar results are also proved for the domain, the graph, and the
range of the subdifferential map of a proper convex lower semicontinuous function
on X (cf. Proposition 2.6).

Suppose that C is a nonempty closed convex bounded subset of X and let Y be
a finite-codimensional w∗-closed subspace of X∗. E. Bishop and R. R. Phelps [2]
proved that Y ∩Σ(C) is dense in Y ; this is an easy consequence of the famous Bishop–
Phelps theorem. In Section 3, we obtain some results in this direction. In particular,
under the hypothesis that X admits an equivalent Fréchet differentiable norm, we
study cardinality and connectedness properties of the intersection of the set Σ(C)
with a continuous finite-codimensional surface of X∗ (see Definition 3.4).

The main tools used in this paper are the application of the parametric smooth
variational principle to the study of support properties for convex sets and functions
in Banach spaces, introduced by L. Veselý in [15], the Leray-Schauder continuation
principle, and the Michael selection theorem.

1 Notation and Preliminaries

Throughout the paper, X denotes a real Banach space with the dual X∗. We denote
by BX and SX the closed unit ball and the unit sphere of X, respectively. We denote
by R+ the interval (0,∞). For x, y ∈ X, [x, y] denotes the closed segment in X with
endpoints x and y, and (x, y) = [x, y] \ {x, y} is the corresponding “open” segment.
We denote by w and w∗ the weak-topology and the weak∗-topology, respectively.
Moreover, we denote by BCC(X) the set of all nonempty bounded closed convex
subsets of X. If A is a subset of X, we denote by dim(A) the dimension of the affine
hull of A.

Let C be a nonempty closed convex set in X, suppose that the sets supp(C), Σ(C)
and Supp(C) are defined as in the introduction, and put Σ1(C) = Σ(C) ∩ SX∗ .

Let h : X → (−∞,∞] be a proper convex lower semicontinuous (l.s.c.) function.
We denote by dom(h) the domain of h, that is, the set {x ∈ X; h(x) < ∞}. Let us
recall that the sets

D(∂h) = {x ∈ dom(h); ∂h(x) 6= ∅}, R(∂h) =
⋃
{∂h(x) : x ∈ dom(h)},

G(∂h) = {(x, x∗) ∈ X × X∗ : x∗ ∈ ∂h(x)}

are called, respectively, the effective domain, the range and the graph of the sub-
differential mapping ∂h. The Fenchel conjugate of h is the proper convex w∗-l.s.c.
function h∗ : X∗ → (−∞,∞], given by h∗(y∗) = sup(y∗ − h)(X). We say that h is
supercoercive if

lim
‖x‖→∞

f (x)

‖x‖
=∞
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and that h is cofinite if h∗ is finite (and hence continuous) on X∗. It is easy to see that
the following implications hold:

dom(h) is bounded =⇒ h is supercoercive =⇒ h is cofinite.

Let T be a topological space . A multifunction F : T → 2X is called:

(i) upper semicontinuous (u.s.c.) if F−1(D) := {t ∈ T; F(t) ∩ D 6= ∅} is closed
whenever D is a closed subset of X;

(ii) lower semicontinuous (l.s.c.) if F−1(U ) is open whenever U is an open subset
of X.

If T is a Hausdorff paracompact topological space and F : T → 2X is a l.s.c. mul-
tifunction with nonempty closed convex values, then the Michael selection theorem
[12] ensures that F admits a continuous selection, that is, a continuous function
f : T → X such that f (t) ∈ F(t), for each t ∈ T.

As L. Vesely has pointed out in a private communication (2008), [15, Proposi-
tion 2.2] still holds if T is a Hausdorff paracompact space. To see this, we just have
to use the following lemma instead of [15, Lemma 1.2], in the proofs of [15, Theo-
rem 1.3] and [15, Proposition 2.2].

Lemma 1.1 Let T0 be a closed set in a Hausdorff paracompact topological space T, X
a Banach space, D ⊂ X a nonempty convex set, and f : T×X → (−∞,∞] a function.
Suppose that

(i) for each t ∈ T, the function f (t, · ) is convex and lower semicontinuous with
dom( f (t, · )) = D;

(ii) for each x ∈ D, the function f ( · , x) is continuous on T.

Let ε : T → R+ be a continuous function and g : T → R a l.s.c. function such that
g(t) ≥ inf f (t,D) > −∞ for each t ∈ T. Let ϕ : T0 → D be a continuous function
such that f (t, ϕ(t)) ≤ g(t) + ε(t) whenever t ∈ T0. Then ϕ admits a continuous
extension ϕ̃ : T → D such that f (t, ϕ̃(t)) ≤ g(t) + ε(t) for each t ∈ T.

Proof Define F : T → 2X by F(t) = {x ∈ X; f (t, x) ≤ g(t)+ε(t)}. We claim that F is
l.s.c. In fact, fix t0 ∈ T, x0 ∈ F(t0) and η > 0. If f (t0, x0) < g(t0) + ε(t0), put z0 = x0.
If else, there exists x1 ∈ x0 + ηBX such that f (t0, x1) < g(t0) + ε(t0) (observe that
g(t) ≥ inf f (t,D) > −∞ whenever t ∈ T); in this case put z0 = x1. In both cases,
z0 ∈ x0 + ηBX and f (t0, z0) < g(t0) + ε(t0). Now, the function f ( · , z0)− g( · )− ε( · )
is upper semicontinuous by our assumptions; moreover, f (t0, z0)−g(t0)−ε(t0) < 0.
Then there exists a neighborhood U of t0 such that f (t, z0)− g(t)− ε(t) < 0 for each
t ∈ U. This proves our claim.

For t ∈ T \ T0 define F̃(t) = F(t) and for t0 ∈ T0 define F̃(t0) = {ϕ(t0)} ⊂ F(t0).
Since T0 is closed, F̃ : T → 2X is l.s.c. too. Moreover, F̃ assumes nonempty convex
closed values. By the Michael selection theorem, we can find a continuous selection
ϕ̃ : T → D of F̃. Obviously, ϕ̃ satisfies the conclusion of the lemma.

The following proposition is an easy modification of [15, Proposition 2.2].

Proposition 1.2 Let T be a paracompact Hausdorff topological space and T0 a closed
subset of T. Let X be a Banach space, h : X → (−∞,∞] a proper l.s.c. convex function
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and ε : T → R+ a continuous function. Suppose that ϕ : T0 → X and ϕ∗ : T → X∗

are continuous mappings such that (ϕ(t0), ϕ∗(t0)) ∈ G(∂h) whenever t0 ∈ T0. If h is
cofinite, then there exists a continuous function y0 : T → dom(h) such that y0|T0 = ϕ,
and

(1.1)
[

h− ϕ∗(t)
](

y0(t)
)
≤ inf

[
h− ϕ∗(t)

](
dom(h)

)
+ ε(t)

for each t ∈ T.
Moreover, for each such y0 and each continuous function λ : T → R+, there exist

v : T → dom(h) and v∗ : T → X∗ such that

(i) v|T0 = ϕ and v∗|T0 = ϕ∗|T0 ;
(ii) v∗(t) ∈ ∂h(v(t)) for each t ∈ T;
(iii) ‖v(t)− y0(t)‖ < λ(t) and ‖v∗(t)− ϕ∗(t)‖ ≤ 6ε(t)

λ(t) for each t ∈ T;
(iv) v is continuous;
(v) if X is Fréchet smooth, then v∗ is continuous;
(vi) if X is Gâteaux smooth, then v∗ is w∗-continuous.

Proof Put D = dom(h) and f (t, x) = [h−ϕ∗(t)](x). Consider the function g(t) :=
inf f (t,D) = inf f (t,X) = −h∗(ϕ∗(t)), where h∗ is the Fenchel conjugate of h.
Suppose that h is cofinite, then g is continuous. Moreover, for t0 ∈ T0, we have
f (t0, ϕ(t0)) = [h − ϕ∗(t0)](ϕ(t0)) = g(t0). Then we can proceed as in the proof of
[15, Proposition 2.2].

Denote by IC the indicator function of a nonempty closed convex set C in X.
Let (x, x∗) ∈ C × X∗, then it is not difficult to see that x∗ ∈ ∂IC (x) if and only if
x∗x = sup x∗(C). If we put h = IC in the proposition above, we obtain the following
corollary.

Corollary 1.3 Let T, T0, and ε be as in the proposition above, let C be a nonempty
closed convex subset of X, and suppose that ϕ : T0 → C, ϕ∗ : T → X∗ are continuous
mappings such that ϕ∗(t0)ϕ(t0) = supC ϕ

∗(t0), whenever t0 ∈ T0. Suppose that C is
bounded, then there exists a continuous function y0 : T → C such that y0|T0 = ϕ and

ϕ∗(t)y0(t) ≥ sup
C
ϕ∗(t)− ε(t)

for each t ∈ T.
Moreover, for each such y0 and each continuous function λ : T → R+, there exist

v : T → C and v∗ : T → X∗ such that

(i) v|T0 = ϕ and v∗|T0 = ϕ∗|T0 ;
(ii) v∗(t)v(t) = supC v∗(t) for each t ∈ T;
(iii) ‖v(t)− y0(t)‖ < λ(t) and ‖v∗(t)− ϕ∗(t)‖ ≤ 6ε(t)

λ(t) for each t ∈ T;
(iv) v is continuous;
(v) if X is Fréchet smooth, then v∗ is continuous;
(vi) if X is Gâteaux smooth, then v∗ is weak∗-continuous.

In the sequel, we will use the following well-known result about extensions of
continuous functions several times.
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Theorem 1.4 (Dugundji Extension Theorem [5]) Suppose that T0 is a closed sub-
set of a metric space T. Suppose that V is a locally convex linear topological space.
Then every continuous function f : T0 → V admits a continuous extension F : T →
conv f (T0).

Lemma 1.5 Suppose that T0 is a closed subset of a metric space T. Suppose that X
is infinite-dimensional. If f : T0 → X \ {0} is a continuous function, then there exists

f̃ : T → X \ {0} a continuous extension of f .

Proof Let g : T0 → R+ and h : T0 → SX be the continuous functions defined by
g(t0) = ‖ f (t0)‖ and h(t0) = f (t0)/‖ f (t0)‖, for t0 ∈ T0. Let us extend g to a con-
tinuous function g̃ : T → R+. By the Dugundji extension theorem and by [5, Theo-
rem 6.2], h admits a continuous extension h̃ : T → SX . The function f̃ , defined by
f̃ (t) = g̃(t)h̃(t) (t ∈ T), is continuous and extends f .

Lemma 1.6 Let C be a nonempty closed convex subset of X, let x ∈ X\C and S ⊂ SX∗ .
Suppose that, for each x∗ ∈ S,

sup x∗(C) ≤ inf x∗
(

x + 1
2 dist(x,C)BX

)
.

Then y∗ ∈ conv(S) implies ‖y∗‖ ≥ 1
2 .

Proof Let us suppose that y∗ =
∑n

i=i aix∗i , where x∗i ∈ S, ai ≥ 0, for i = 1, . . . , n,
and

∑n
i=i ai = 1. Fix α > 0 and choose any y ∈ C such that ‖y−x‖ ≤ dist(x,C)+α.

Put w = y − x, we have

x∗i w ≤ inf x∗i
(

x + 1
2 dist(x,C)BX

)
− x∗i x = − 1

2 dist(x,C) (i = 1, . . . , n).

Then

y∗
( −w

‖w‖

)
≥ 1

2

dist(x,C)

dist(x,C) + α
,

and the proof is complete, as α > 0 can be chosen arbitrarily small.

Lemma 1.7 Let C be a nonempty closed convex subset of X.

(i) The multifunction F : X \C → 2X , defined by

F(x) = [x +
3

2
dist(x,C)BX] ∩C,

is l.s.c. and assumes nonempty convex closed values;
(ii) The multifunction F∗ : X \C → 2X∗ , defined by

F∗(x) = {x∗ ∈ BX∗ ; sup x∗(C) ≤ inf x∗
(

x + 1
2 dist(x,C)BX

)
},

is l.s.c. and assumes nonempty convex closed values. Moreover, the multifunction
G∗ : X \C → 2X∗ , defined by G∗(x) = conv (F∗(x) ∩ SX∗), is l.s.c. too, and, for
each x ∈ X \C, we have dist

(
0,G∗(x)

)
≥ 1/2.
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Proof (i) Fix x ∈ X\C and an open subset V of X such that there exists k ∈ F(x)∩V .
By the definition of F, ‖x − k‖ ≤ 3

2 dist(x,C); moreover, we can choose k ′ ∈ C
such that ‖x − k ′‖ < 3

2 dist(x,C). Then there exists k ′ ′ ∈ [k, k ′] ∩ V such that
‖x − k ′ ′‖ < 3

2 dist(x,C). Now, by the continuity of the function dist( · ,C), there
exists W , an open neighborhood of x, such that k ′ ′ ∈ F(y), for each y ∈W .

(ii) Let us observe that, for x ∈ X \C ,

F∗(x) = {x∗ ∈ BX∗ ; sup x∗(C)− inf x∗
(

x + 1
2 dist(x,C)BX

)
≤ 0}.

Then, for each x ∈ X \ C , F∗(x) is the intersection between BX∗ and a nonempty
convex closed cone. Let us prove that F∗ is l.s.c.. Suppose x ∈ X \ C and x∗ ∈
F∗(x) ∩V , where V is an open subset of X∗. By the Hahn–Banach theorem, we can
choose y∗ ∈ BX∗ such that sup y∗(C) < inf y∗

(
x+ 1

2 dist(x,C)BX

)
. Then there exists

z∗ ∈ [x∗, y∗] ∩V such that

(1.2) sup z∗(C) < inf z∗
(

x + 1
2 dist(x,C)BX

)
.

Moreover, if x ′ ∈ X \C and ‖x− x ′‖ is small enough, (1.2) still holds if x is replaced
by x ′, that is, z∗ ∈ F∗(x ′) ∩V . This proves that F∗ is l.s.c.

The lower semicontinuity of the multifunction G∗ follows easily by the lower
semicontinuity of F∗. Now, suppose x∗ ∈ conv

(
F∗(x) ∩ SX∗

)
, by Lemma 1.6,

‖x∗‖ ≥ 1/2. Then

dist
(

0,G∗(x)
)

= dist
(

0, conv[F∗(x) ∩ SX∗]
)
≥ 1/2.

Fact 1.8 Let K be a compact convex set contained in a closed convex subset C of X.
Suppose that 0 ∈ K and that int C = ∅. Then 0 is not in the interior of the closed
convex set C − K.

Proof Suppose that BX ⊂ m(C − K) for some m ∈ N. By the compactness of K,
we have mK ⊂

⋃n
i=1(xi + 1

2 BX) for some x1, . . . , xn ∈ mK. Since K ⊂ C and hence
0 ∈ (mC − xi) (i = 1, . . . , n), we get

BX ⊂
n⋃

i=1
(mC − xi) + 1

2 BX ⊂ (mC − x1) + · · · + (mC − xn) + 1
2 BX.

Then BX ⊂ [nmC − (x1 + · · · + xn)] + 1
2 BX , and since C is closed and convex, 1

2 BX ⊂
[nmC − (x1 + · · · + xn)], which is a contradiction, since int C = ∅.

Lemma 1.9 Let T0 be a closed σ-compact subset of a metric space T. Suppose that
C is a nonempty closed convex subset of X and that int C = ∅. Then each continuous
function f : T0 → C admits a continuous extension Φ : T → X such that Φ(T \ T0) ⊂
X \C.

Proof Without any loss of generality we can suppose that 0 ∈ C . By the Dugundji
extension theorem, we can extend f to a continuous function F̃ : T → conv[ f (T0)].
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Since there exists a sequence (Kn)n of compact subsets of T such that T0 =
⋃

n∈N Kn,
we have

F̃(T) ⊂ conv
[ ⋃

n∈N
f (Kn)

]
⊂
⋃

n∈N
An,

where, for n ∈ N, An is the compact convex set conv [
⋃n

i=1 f (Ki) ∪ {0}].
We claim that X 6=

⋃
n,m∈N m(C − An). Suppose this is not the case. By the

Baire theorem, for some n,m ∈ N, there exists w ∈ int[m(C − An)]. Since m ′(C −
An ′) ⊃ m(C − An), if m ′ ≥ m and n ′ ≥ n, and

⋃
n,m∈N m(C − An) = X, we

can suppose, without any loss of generality, that −w ∈ m(C − An) and hence that
0 ∈ int[m(C − An)]. By Fact 1.8, we get a contradiction, and the claim is proved.

Now, fix x0 ∈ X\
⋃

n,m∈N m(C−An) and take a continuous function λ : T → [0, 1]
such that λ(t) = 0 if and only if t ∈ T0. For each t ∈ T, put

F(t) = λ(t)x0 +
[

1− λ(t)
]

F̃(t).

Then F is a continuous extension of f ; moreover, F(T \ T0) ⊂ X \ C . In fact, fix
t ∈ T \ T0, put λ = λ(t), a = F̃(t) ∈ An, for some n ∈ N, and suppose that
λx0 + (1− λ)a = c ∈ C . Then

x0 = 1
λ [c − (1− λ)a] ∈ 1

λ (C − An) ⊂ m(C − An),

for some m ∈ N. This is a contradiction, by the choice of x0.

Remark 1.10 Let T0 be a closed subset of a metric space T. Suppose that C is
a closed convex subset of X and that int(C − C) = ∅. Then we get the same
conclusion as Lemma 1.9. In fact, in this case, by the Baire theorem, we can find
x0 ∈ X \

⋃
n∈N n(C −C), and we can proceed as in the last part of the proof of

Lemma 1.9.

2 Connectedness Properties of supp(C), Supp(C), Σ(C) and D(∂h),
R(∂h), G(∂h)

Definition 2.1 Let S be a metric space and n ∈ N ∪ {0}. If every continuous
function f : SRn+1 → S admits a continuous extension F : BRn+1 → S, then we say that
S is n-connected.

Let P be a class of metric spaces. We say that S is an Absolute Retract for the class
P (AR(P)) if, for each T ∈ P and for each closed subset T0 of T, every continuous
function f : T0 → S admits a continuous extension F : T → S. In the case where P is
the class of all metric spaces, we say that S is an Absolute Retract (AR).

Suppose that C is a nonempty closed convex subset of X; let us denote Π(C) =
{x∗ ∈ X∗; sup x∗(C) < ∞} and Sn = SRn+1 . Proposition 2.3 is an easy modification
of the following well-known result (see, for instance, [6, Chapter XVI]).

Fact 2.2 Let m > n. Then any continuous map from Sn to Sm can be continuously
extended to BRn+1 .
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Proposition 2.3 Let C be a nonempty closed convex subset of X.

(i) Suppose that C does not contain any closed affine subset of codimension (n + 1).
Then Π(C)\{0} is n-connected; that is, each continuous map f : Sn → Π(C)\{0}
admits a continuous extension F : BRn+1 → Π(C) \ {0}. Moreover, if

sup
t∈Sn

sup
C

f (t) <∞,

then it is possible to choose F in such a way that supt∈BRn+1
supC F(t) <∞.

(ii) Suppose that C does not contain any closed affine subset of codimension (n + 1)
(respectively, of finite codimension). Then ∂C is n-connected (respectively, ∂C is
AR).

Before starting the proof of Proposition 2.3, we recall some elementary facts and
definitions about spherical simplexes and homotopy (see e.g., [6, Chapter XVI]). Let
E be a normed finite dimensional linear space and let {p0, . . . , pn} be any set of
(n + 1)-points on SE. If this set has diameter < 1, then its convex hull does not
contain the origin of E, and it can be radially projected from there into SE to give
σ = (p0, . . . , pn), the spherical n-simplex with vertices {p0 . . . , pn}. We say that σ
is degenerate if and only if its vertices lie on a 1-codimensional subspace of E. For
k < n and {q0, . . . , qk} ⊂ {p0, . . . , pn} we say that the spherical k-simplex σ ′ =
(q0, . . . , qk) is a k-face of σ.

By a triangulation T of Sn we mean a decomposition of Sn into finitely many non-
degenerate non-overlapping spherical n-simplexes such that each (n − 1)-face of an
n-simplex of T is the common (n − 1)-face of exactly two n-simplexes. By the com-
pactness of Sn we have the following fact.

Fact 2.4 Let (S, d) be a metric space and f : Sn → S a continuous map. Then there
exists a triangulation T of Sn such that diam f (σ) < 1 whenever σ ∈ T.

Let Y and Z be two topological spaces and I = [0, 1] the unit interval. Two
continuous maps f , g : Z → Y are called homotopic (in Y ) if there exists a continuous
map Φ : Z × I → Y such that Φ(z, 0) = f (z) and Φ(z, 1) = g(z) for each z ∈ Z
(written: f

Φ∼g or f ∼ g). If f : Z → Y is homotopic to a constant function, we say
that f is null-homotopic ( f ∼ 0).

Remark 2.5 (a) If f
Φ∼ g and g

Ψ∼ h, then f
∆∼ h, where ∆ = Ψ ◦ Φ is defined by

∆(z, t) =

{
Φ(z, 2t) 0 ≤ t ≤ 1/2;

Ψ(z, 2t − 1) 1/2 ≤ t ≤ 1.

(b) Let f : Sn → Y then, if f
Φ∼ 0, the formula Φ(z, t) = F([1 − t]z) defines

a continuous extension F : BRn+1 → Y of f . Vice versa, if f admits a continuous
extension F : BRn+1 → Y , the same formula shows that f is null-homotopic.

Proof of Proposition 2.3 (i) By the compactness of Sn and by the continuity of f ,
we can assume that inf ‖ f (Sn)‖ ≥ 1. By Fact 2.4 there exists a triangulation T of Sn
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such that diam
(

f (σ)
)
< 1 whenever σ ∈ T. Suppose t ∈ σ = (p0, . . . , pn) ∈ T,

then there exists a unique choice of λi ≥ 0 (i = 0, . . . , n) such that

n∑
i=0

λi = 1 and t =
( n∑

i=0

λi pi

)
/
∥∥∥ n∑

i=0

λi pi

∥∥∥ .
Since T is a triangulation of Sn and since diam

(
f (σ)

)
< 1 whenever σ ∈ T, the

map ϕ : Sn → X∗, defined by ϕ(t) =
∑n

i=0 λi f (pi) (t ∈ σ = (p0, . . . , pn) ∈ T),
is well defined, continuous, and assumes values in Π(C) \ {0} (remember that we
assumed inf ‖ f (Sn)‖ ≥ 1). Moreover, since diam

(
f (σ)

)
< 1, we can continuously

deform f in ϕ (in Π(C) \ {0}) using the homotopy defined by

h1(λ, t) = λϕ(t) + (1− λ) f (t) (λ, t) ∈ [0, 1]× Sn.

We claim that ϕ is homotopic to a constant function in Π(C) \ {0}. Without
any loss of generality we can suppose that 0 ∈ C and hence that dim(X/LC ) >
n + 1, where LC denotes the maximal closed subspace contained in C . Now, fix σ =
(p0, . . . , pn) ∈ T and observe that

dim
(

span(ϕ(σ))
)
≤ n + 1 < dim(X/LC ) = dim Π(C).

Then there exists x∗0 ∈ Π(C) \
⋃
σ∈T span(ϕ(σ)). For each (λ, t) ∈ [0, 1] × Sn, put

h2(λ, t) = λx∗0 + (1− λ)ϕ(t). Since ϕ(t) 6= 0 and x∗0 6∈ Rϕ(t) whenever t ∈ Sn, h2 is
well defined and deformsϕ in the constant function x∗0 continuously (in Π(C)\{0}).
By Remark 2.5, f

h2◦h1∼ 0, and we can continuously extend f to F : BRn+1 → Π(C)\{0}.
This proves our claim and concludes the first part of the proof.

Now, suppose that supt∈Sn supC f (t) < ∞. Looking at the first part of the proof,
we can observe that F(BRn+1 ) ⊂ conv( f (Sn) ∪ {x∗0}). In particular, this implies that
supt∈BRn+1

supC F(t) ≤ max{supt∈Sn supC f (t), supC x∗0} <∞.
(ii) Suppose that int C 6= ∅; otherwise the proof is trivial.
Suppose that C does not contain any closed affine subset of codimension (n + 1).

By [3, Theorem 1.3], either there exists a homeomorphism of ∂C onto a closed hy-
perplane of X or there exists a homeomorphism of ∂C onto the product of a closed
subspace of X by Sm, for some m > n. Then the thesis follows by Fact 2.2.

If C does not contain any closed affine subset of finite codimension, by [3, The-
orem 1.3], there exists a homeomorphism of ∂C onto a closed subspace of X, and
hence ∂C is AR.

The following two propositions follow easily from Proposition 1.2 and Corol-
lary 1.3.

Proposition 2.6 Let X be a Banach space and h : X → (−∞,∞] a proper l.s.c.
convex function.

(i) If h|dom(h) is continuous, D(∂h) is AR.

Moreover, if X admits an equivalent Fréchet smooth norm:

(ii) G(∂h) is AR;
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(iii) if h is cofinite, R(∂h) is AR.

Proof To prove (i), let S0 be a closed subset of a metric space S and suppose
ϕ : S0 → dom(∂h) is a continuous function. Let us extend ϕ to a continuous func-
tion y0 : S → convϕ(S0) and observe that conv(ϕ(S0)) ⊂ dom(h). Now, put
T = S \ S0 and fix x∗ ∈ X∗ such that inf(h − x∗)(X) > −∞; since h|dom(h) is
continuous, the function ε : T → (0,∞), defined by

ε(t) = (h− x∗)
(

y0(t)
)
− inf(h− x∗)(X) + 1,

is continuous, too. Hence, we can apply the second part of Proposition 1.2, with
T0 = ∅, ϕ∗ ≡ x∗ and with λ(t) = dist(t, S0) (t ∈ T), in order to obtain a continuous
function v : T → dom(∂h) such that ‖v(t) − y0(t)‖ < dist(t, S0). Now, we can
continuously extend v to S by defining v(s0) = y0(s0) = ϕ(s0), for each s0 ∈ S0.

To prove (iii), let S0 and S be as above and suppose that y∗ : S0 → R(∂h) is a
continuous function. Let us extend y∗ to a continuous function ϕ∗ : S → X∗. By
Proposition 1.2, with T = S \ S0, T0 = ∅, λ ≡ 6 and ε(t) = dist(t, S0) (t ∈ T), we
get a continuous function v∗ : T → R(∂h) such that ‖v∗(t)−ϕ∗(t)‖ ≤ dist(t, S0) for
each t ∈ T. As above, we can continuously extend v∗ to S by defining v∗(s0) = y∗(s0),
for each s0 ∈ S0.

To prove (ii), let g : X → (−∞,∞] be a proper l.s.c. convex function. Let T0 be a
closed subset of a metric space T. Let ϕ : T0 → X and y∗ : T0 → X∗ be continuous
mappings such that (ϕ(t0), y∗(t0)) ∈ G(∂g) whenever t0 ∈ T0.

Suppose that ‖ · ‖, the norm of X, is Fréchet smooth, then, by Šmulyan’s lemma,
we can consider the continuous map J : X → X∗ defined by

∂(‖ · ‖2/2)(x) = {x∗ ∈ X∗; x∗x = ‖x‖2 = ‖x∗‖2} = { J(x)}.

If we put h(x) = g(x) + ‖x‖2/2, for each x ∈ X, then dom(h) = dom(g) and,
by [14, Theorem 3.16], ∂h(x) = J(x) + ∂g(x), for each x ∈ dom(g). If we define
ϕ∗(t0) = y∗(t0)+ J(ϕ(t0)), for each t0 ∈ T0, then

(
ϕ(t0), ϕ∗(t0)

)
∈ G(∂h) whenever

t0 ∈ T0. Moreover, by the Dugundji extension theorem, we can assume that ϕ∗ is
continuous and defined on T with values in X∗.

Now, it is easy to see that h is supercoercive. Then we can put ε(t) = 1, for
each t ∈ T, and apply the first part of Proposition 1.2 to get y0 as in (1.1). Put
λ(t) = 1, for each t ∈ T. By the second part of Proposition 1.2, we obtain continuous
functions v : T → dom(h) and v∗ : T → X∗ such that v|T0 = ϕ, v∗|T0 = ϕ∗ and
v∗(t) ∈ ∂h(v(t)), for each t ∈ T. Put w∗(t) = v∗(t)− J(v(t)), for each t ∈ T. Then
w∗|T0 = y∗ and w∗(t) ∈ ∂g(v(t)), for each t ∈ T.

Proposition 2.7 Let C be a nonempty closed convex subset of X and suppose that X
admits an equivalent Fréchet smooth norm.

(i) If C is bounded and X is infinite-dimensional, then Supp(C) is AR.
(ii) If C does not contain any closed affine subset of codimension (n+1), then Supp(C)

is n-connected.
(iii) If C is bounded and X is infinite-dimensional, then Σ(C) is AR.
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Proof (i) Let T0 be a closed subset of a metric space T. Let f = (ϕ, θ∗), where
ϕ : T0 → supp(C) and θ∗ : T0 → X∗ \ {0} are continuous mappings such that
θ∗(t)ϕ(t) = supC θ

∗(t) whenever t ∈ T0. We just have to prove that f admits a
continuous extension on T with values in Supp(C).

Extend θ∗ to a continuous map ϕ∗ : T → X∗ \ {0} using Lemma 1.5. Applying
Corollary 1.3, with λ = 12 and ε = ‖ϕ∗(t)‖, for each t ∈ T, we get v : T → X and
v∗ : T → X∗ such that

(a) v|T0 = ϕ and v∗|T0 = θ∗;
(b) v∗(t)v(t) = supC v∗(t) for each t ∈ T;
(c) ‖ϕ∗(t)− v∗(t)‖ ≤ ‖ϕ∗(t)‖/2 (and then v∗(t) 6= 0) whenever t ∈ T;
(d) v and v∗ are continuous.

Now, put F = (v, v∗). By (a), F extends f ; by (b) and (c), F(t) ∈ Supp(C) when-
ever t ∈ T; (d) concludes the proof.

(ii) Let T0 := Sn ⊂ BRn+1 =: T and f = (ϕ, θ∗), where ϕ and θ∗ are defined
as in the proof of (i). Using the Dugundji extension theorem, we can extend ϕ to a
continuous map y0 : T → conv

(
ϕ(T0)

)
. Since the map t 7→ θ∗(t)ϕ(t) = supC θ

∗(t)
(t ∈ T0) is continuous, by the compactness of T0, we have supt∈T0

supC θ
∗(t) < ∞;

hence, by Proposition 2.3(i), we can extend θ∗ to a continuous map ϕ∗ : T → Π(C)\
{0} such that supt∈T supC ϕ

∗(t) <∞.
By the compactness of T and by the continuity of the map t 7→ ϕ∗(t)y0(t), we get

inft∈T ϕ
∗(t)y0(t) > −∞. Hence there exists ε > 0 such that

ϕ∗(t)y0(t) ≥ sup
C
ϕ∗(t)− ε,

whenever t ∈ T. Now we just have to apply Corollary 1.3, with λ(t) = 12ε/‖ϕ∗(t)‖
(t ∈ T), and proceed as in the proof of (i).

(iii) Let S0 be a closed subset of a metric space S. Suppose f : S0 → Σ(C) is
a continuous function. By Lemma 1.5, we can extend f to a continuous function
ϕ∗ : S→ X∗ \{0}. Let us consider the metric space T = S\S0 and define ε : T → R+

by ε(t) = min{dist(t, S0), ‖ϕ∗(t)‖/2}, for each t ∈ T. We can apply Corollary 1.3,
with T0 = ∅ and λ ≡ 6 to obtain a continuous function v∗ : T → Σ(C) such that,
for each t ∈ T,

(2.1) ‖v∗(t)− ϕ∗(t)‖ ≤ dist(t, S0).

Now, by (2.1), we can continuously extend v∗ to S by defining v∗(s0) = f (s0), for
each s0 ∈ S0.

Now, we investigate connectedness properties of the set of all support points of a
convex closed set in X.

Lemma 2.8 Let S0 be a closed subset of a metric space S. Suppose that C is a closed
convex subset of X. Let f : S0 → supp(C) be a continuous function that admits a
continuous extension Φ : S → X such that Φ(S \ S0) ⊂ X \ C. Then f admits a
continuous extension v : S→ supp(C).
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Proof Suppose that the multifunctions F and G∗ are defined as in Lemma 1.7 and
put T = S\S0. By the Michael selection theorem, the continuity of Φ and Lemma 1.7,
we can find continuous selectionsϕ : T → C andϕ∗ : T → BX∗ of the multifunctions
T 3 t 7→ F(Φ(t)) and T 3 t 7→ G∗(Φ(t)), respectively. By the definition of F and G∗,
we have, for each t ∈ T:

‖ϕ∗(t)‖ ≥ 1/2 and ϕ∗(t)ϕ(t) ≥ sup
C
ϕ∗(t)− dist(Φ(t),C).

We are going to apply the second part of Corollary 1.3, with ε(t) = dist(Φ(t),C)
and λ(t) = 24ε(t) (t ∈ T). In this way, we obtain mappings v : T → C and v∗ : T →
X∗ such that

(a) v is continuous;
(b) ‖v(t)− ϕ(t)‖ < 24ε(t), for each t ∈ T;
(c) ‖v∗(t)− ϕ∗(t)‖ ≤ 1/4, for each t ∈ T, and then ‖v∗(t)‖ ≥ 1/4, for each t ∈ T;
(d) v∗(t)v(t) = supC v∗(t), for each t ∈ T, and then v(t) ∈ supp(C), for each t ∈ T.

To conclude the proof, we just have to observe that the continuous function v : T →
supp(C) can be continuously extended to S, by putting v(s0) = f (s0), for each
s0 ∈ S0.

The following theorem is the main result of this section.

Theorem 2.9 Suppose that C is a nonempty closed convex subset of X.

(i) If C does not contain any closed affine subset of codimension (n + 1), then supp(C)
is n-connected.

(ii) If C does not contain any closed affine subset of finite codimension, then supp(C)
is AR(σ-compact) and contractible.

(iii) If int(C−C) = ∅, then supp(C) is AR. In particular, if C has a central symmetry
(i.e., there exists x0 ∈ C such that x0 −C = C − x0) and C does not contain any
closed affine subset of finite codimension, then supp(C) is AR.

Proof (i) If int C 6= ∅, the thesis holds by Proposition 2.3(ii) and by the fact that,
in this case, supp(C) = ∂C . Suppose that int C = ∅ and let f : Sn → supp(C) be a
continuous function. By Lemma 1.9, f admits a continuous extension Φ : BRn+1 → X
such that Φ(BRn+1 \ Sn) ⊂ X \C . The thesis holds, by Lemma 2.8.

(ii) The proof that supp(C) is AR(σ-compact) is the same as in (i). Let us prove
that supp(C) is contractible, that is, Idsupp(C), the identity map on supp(C), is homo-
topic null in supp(C).

If supp(C) = C , the proof is trivial, since in this case supp(C) is a convex set. So,
without any loss of generality, we can suppose that 0 ∈ C \supp(C). Put C̃ = C + BX .
We claim that µC̃ , the Minkowski functional of the closed convex set C̃ , is positive on
the set supp(C). If this is not the case, there exists x ∈ supp(C) such that the half-line
R+x is contained in C̃ . Then, for each n ∈ N, there exists cn ∈ C such that

2 ≥ ‖nx − cn‖ = n
2‖2x − 2

n cn‖.

Since C is closed and convex, if we let n → ∞, we obtain 2x ∈ C . But x is a support
point of C and 0 ∈ C \ supp(C), so we get a contradiction and our claim is proved.
Then 0 < µC̃ (s) < 1 for each s ∈ supp(C).
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Put f (s) = s
µC̃ (s) for each s ∈ supp(C) and consider the continuous map

θ0 : supp(C)× [0, 1] −→ X,

defined by θ0(s, λ) = (1− λ)s + λ f (s). It is easy to see that

(a) θ0( · , 0) = Idsupp(C);
(b) θ0(s, λ) 6∈ C if λ ∈ (0, 1] and s ∈ supp(C);
(c) θ0(s, 1) = f (s) ∈ ∂C̃ for each s ∈ supp(C).

It is easy to see that, since C does not contain any closed affine subset of finite
codimension, C̃ does not contain any closed affine subset of finite codimension ei-
ther. Then, by Proposition 2.3(ii), there exists x0 ∈ ∂C̃ and a continuous map
θ1 : supp(C)× [0, 1]→ ∂C̃ such that

(a) θ1( · , 0) = f ;
(b) θ1(s, λ) ∈ ∂C̃ if λ ∈ [0, 1] and s ∈ supp(C);
(c) θ0(s, 1) = x0 for each s ∈ supp(C).

Now, by the Bishop–Phelps theorem (see e.g., [14, Proposition 3.20]), there exists
s0 ∈ supp(C) such that [s0, x0] ∩ C = {s0}. Let us define the continuous map
θ2 : supp(C) × [0, 1] → X, defined by θ2(s, λ) = (1 − λ)x0 + λs0, and let us define
Φ = θ2 ◦ (θ1 ◦ θ0), the product of the homotopies described above. Then

(a) Φ( · , 0) = Idsupp(C);
(b) Φ(s, λ) 6∈ C if λ ∈ (0, 1) and s ∈ supp(C);
(c) Φ(s, 1) = s0 ∈ supp(C) for each s ∈ supp(C).

To conclude the proof, we can apply Lemma 2.8 with S = supp(C) × [0, 1] and
S0 = (supp(C)× {0}) ∪ (supp(C)× {1}).

(iii) The proof of the first part is similar to the proof of (i). We just have to use
Remark 1.10 instead of Lemma 1.9. The proof of the second part follows by the sec-
ond part of Proposition 2.3 and by the obvious fact that, if C has a central symmetry,
int(C) = ∅ if and only if int(C −C) = ∅.

Definition 2.10 (cf. [9, Definition 1.1, § 6]) Let V and W be topological spaces. A
map f : V →W is called compact if f (V ) is contained in a compact subset of W .

Corollary 2.11 Let C ∈ BCC(X). Suppose that X is infinite-dimensional and that
we are in one of the following cases:

(i) W = supp(C);
(ii) W = Supp(C) and X is Fréchet smooth;
(iii) W = Σ(C) and X is Fréchet smooth.

Then every continuous compact map f : W →W has a fixed point.

Proof We just prove (i), as the proofs of (ii) and (iii) are similar. Let K be a compact
subset of supp(C) such that f (supp(C)) ⊂ K. Since K is a compact subset of C ,
by the first part of Theorem 2.9(ii), we can extend IdK , the identity map on K, to a
continuous function j : C → supp(C). Now, f ◦ j : C → C is a compact map and
hence, by [9, Theorem 3.2, § 6], f ◦ j has a fixed point x0 ∈ f ◦ j(C) ⊂ K. Then
j(x0) = x0 is a fixed point for f .
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Remark 2.12 (a) In the case X admits an equivalent norm that is Gâteaux smooth,
similar results to those stated in Proposition 2.6(ii), (iii), and (iv), and in Proposi-
tion 2.7 can be obtained in the w∗-topology, using Proposition 1.2(vi), and Corol-
lary 1.3(vi). For example, the following results hold.

Suppose that T0 is a closed subset of a metric space T, that C ∈ BCC(X), that X
is infinite-dimensional, and that is Gâteaux smooth. Then every ‖ · ‖-continu-
ous map ϕ∗ : T0 → Σ(C) admits an extension v∗ : T → Σ(C) that is w∗-conti-
nuous on T.
Let C be a nonempty closed convex subset of a Gâteaux smooth Banach space
X. If C does not contain any closed affine subset of codimension (n + 1),
then every ‖ · ‖ × ‖ · ‖-continuous map ϕ : Sn → Supp(C) admits an exten-
sion Φ : BRn → Supp(C) that is ‖ · ‖ × w∗-continuous.

(b) All the results presented in this section are stated in the setting of metric spaces.
Some of these results (more precisely, Proposition 2.6(ii), and Proposition 2.7(i)) can
be easily straightened in the more general setting of Hausdorff paracompact spaces.
In fact, we can use [1, Corollary 7.5] instead of the Dugundji extension theorem,
in the proof of Proposition 2.6(ii). Moreover we can observe that Lemma 1.5 still
holds in the case where T is paracompact. However, not all the results presented in
Section 2 can be generalized, in this way, to the setting of Hausdorff paracompact
spaces. In fact, in the proof of Proposition 2.6(i) and (iii), Proposition 2.7(iii), Theo-
rem 2.9, and Lemma 1.9, we use the following fact. If T0 is a closed subset of a metric
space T, then T\T0 is a metric (and hence a Hausdorff paracompact) space and there
exists a continuous function ε : T → [0,∞) such that ε−1(0) = T0. In general, this
is not true if T is just a paracompact space. Moreover, in the proof of Lemma 1.9, we
cannot use [1, Corollary 7.5] instead of the Dugundji extension theorem.

3 Finite-dimensional and Finite-codimensional Subspaces

Definition 3.1 Let W be a subspace of X and K ∈ BCC(X). Let us denote

suppW (K) = {x ∈ K; y∗(x) = sup y∗(K) for some y∗ ∈ SX∗ ∩W⊥}.

Let q : X → X/W be the quotient map and denote K̂ = q(K). Then K̂ is a
bounded convex set in X/W . Suppose that y∗ ∈W⊥ = (X/W )∗, then we have

sup y∗(K̂) = sup y∗(K + W ) = sup y∗(K).

The above observation easily implies the following corollary.

Corollary 3.2 In the above notations, if we suppose that K̂ is closed in X/W , we get

K̂ ∈ BCC(X/W ), suppW (K) = q−1
(

supp(K̂)
)
∩ K, Σ(K) ∩W⊥ = Σ(K̂).

Proposition 3.3 Let V,W be closed subspaces of X. Suppose that V is finite-codimen-
sional in X , W ⊂ V and V/W has at least dimension two. For each K ∈ BCC(X) such
that V ∩ K 6= ∅, we have:
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(i) supp(K) ∩V is pathwise connected;
(ii) if W is finite-dimensional (respectively, W is reflexive), supp W (K)∩V is connected

(respectively, supp W (K) ∩V is connected in the w-topology);
(iii) if X is a dual space, W,K are closed in the w∗-topology, then supp W (K) ∩ V is

connected in the w∗-topology;
(iv) if W is reflexive, then Σ1(K) ∩ W⊥ is uncountably dense in SX∗ ∩ W⊥ and

Σ(K) ∩W⊥ is connected in the w∗-topology. Moreover, if X admits an equivalent
Fréchet (respectively, Gâteaux) smooth norm, Σ(K) ∩W⊥ is pathwise connected
(respectively, pathwise connected in the w∗-topology).

Proof (i) By [2, Lemma 4], supp(K)∩V = supp (K ∩V ), where the last set denotes
the support points of K ∩V in the Banach space V . Apply [4, Theorem 3.3].

(ii) First of all, observe that, if W is reflexive, then K̂ = q(K) is a closed set in
X/W . Indeed, if x̂ ∈ q(K), we have

0 = dist
(

x̂, q(K)
)

= dist
(

K, q−1(x̂)
)
.

Since q−1(x̂) is a boundedly w-compact affine set in X, there exists x ∈ q−1(x̂) ∩ K,
which means that x̂ ∈ q(K).

Now, suppose that W is finite dimensional (respectively, W is reflexive), and con-
sider the multifunction F : K̂ → BCC(X), given by F(x̂) = q−1(x̂) ∩ K. We claim
that F is u.s.c. (respectively w-u.s.c.). If this is not the case, there exist a closed (re-
spectively, a w-closed) set D ⊂ X and a sequence {x̂n} ⊂ K̂ such that x̂n → x̂ ∈ K̂,
F(x̂n) ∩ D 6= ∅, and F(x̂) ∩ D = ∅. Since q−1 admits a continuous selection by the
Bartle–Graves theorem [8, Corollary 7.56], there exist xn ∈ q−1(x̂n) and wn ∈ W
such that xn → x ∈ q−1(x̂) and xn + wn ∈ K ∩ D for each n ∈ N. Observe
that the sequence {wn} is bounded and contained in W . Thus we can suppose
that wn → w ∈ W (respectively, wn → w ∈ W in the w-topology). Now, since
K ∩ D 3 xn + wn → x + w, x + w ∈ q−1(x̂) ∩ D ∩ K = F(x̂) ∩ D. This contradiction
proves our claim.

Let x0, x1 ∈ suppW (K) ∩ V . Then the points x̂i = q(xi) (i = 0, 1) belong to
supp (K̂) ∩ q(V ). Let us observe that q(V ) is a closed finite-codimensional subspace
of X/W . By (i), there exists a continuous mapping γ : [0, 1] → supp (K̂) ∩ q(V )
such that γ(i) = x̂i (i = 0, 1). By Corollary 3.2, by our claim and since W ⊂ V ,
F◦γ is an u.s.c. (respectively, a w-u.s.c.) multifunction with nonempty convex closed
values contained in suppW (K) ∩ V . It follows (e.g., by [13, Lemma 6]) that the
image (F ◦ γ)([0, 1]) is connected (respectively, is connected in the w-topology), is
contained in suppW (K) ∩ V and contains x0, x1. This completes the proof, since
x0, x1 are arbitrary points of suppW (K) ∩V .

For the proof of (iii), we just observe that, since W is w∗-closed, the quotient map
q : X → X/W is w∗-w∗-continuous and K̂ = q(K) is w∗-compact. In particular, K̂ is
closed, and we can then proceed as in the proof of (ii).

(iv) The first part follows immediately from Corollary 3.2, [4, Theorem 3.4], and
the following claim.

Claim Let C be a nonempty bounded closed convex subset of a real, at least two
dimensional, Banach space X. Then Supp(C) ⊂ (X, ‖ · ‖) × (X∗,w∗) is connected
and hence Σ(C) is connected in the w∗-topology.
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Proof of the claim We just have to prove that if (xi , x∗i ) ∈ Supp(C) (i = 0, 1), then
there exists a ‖ · ‖ × w∗-connected set Γ ⊂ Supp(C) joining (x0, x∗0 ) and (x1, x∗1 ).
Without any loss of generality, we can suppose that x∗0 6= −x∗1 . Putϕ∗(t) = (1−t)x∗0 +
tx∗1 , for each t ∈ [0, 1]. Let ε > 0 be such that the w∗-compact set B = [x∗0 , x

∗
1 ]+εBX∗

does not contain the origin of X∗. Apply Corollary 1.3, with T0 = {0, 1} ⊂ T =
[0, 1] and λ = 6, to get v : [0, 1]→ C and v∗ : [0, 1]→ X∗ such that

(a)
(

v(i), v∗(i)
)

= (xi , x∗i ) (i = 0, 1);
(b) v∗(t)v(t) = supC v∗(t) for each t ∈ T;
(c) ‖v∗(t)− ϕ∗(t)‖ ≤ ε for each t ∈ [0, 1];
(d) v is continuous.

It is not difficult to see (cf. the proof of [15, Lemma 2.5]) that the map ϑ : [0, 1] →
2(X,‖ · ‖)×(X∗,w∗), defined by

ϑ(t) = {v(t)} ×
[

B ∩ ∂IC

(
v(t)
)]
,

is u.s.c. and assumes nonempty connected values. It follows (e.g., by [13, Lemma
6]) that the set Γ =

⋃
t∈[0,1] ϑ(t) ⊂ Supp(C) is connected in (X, ‖ · ‖) × (X∗,w∗).

Moreover, (xi , x∗i ) ∈ Γ (i = 0, 1), and the proof of the claim is complete.

The latter part follows from Corollary 3.2, [15, Theorem 3.2(c)] and the fact that
since W is reflexive, X/W admits an equivalent Fréchet smooth norm (respectively,
from Corollary 3.2, Remark 2.12(a), and the fact that, since W is reflexive, X/W
admits an equivalent Gâteaux smooth norm).

Proposition 3.3(iv), says, in particular, that, if H is a finite-codimensional w∗-clo-
sed subspace of the topological dual X∗ of an infinite dimensional Banach space X
and K ∈ BCC(X), then Σ1(K) is uncountably dense in H. It seems to be not com-
pletely clear if it is possible, in general, to omit the assumption H is w∗-closed. How-
ever, this can be done if X admits an equivalent Fréchet smooth norm (cf. the propo-
sition below).

Definition 3.4 Let X be a Banach space and n ∈ N, suppose that X = H ⊕V and
that V is n-dimensional. Let Θ : H → V be a continuous function. Then we say that

L =
{(

h,Θ(h)
)
∈ H ⊕V ; h ∈ H

}
is a continuous n-codimensional surface of X.

The following lemma is a particular case of the Leray-Schauder continuation prin-
ciple (see, e.g., [9, Theorem 6.5, § 12]).

Lemma 3.5 Let V be a finite-dimensional normed space and let f : BV × [0, 1]→ V
be a continuous function such that

(i) f (v, µ) 6= 0, for each (v, µ) ∈ SV × (0, 1);
(ii) f (v, 0) = v, for each v ∈ BV ;
(iii) f (v, 1) = 0 if and only if v = 0.

Then there exists a continuum S ⊂ f−1(0) joining (0, 0) and (0, 1).
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Proposition 3.6 Let X be an infinite-dimensional Banach space that admits an equiv-
alent Fréchet smooth norm, L a continuous n-codimensional surface of X∗, and C ∈
BCC(X). Then

(i) Σ(C) ∩ L is dense in L;
(ii) Σ(C) ∩ L is connected and locally connected.

Proof Let X∗ = H ⊕V and let us denote by PH and PV the linear bounded projec-
tions onto H and V , respectively. Suppose that V is n-dimensional and that L is a con-
tinuous n-codimensional surface of X∗ defined by a continuous function Θ : H → V .

If x0 = (h0, v0) = (h0,Θ(h0)) ∈ L and α, β > 0, define

W (x0, α, β) =
{

(h, v) ∈ H ⊕V ; ‖h− h0‖ < α, ‖v − v0‖ < β
}
.

We have the following claim.

Claim Put W = W (x0, α, β). Suppose that β ≤ 1/2, that ‖h − h0‖ < α implies
‖Θ(h) − v0‖ < β, that 0 6∈ W , and fix x1 = (h1, v1) = (h1,Θ(h1)) ∈ L ∩W . Then
there exists a connected set Γ ⊂ L ∩W such that xi ∈ Γ (i = 0, 1) and such that
Γ \ {x0, x1} ⊂ Σ(C).

Proof of the claim. Let us define a continuous functionϕ∗ : (2BV )×[0, 1]→ H⊕V
by ϕ∗(v, µ) = ((1 − µ)h0 + µh1, (1 − µ)v0 + µv1 + v). Fix any c ∈ C and let us
observe that, by the compactness of (2BV )× [0, 1] and by the continuity of the map
x∗ 7→ supC x∗, there exists ε > 0 such that

ϕ∗(t)c ≥ sup
C
ϕ∗(t)− ε

for each t ∈ T := (2BV )× (0, 1). Now we can apply the second part of Corollary 1.3,
with T0 = ∅, with ϕ ≡ c, and with λ : T → (0,∞) a continuous function such that,
for each t = (v, µ) ∈ T,

6ε/λ(t) < min{αµ(1− µ)/‖PH‖, 1/‖PV‖},

in order to obtain a continuous function v∗ : T → Σ(C) such that

‖v∗(t)− ϕ∗(t)‖ < min{αµ(1− µ)/‖PH‖, 1/‖PV‖}

for each t = (v, µ) ∈ T. Then it is not difficult to see that ‖PHv∗(t) − h0‖ <
α and hence that ‖Θ

(
PHv∗(t)

)
− v0‖ < β, for each t ∈ T. Define a function

f : (2BV )× [0, 1]→ V by f (v, µ) = PV v∗(v, µ)−Θ(PHv∗(v, µ)), for each µ ∈ (0, 1)
and v ∈ 2BV , and by f (v, µ) = v if µ ∈ {0, 1}, v ∈ 2BV . Since for i = 0, 1 and
v ∈ 2BV ,

f (v, i) = PVϕ
∗(v, i)−Θ

(
PHϕ

∗(v, i)
)
,

and since, for t = (v, µ) ∈ T, ‖v∗(t) − ϕ∗(t)‖ < αµ(1 − µ)/‖PH‖, f is continuous
on 2BV × [0, 1]. Moreover, for each (v, µ) ∈ (2SV )× (0, 1),

‖ f (v, µ)− v‖ ≤ ‖PV [v∗(v, µ)− ϕ∗(v, µ)]‖ + β + µβ < 2 = ‖v‖.

https://doi.org/10.4153/CJM-2012-048-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-048-8


Higher Connectedness Properties 1253

Hence, f (v, µ) 6= 0 for each (v, µ) ∈ (2SV ) × (0, 1). By Lemma 3.5, there exists
a continuum S ⊂ f−1(0) joining (0, 0) and (0, 1). Moreover, by our construction,
S \ {(0, 0), (0, 1)} ⊂ T. Then the set Γ = v∗(S \ {(0, 0), (0, 1)}) ∪ {x0, x1} satisfies
the conclusion of the claim.

The claim above immediately implies that Σ(C)∩L is dense in L and that Σ(C)∩L
is locally connected.

Let us prove that Σ(C) ∩ L is connected. If x0 = (h0, v0) ∈ Σ(C) ∩ L, put β0 =
1/2 min{1, ‖x0‖} and define:

α0 = 1/2 sup
{
α ∈ R+; [‖h− h0‖ < α⇒ ‖Θ(h)− v0‖ < β0], 0 6∈W (x0, α, β0)

}
.

Put Wx0 = W (x0, α0, β0). It is easy to see that {Wx0 ∩ L}x0∈Σ(C)∩L is an open cover of
L \ {0}.

Now, if we fix x0, x1 ∈ Σ(C)∩ L, since L \ {0} is connected, by [7, Problem 6.3.1],
there exist y1, . . . , yk ∈ Σ(C) ∩ L such that x0 ∈ W y1 ∩ L, x1 ∈ W yk ∩ L and, for
i, j ∈ {1, . . . , k}, W yi ∩W y j ∩ L 6= ∅ if and only if |i − j| ≤ 1. By our claim,⋃k

i=1 W yi ∩ Σ(C) ∩ L is a connected set containing x0 and x1.
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[8] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach space theory. The basis for

linear and nonlinear analysis. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC,
Springer, New York, 2011.

[9] A. Granas and J. Dugundji, Fixed point theory. Springer Monographs in Mathematics,
Springer-Verlag, New York, 2003.

[10] G. Luna, Connectedness properties of support points of convex sets. Rocky Mountain J. Math.
16(1986), no. 1, 147–151. http://dx.doi.org/10.1216/RMJ-1986-16-1-147

[11] , Local connectedness of support points. Rocky Mountain J. Math. 18(1988), no. 1, 179–184.
http://dx.doi.org/10.1216/RMJ-1988-18-1-179

[12] E. Michael, Continuous selections. I. Ann. of Math. (2) 63(1956), 361–382.
http://dx.doi.org/10.2307/1969615

[13] R. R. Phelps, Some topological properties of support points of convex sets. Proceedings of the
International Symposium on Partial Differential Equations and the Geometry of Normed Linear
Spaces (Jerusalem, 1972). Israel J. Math. 13(1972), 327–336. http://dx.doi.org/10.1007/BF02762808

https://doi.org/10.4153/CJM-2012-048-8 Published online by Cambridge University Press

http://dx.doi.org/10.1007/s11856-009-0037-6
http://dx.doi.org/10.1216/RMJ-1986-16-1-147
http://dx.doi.org/10.1216/RMJ-1988-18-1-179
http://dx.doi.org/10.2307/1969615
http://dx.doi.org/10.1007/BF02762808
https://doi.org/10.4153/CJM-2012-048-8


1254 C. A. De Bernardi

[14] , Convex functions, monotone operators and differentiability. Second ed., Lecture Notes in
Mathematics, 1364, Springer-Verlag, Berlin, 1993.
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