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Olivier Debarre

O. Benoist pointed out several errors and inaccuracies in the article [Deb05].

(1) Proposition 5 is wrong as stated and should read as follows.

Proposition 5. The normal bundle of a smooth nondegenerate subvariety of an abelian variety
is nef and big.

The converse is obviously wrong (consider any smooth curve C in a simple abelian variety A
of dimension at least 2; if B is any nonzero abelian variety, the normal bundle of C in A×B is
nef and big, although C is degenerate). The error occurs in the last paragraph of the proof: the
tangent spaces to X along a general fiber of π|X are indeed contained in a fixed hyperplane, but
this hyperplane is not general, so we cannot conclude that the fiber is finite.

As a result, the second implication of Proposition 6 is unproven. That proposition should
read as follows.

Proposition 6. Let X be a smooth subvariety of an abelian variety A. If ΩX is ample, NX/A

is nef and big.

(2) Lemma 12 is wrong as stated: if Y is an integral surface with isolated singularities in
Pn which is not Cohen–Macaulay at some point p, the local ring OY,p has depth 1. If F is any
hypersurface in Pn which passes through p but does not contain Y , the local ring OY ∩F,p has
depth 0, hence is not reduced: the intersection Y ∩ F has an embedded point at p. Therefore,
the variety Ve(Y ) has codimension 1 in Ve,n for any e> 1.

O. Benoist proved in [Ben11, Théorème 1.5] that this is essentially the only case when things
go wrong, and that Lemma 12 holds when Y is for example normal. To correct the proofs of
Theorems 7–9 of [Deb05], which all rely on this lemma, we need a slightly modified version
of Benoist’s theorem which follows easily from [Ben11, Théorème 1.4].

Lemma 12 (O. Benoist). Let Y be an integral subscheme of Pn of dimension at least 2, let
ν : Ŷ → Y be its normalization, and let Ve,n be the projective space of hypersurfaces of degree e
in Pn. The codimension of the complement Ve(Y ) of

{F ∈ Ve,n | ν∗F is integral of codimension 1 in Ŷ }

in Ve,n is at least e− 1.
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O. Debarre

The proofs of Theorems 7–9 of [Deb05] can then be easily adapted. For example, in the proof
of Theorem 7, just replace diagram (4) with the following.

H0(H, Lec|H) //

��

H1(A, OA)

ρ
��

H0(ν∗H, ν∗Lec) // H1(Ŷ , O
Ŷ

)
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