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Grassmannian twists
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Abstract

We introduce a new class of autoequivalences that act on the derived categories
of certain vector bundles over Grassmannians. These autoequivalences arise from
Grassmannian flops: they generalize Seidel–Thomas spherical twists, which can be seen
as arising from standard flops. We first give a simple algebraic construction, which
is well suited to explicit computations. We then give a geometric construction using
spherical functors which we prove is equivalent.

1. Introduction

Derived equivalences corresponding to flops were first explored by Bondal and Orlov [BO95].
They exhibited an equivalence of bounded derived categories of coherent sheaves corresponding
to the standard flop of a projective space Pd−1 in a smooth algebraic variety with normal bundle
N ' O(−1)⊕d (see [BO95, Theorem 3.6]). More generally, it is conjectured [Kaw02,
Conjecture 5.1] that for any flop between smooth projective varieties there exists a derived
equivalence. This follows for 3-folds by work of Bridgeland [Bri02], but is still an open question
in higher dimensions.

Examples of flops, including the standard flop, may be obtained by variation of GIT, and in
this case there is a particular approach to constructing derived equivalences. Suppose X+ and
X− are a pair of varieties related by a flop, and that both are possible GIT quotients of a larger
space M by the action of a group G. Then X+ and X− are open substacks of the Artin stack
X = [M/G], and there are restriction functors from Db(X) to both Db(X+) and Db(X−). So one
way to construct an equivalence between Db(X+) and Db(X−) is to find a subcategory inside
Db(X) which is equivalent to both of them. We call such a subcategory a ‘window’.

This technique was inspired by the physical analysis carried out by Herbst, Hori and Page
in [HHP08], and was introduced into the mathematics literature by the second author in [Seg11].
Both of these papers were concerned with Landau–Ginzburg models, where the derived category
is modified by a superpotential; however, the technique is still interesting when applied to
ordinary derived categories.

In this paper we study a particular class of examples, which are local models of ‘Grassmannian
flops’. For us, X+ is the total space of the vector bundle

Hom(V, S) −→ Gr(r, V )

where S is the tautological subspace bundle on the Grassmannian Gr(r, V ) of r-dimensional
subspaces of a vector space V , where 0 < r < dimV . This can be flopped to a second space X−,
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Window shifts and Grassmannian twists

which is the total space of a vector bundle over the dual Grassmannian Gr(V, r). (When V
is two-dimensional, and r = 1, this is the standard Atiyah flop.) This flop arises from a GIT
problem, and we show that it is possible to find a window. In fact we find a whole set of windows,
indexed by Z, and hence show the following theorem.

Theorem A (Theorem 3.7). For k ∈ Z there exist equivalences

ψk : Db(X+)
∼−→ Db(X−).

The fact that there are many different choices of windows is not a surprise, as it was present
in the original analysis of Herbst, Hori and Page. It has an important consequence: if we combine
equivalences corresponding to different windows, we produce autoequivalences of Db(X+).

Definition (Definition 3.9). We define window-shift autoequivalences ωk,l by

ωk,l := ψ−1
k ψl : Db(X+)

∼−→ Db(X+).

Most of this paper is devoted to studying these autoequivalences, and in particular to proving
that they are equivalently described by a geometric construction discovered by the first author
in [Don11]. In the case of a standard 3-fold flop this geometric construction is well known:
the skyscraper sheaf along the flopping P1 is a spherical object, and we can get a derived
autoequivalence by performing a Seidel–Thomas spherical twist [ST01]. In the Grassmannian
examples, the construction gives something more complicated: we will explain that it is a twist
autoequivalence [Ann07] associated to a spherical functor which involves a push-down by a
resolution of singularities. Generically it acts as a family spherical twist [Hor05], but acts more
elaborately on a certain closed locus: in the case r = 2, this interesting locus is the zero section
Gr(2, V ) of the bundleX+ (see [Don11] for further discussion of this case). We prove the following
theorem relating window-shift autoequivalences to twists.

Theorem B (Theorem 3.12). There exists a natural isomorphism

ω0,1 ' TF
where TF is a twist of a spherical functor F : Db(Y+)→ Db(X+), defined in § 3.2.

The space Y+, which is the source of the spherical functor, is the exact analogue of X+ but
with the subspace dimension r replaced by r − 1. As such, we also have a set of window-shift
autoequivalences acting on Db(Y+). Moreover, the spherical functor F , as well as inducing a twist
autoequivalence on the target category Db(X+), also induces a cotwist autoequivalence on its
source category Db(Y+). This cotwist may also be related to a suitable window shift, as follows.

Theorem C (Theorem 3.13). There exists a natural isomorphism

ω
Y+
−1,0[σ] ' C−1

F

where CF is the cotwist of F , acting on Db(Y+), and σ is a suitable integer shift defined in § 3.2.

Hence we have an example of a spherical functor F where both twist and cotwist are non-
trivial autoequivalences (in the sense that they are not generated by shifts and twists by line
bundles). To our knowledge, this is the first example where such behaviour has been studied:
see [Add11] for a review.

Recent work of Halpern-Leistner [Hal12] and Ballard, Favero and Katzarkov [BFK12],
also using ideas from [HHP08, Seg11], develops a general theory of derived equivalences
corresponding to certain variations of GIT. These equivalences are controlled by the geometry
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of the Hesselink/Kirwan–Ness stratification on the respective unstable loci of the GIT quotients.
Our spherical functor F can readily be defined in terms of this geometry, so it is natural to
ask whether window-shift autoequivalences occurring in the framework of [BFK12, Hal12] can
also be related to twists of suitable spherical functors. Indeed [HS13] relates window shifts for
a variation of GIT quotient involving a single Hesselink stratum to family spherical twists. We
hope that more general theorems comparing window shifts and twists will be the subject of
future work.

Finally, we say a few words about the possible physical interpretation of our results. The
physics in [HHP08] concerns B-branes in gauged linear σ-models. The input data for such a model
consists of a vector space M with an action of a group G; then by standard prescriptions one can
build a supersymmetric gauge theory in two dimensions. The theory has a complex parameter
t, called the Fayet–Iliopoulos parameter, and in certain ‘large-radius’ limits this gauge theory
reduces to a non-linear σ-model with target space given by a GIT quotient M//G: different
quotients appear at different limits. The parameter t becomes identified, in the limit, with the
(complexified) Kähler class of the target space, so the space in which t lives is called the stringy
Kähler moduli space.

The B-branes in the theory form a category, which in the limit is the derived category of
M//G. Furthermore, when G ⊂ SL(M) this category is actually independent of t, so all the
GIT quotients are derived equivalent. However, to produce a derived equivalence one must vary
t from one large-radius limit point to a different one, and in between the description of the
B-branes as the derived category of a space breaks down. Herbst, Hori and Page instead study
the B-branes at a different kind of limit, the ‘Coloumb phase’ of the theory, and in doing so
discover ‘grade-restriction rules’, which we choose to call ‘windows’.

The Coulomb phase description arises when t is near certain singularities in the stringy
Kähler moduli space. Because of these singularities, when we move from one large-radius limit
to another there are many homotopy classes of paths that we can choose to move along, which
is why there are many different choices of windows with different corresponding equivalences.
In this picture, we see our autoequivalences as coming from monodromy of B-branes as t moves
along loops around the singularities.

Herbst, Hori and Page restrict to the case where G is a torus, whereas in our class of examples
we consider the non-abelian gauge group U(r). Gauged linear σ-models with non-abelian gauge
groups have certainly been studied [HT07], so we hope that our calculations of brane monodromy
in these theories will be of interest to some physicists.

The plan of this paper is as follows. Section 2 is intended to give a readable introduction
to our methods, without the morass of Schur functors that arises in the general case. We
describe the case of the standard flop in some detail, and provide some discussion of the simplest
Grassmannian example. In § 3 we give precise descriptions of all the algebraic and geometric
constructions, and give the proofs that they are equivalent. In the appendix we prove various
technical results that are required. In particular, we make extensive use of some long exact
sequences on Grassmannians, and since these are non-standard we give an explicit description
of them.

2. Examples and heuristics

Notation. When discussing derived categories, functors are derived unless stated otherwise. Curly
braces denote a complex of sheaves understood as an object of a derived category: an underline
records the position of the degree 0 term.
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Window shifts and Grassmannian twists

Figure 1. Notation for GIT quotients X±, viewed as substacks of the stack X.

2.1 Windows and window shifts
2.1.1 The standard 3-fold flop. We will start by considering the example of the standard

3-fold flop. We let V be a two-dimensional vector space over C, and we let C∗ act on V via the
vector space structure. This induces an action

C∗ y V ⊕ V ∨.
We consider the two possible GIT quotients under this action. For the first one we throw away
the subspace {0} ⊕ V ∨ and get a quotient

X+ = Tot(O(−1)⊕2
PV ).

For the second one we throw away V ⊕ {0} and get

X− = Tot(O(−1)⊕2
PV ∨).

So both X+ and X− are non-compact Calabi–Yau 3-folds, and they are birational (they also
happen to be isomorphic). It is well known [BO95, Theorem 3.6] that X+ and X− are also
derived equivalent.

A particular way of viewing this derived equivalence was introduced by the second author
in [Seg11], based on the work of Herbst et al. [HHP08]. What we do is view X+ and X− as open
substacks of the Artin stack

X = [V ⊕ V ∨/C∗]
and write iX+ and iX− for the respective inclusions, as illustrated in Figure 1.

On X we have a tautological line bundle O(1). We want to consider the subcategory

W0 := 〈O,O(1)〉 ⊂ Db(X)

which is by definition split-generated by the trivial and tautological line bundles. We call this
subcategory a window. Its significance is the following proposition.
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Proposition 2.1. Both functors

i∗X± :W0 −→ Db(X±)

are equivalences.

This proposition is easy to prove: it follows rapidly (see Proposition 3.6) from the statement
that the bundle O ⊕ O(1) is tilting on both X+ and X−. This is deduced from Beilinson’s
theorem [Bei78], which says that O and O(1) form a full strong exceptional collection on P1.
Hence we have a derived equivalence

ψ0 : Db(X+)
∼−→ Db(X−)

defined as the composition

Db(X+) W0 Db(X−).∼
(i∗X+

)−1

∼
i∗X−

We can calculate the effect of this equivalence quite explicitly. Take a sheaf (or complex)
E ∈ Db(X+). Resolve E by the bundles O and O(1); this determines an extension of E to an
object E ∈ W0 ⊂ Db(X). Now we can restrict E to get an object in Db(X−).

This gets more interesting when we notice that W0 is not the only window that we could
have chosen. Indeed, for any k ∈ Z we can define

Wk := 〈O(k),O(k + 1)〉 ⊂ Db(X)

and Proposition 2.1 will hold for Wk. So we have a whole set of derived equivalences {ψk},
according to which window we choose to pass through, and it turns out they are all distinct. If
we combine them, we can produce autoequivalences

ωk,l := ψ−1
k ψl : Db(X+)

∼−→ Db(X+).

We call these window-shift autoequivalences. Of course they are not independent, rather they
obey the following relations:

ωm,k ◦ ωk,l = ωm,l,

ωk+m,l+m = (⊗O(m)) ◦ ωk,l ◦ (⊗O(−m)).
(1)

Window shifts can be calculated explicitly, at least in principle. As an example, let us calculate
the effect of the window shift ω−1,0 on the two line bundles O and O(1). Applying the first
functor ψ0 is easy: these two bundles immediately lift to W0 so we have

ψ0(O) = O, ψ0(O(1)) = O(1),

in Db(X−). We are adopting a particular sign convention here: since C∗ is acting with weight −1
on V ∨, it seems reasonable to declare that on PV ∨ it is the O(−1) line bundle that has global
sections, not the O(1) line bundle. If we were not using this convention then we would have
ψ0(O(1)) = O(−1).

To apply the second functor ψ−1
−1 we have to resolve O(1) in terms of O(−1) and O, so that

we can move back through the window W−1. On X− we have an exact sequence given by

0 O(1)⊗ det(V ) O ⊗ V O(−1) 0 (2)

which is the pull-up of the Euler sequence on PV ∨. Consequently, after picking a basis for V we
have

ω−1,0(O) = O, ω−1,0(O(1)) = {O⊕2 −→ O(−1)}. (3)

It is straightforward, but more fiddly, to compute the effect of ω−1,0 on O(k) for other k.
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Figure 2. Windows used in calculation of window shift ω−1,0 for Grassmannian example d = 4,
r = 2.

2.1.2 Grassmannian flops. The strategy given in § 2.1.1 should lead to derived equivalences,
and autoequivalences, in many more examples. In this paper, we will only generalize in the
following way. Let V now be a vector space of arbitrary dimension d. Also, let S be another
vector space with dimension r, where r 6 d. We form the Artin stack

X(d,r) = [Hom(S, V )⊕Hom(V, S)/GL(S)].

We then have two possible GIT quotients given by open substacks X
(d,r)
± of X(d,r). It is

straightforward to establish (cf. [Tho05, Proposition 4.14]) that one quotient X
(d,r)
+ is the locus

where the map from S to V is full rank: it is the total space of a vector bundle over the
Grassmannian Gr(r, V ). Similarly X

(d,r)
− is the total space of a vector bundle over the dual

Grassmannian Gr(V, r). Note that setting d = 2 and r = 1 recovers the 3-fold flop. As before,
X

(d,r)
± are non-compact Calabi–Yau [Don13a, § 3.2].

To apply our strategy we first need to know a (full strong) exceptional collection on Gr(r, V ):
such a collection was discovered by Kapranov [Kap88]. It consists of particular Schur powers of
the tautological bundle S; for example, in the case d = 4, r = 2 the exceptional collection is

{O, S∨, Sym2 S∨,O(1), S∨(1),O(2)}
where O(1) = detS∨. Now we can define our windows: this same set of Schur powers determines
a set of bundles on the stack X(d,r), and we let

W0 ⊂ Db(X(d,r))

be the subcategory that they split-generate. To get the other windowsWk we tensor every bundle
in the collection by O(k). The analogue of Proposition 2.1 still holds (see Proposition 3.6), so
we get equivalences

ψk : Db(X
(d,r)
+ )

∼−→ Db(X
(d,r)
− )

by passing through each windowWk, and combining them we get window-shift autoequivalences

ωk,l := ψ−1
k ψl : Db(X

(d,r)
+ )

∼−→ Db(X
(d,r)
+ ).

With very little work, we have produced some novel derived autoequivalences. However, the
method is very algebraic, and it would be nice to have some geometric understanding of them.
This is a much harder question, which we will turn to in the next section.

Before we do that, let us present one more explicit calculation. Hopefully this will give the
reader some feel for the computations that are going to arise later on in the paper. Let us look at
the effect of the window shift ω−1,0, as we did before, but this time let us do it in the case d = 4,
r = 2. As before, let us make life easy by only looking at the effect of ω−1,0 on the generating
bundles for W0. Then we have immediately that

ψ0(O) = O, ψ0(S∨) = S∨, . . . , ψ0(O(2)) = O(2).
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As shown in Figure 2, the bundles O, S∨ and O(1) also lie in the generating set for the window
W−1, so applying ψ−1

−1 to them is easy, and we have

ω−1,0(O) = O, ω−1,0(S∨) = S∨, ω−1,0(O(1)) = O(1).

Obviously this is a general phenomenon: ωk,l fixes any bundles that lie in the generating sets for
both Wk and Wl.

Now let us calculate the effect of ω−1,0 on Sym2 S∨. To apply ψ−1
−1 we have to resolve Sym2 S∨

in terms of the window W−1. It turns out that there is an exact sequence on X
(4,2)
− given by

0 Sym2 S∨ ⊗ ∧4V S∨ ⊗ ∧3V O ⊗ ∧2V O(−1) 0 (4)

which is the pull-up from Gr(4, 2) of (a twist of) an Eagon–Northcott complex [EN62] (see
Example A.8). Hence, after picking a basis for V again, we have:

ω−1,0(Sym2 S∨) = {S∨⊕4 −→ O⊕6 −→ O(−1)}.

To calculate ω−1,0(S∨(1)) we use the exact sequence

0 S∨(1)⊗ ∧4V O(1)⊗ ∧3V O ⊗ V S∨(−1) 0 (5)

which is the pull-up from Gr(4, 2) of (a twist of) a Buchsbaum–Rim complex [BR64] (see
Example A.9). Then

ω−1,0(S∨(1)) = {O(1)⊕4 −→ O⊕4 −→ S∨(−1)}.

The calculation for ω−1,0(O(2)) requires a third sort of ‘generalized Koszul complex’: it is the
complex denoted C2 in [Eis94, Appendix A.2]. Pulling it up to X

(4,2)
− and twisting we get

0 O(2)⊗ ∧4V O(1)⊗ ∧2V S∨ ⊗ V Sym2 S∨(−1) 0 (6)

so
ω−1,0(O(2)) = {O(1)⊕6 −→ S∨⊕4 −→ Sym2 S∨(−1)}.

Evidently to do these calculations in general we would need to know a lot of exact sequences on
Grassmannians. In fact for r = 2 the complexes Ci in [Eis94] suffice, but for higher r we need
generalizations. We will return to this point later.

2.2 Spherical twists
Let us return to the example of the 3-fold flop. We have our 3-fold X+ = X

(2,1)
+ , and we may

consider the window-shift autoequivalence

ω0,1 : Db(X+) W1 Db(X−) W0 Db(X+).∼ ∼ ∼ ∼

Observe that the zero section PV inside X+ is precisely the locus that becomes unstable when
we pass to the other GIT quotient X−. Away from PV the two quotients are isomorphic, and the
equivalences ψk are just the identity, so the effect of the window shift is concentrated along PV .
It was argued (somewhat imprecisely) in [Seg11] that ω0,1 is in fact a Seidel–Thomas spherical
twist [ST01] around the spherical object

OPV ∈ Db(X+).
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This result was already folklore, at least in the physics literature. To define this spherical twist,
we consider PV as a correspondence:

PV

pt X+

jπ
(7)

Then we have a functor
F = j∗π

∗ : Db(pt) −→ Db(X+),

and its right adjoint
R = π∗j

! : Db(X+) −→ Db(pt).

The adjunction gives a natural transformation

j∗π
∗π∗j

! −→ id,

and the spherical twist
TF : Db(X+) −→ Db(X+)

is the cone on this natural transformation. It is immediate that

TF (E) = Cone(Hom(OPV , E)⊗OPV −→ E)

which is perhaps a more standard definition (but of course we are anticipating a generalization).

Proposition 2.2. The window shift ω0,1 and the spherical twist TF coincide.

This is a special case of our later Theorem 3.12, but we will sketch the proof here. Suppose
we wanted to compute the effect of the window shift ω0,1 on some object E ∈ Db(X+). Firstly,
we resolve E by the bundles in W1; then we can apply ψ1 and get an object ψ1E ∈ Db(X−).
Secondly, we need to rewrite ψ1E in terms of the other window W0; then we can apply ψ−1

0 and
bring it back to Db(X+). The key idea of the proof is to find an endofunctor

TF : Db(X) −→ Db(X)

on the stack X that carries out this second step of the window shift, i.e. it rewrites objects from
W1 in terms of W0. Then we need to know that on X+ the functor TF acts as the spherical
twist. Specifically, we want a functor that has the following three properties.

(i) The effect of TF is concentrated along the locus V ⊕ {0}, so it acts as the identity on
X−. More precisely, we want

i∗X−TF = i∗X− .

In fact it is enough that this equality holds on the subcategory W1.

(ii) TF maps the window W1 to the window W0.

(iii) When we restrict TF to X+ it acts as the spherical twist TF , i.e. the diagram

Db(X) Db(X)

Db(X+) Db(X+)

TF

i∗X+
i∗X+

TF
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commutes. Again, it is actually enough that the diagram commutes when we restrict to the
subcategory W1.

We call a functor with these properties a transfer functor, since it transfers between windows.
If we have a transfer functor TF , then the proof of Proposition 2.2 is an immediate formality.

Proof of Proposition 2.2. Using property (ii), we have a diagram

W1 W0

Db(X−)

Db(X+) Db(X+)

TF

i∗X+

∼

i∗X−
∼

i∗X+
∼

i∗X−
∼

TF

ψ1

∼
ψ0
∼

The left- and right-hand triangles commute by definition, and the top triangle and the outer
square both commute by properties (i) and (iii). Noting that the left-hand side of the outer
square is an isomorphism, we then see that the bottom triangle commutes. 2

It is not difficult to guess what the transfer functor TF is: it is the exact analogue of TF for
the stack X. We consider the correspondence

[V/C∗]

pt X

jπ (8)

then TF is the cone
Cone(j∗π

∗π∗j
! −→ id) : Db(X) −→ Db(X).

Now it is just a matter of checking properties (i)–(iii), but as this gets rather involved in the
general case it is probably worth saying a few words about it here.

(i) This property is obvious from the definition.

(ii) We need to calculate TF (O(1)) and TF (O(2)) and check that they both end up in W0.
Firstly, the relative canonical bundle Kj of j is O(−2), and its relative dimension is −2. So

j!(O(1)) = Kj ⊗ j∗(O(1))[dim j] = O(−1)[−2].

Hence π∗j
!(O(1)) = 0, but then TF (O(1)) = O(1), and this is indeed in W0.

The calculation of TF (O(2)) is a little more complicated. We have

j!(O(2)) = O[−2]

so π∗j
!(O(2)) = Opt[−2], and

j∗π
∗π∗j

!(O(2)) = OV [−2] ∈ Db(X).

We know from the adjunction that there is supposed to be a natural map

OV [−2] −→ O(2). (9)
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To see it explicitly, we need to use the Koszul resolution of OV given by

0 O(2) O(1)⊕2 O OV 0. (10)

When we take the cone on (9) the two copies of O(2) cancel out, and the result is quasi-isomorphic
to the complex

{O(1)⊕2 −→ O}.
This is in W0, as required.

(iii) This property is not surprising given that the definitions of TF and TF are so closely
related, but there is something to check. The issue is that calculating π∗ from the space PV can
give a different answer than if we calculate it from the stack [V/C∗], because on PV sheaves can
have higher cohomology. However, the two bundles O(−1) and O have no higher cohomology,
which means that the functors TF i

∗
X+

and i∗X+
TF give the same results when we restrict to the

window W1. They are not, however, the same on the whole of Db(X).

Remark 2.3. Unlike the twist TF on Db(X+), the transfer functor TF is not in general an
autoequivalence on the derived category Db(X) of the stack. This can be seen explicitly in
the case above: noting that π∗j

!(OV ) = C using the Koszul resolution (10) of OV , it follows that
TF (OV ) = 0, so that TF cannot be an autoequivalence.

2.3 Spherical cotwists
We now look for a geometric interpretation for the window-shift autoequivalence

ω−1,0 : Db(X+)
∼−→ Db(X+)

of the derived category of our 3-fold. We can then compare this with an algebraic interpretation
which we already have: by the relations (1), the autoequivalence ω−1,0 is inverse to ω0,1 up to
tensoring with O(1). The relevant geometrical functor is an example of an (inverse) spherical
cotwist, around a functor with source Db(X+). Note that, by contrast, the twist in § 2.2 was
around a functor with target Db(X+).

We need to use the natural map

X+ −→ Hom(V, V ) ' C4

which contracts the zero section and has a 3-fold ordinary double point Im(X+) as its image. To
maintain symmetry with § 2.2 (and the general case which we will meet later), we will write this
as a correspondence as follows:

X+

X+ Hom(V, V )

jid (11)

Then analogously we have a functor

F = j∗ : Db(X+) −→ Db(Hom(V, V )).

This time we will use its left adjoint, which is

L = j∗ : Db(Hom(V, V )) −→ Db(X+),

and form the cone
Cone(j∗j∗ −→ id) : Db(X+) −→ Db(X+).
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Proposition 2.4. The window shift ω−1,0 is equal to the shifted cone

Cone(j∗j∗ −→ id) [−2].

The proof of this proposition follows exactly the same structure as the proof of
Proposition 2.2, i.e. we find a transfer functor on Db(X) which restricts to the given functor on
Db(X+). However, describing this transfer functor would require us to go into more detail than
we wish to at this point, so for the moment we will just do a heuristic calculation (for the full
proof, see Theorem 3.13). What we will do is show that these two functors give the same answer
on the bundles O and O(1). These bundles generate all of Db(X+), so this is some evidence that
the functors are the same. We will also see some of the kinds of computation that will be needed
in the proof of the general case.

We have already calculated the effect of ω−1,0 on O and O(1): the answer is given in (3). So
we now calculate the functor [j∗j∗ → id] on these two bundles and compare. We have

j∗(O) = OIm(X+)

on Hom(V, V ). To apply j∗, we need to know that this has a free resolution

0 O O OIm(X+) 0. (12)

Taking the cone to the identity kills the copy of O corresponding to the middle term in (12), so

Cone(j∗j∗ −→ id) : O 7−→ O[2],

and hence the shifted cone agrees with the window shift on the bundle O. To do the calculation
for O(1), we observe that j∗(O(1)) is a sheaf supported on Im(X+), and it has a free resolution

0 O⊕2 O⊕2 j∗(O(1)) 0 (13)

so [j∗j∗ → id] maps O(1) to
{O⊕2 −→ O⊕2 −→ O(1)}

which is quasi-isomorphic to
{O⊕2 −→ O(−1)}[1],

using the analogue of the exact sequence (2) on X+. After shifting by [−2], this agrees with
ω−1,0.

Remark 2.5. The relations (1) imply that the cotwist of Proposition 2.4 is inverse to the twist of
§ 2.2 (up to a shift, and tensoring by a line bundle). This relation remains somewhat surprising
to us geometrically. In particular, it is immediate from the definition of the twist that it acts as
the identity on sheaves supported on the complement of the zero section PV of X+. The relation
then gives that the cotwist acts on such sheaves simply by a shift: this may also be verified from
the definition of the cotwist, but it is significantly less obvious. In the following section we will
remark on how this relation generalizes.

2.4 Grassmannian twists
2.4.1 Statement of results. Now let us turn to the general case (at least for us!), namely the

Grassmannian flop

X
(d,r)
+ X

(d,r)
− .
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We seek a geometric interpretation for our window-shift autoequivalences

ωk,l : Db(X
(d,r)
+ )

∼−→ Db(X
(d,r)
+ ).

As before, the effect of the window shift is concentrated on the flopping locus where the birational
map fails to be an isomorphism, i.e. the locus in X

(d,r)
+ that becomes unstable when we pass to

the other GIT quotient. In the 3-fold flop case X
(2,1)
+ this locus was just the zero section PV ,

but in a general X
(d,r)
+ it is much more complicated, and in particular is usually non-compact.

Nevertheless, the geometric constructions of §§ 2.2 and 2.3 can be generalized.
Consider the correspondences (7) and (11) that we used for X

(2,1)
+ . The key point to notice is

that Hom(V, V ) is actually X
(2,2)
+ , and that X

(2,0)
+ is a point! So in general we should be looking

for correspondences as follows:

. . . Z(d,r−1,r) Z(d,r,r+1) . . .

X
(d,r−1)
+ X

(d,r)
+ X

(d,r+1)
+

j π j π j π
(14)

The relevant correspondences for the r = 2 case were described by the first author in [Don13a]:
we describe the general case in § 3.1. Then we have functors

F = j∗π
∗ : Db(X

(d,r)
+ ) −→ Db(X

(d,r+1)
+ )

which have right and left adjoints R and L, and we form the twist functors

TF := Cone(FR −→ id) : Db(X
(d,r)
+ ) −→ Db(X

(d,r)
+ )

and inverse cotwist functors

C−1
F := Cone(LF −→ id)[−1] : Db(X

(d,r)
+ ) −→ Db(X

(d,r)
+ ).

We then prove (Theorems 3.12 and 3.13) that the twist functor TF is equal to the window shift
ω0,1, and the inverse cotwist functor C−1

F is equal to the window shift ω−1,0 (up to a shift in
homological degree).

In particular, the relations (1) then imply that the twist TF and the cotwist CF are inverse,
up to a shift and tensoring by a line bundle. See Corollary 3.14 for details, and also [Don13b,
Figure 1] for further discussion. Although we prove this result in an algebraic manner using
window shifts, the statement is geometric, and so it would be interesting to seek some purely
geometric explanation for it. We hope this will be the subject of future work.

2.4.2 Remarks on the proofs. The structure of our proofs remains the same as in the 3-fold
flop example: we find transfer functors on the stack X(d,r) that transfer between the relevant pairs
of windows, and restrict to TF and C−1

F on X
(d,r)
+ . To find these transfer functors, we embed the

correspondences Z(d,r,r+1) into correspondences of Artin stacks

Z(d,r,r+1)

X(d,r) X(d,r+1)

jπ

in the same way that the correspondence (7) sits inside the correspondence (8).
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When we discussed the 3-fold flop case in § 2.2, one of the ingredients that we needed in the
proof was the locally-free resolution (10) of the skyscraper sheaf OV on X. We hit a similar step
in our calculations in § 2.3: we needed the locally-free resolutions (12) and (13) of two sheaves
that lived on Im(j) ⊂ Hom(V, V ). In our proof of the general case we will need to generalize
these examples, i.e. we will need to produce explicit locally-free resolutions of various sheaves
that live on the unstable loci in X(d,r).

These locally-free resolutions are very closely related to the exact sequences of bundles on
Grassmannians that we mentioned at the end of § 2.1.2. For example, we already noted that
when we restrict the resolution (10) to X− we get the pull-up of the Euler sequence on PV ∨.
For another example, consider the exact sequence (4) on X

(4,2)
− . If we consider this as a complex

on X(4,2) then it is no longer exact, but we claim that it only fails to be exact at the last term,
so it gives a resolution of a sheaf. The last two terms are the twist by O(−1) of the map

∧2V (1) −→ O

and the cokernel of this map is the skyscraper sheaf along the unstable locus U = X(4,2)\X(4,2)
− .

So (4) arises from the locally-free resolution of OU (−1). The other two sequences (5) and (6) on
X(4,2) arise from locally-free resolutions of more complicated sheaves supported on U .

These locally-free resolutions/exact sequences on Grassmannians do not appear to be very
well known. They are present implicitly in the book of Weyman [Wey03], and most of the exact
sequences were described explicitly in [Fon13]. We describe them in excruciating detail in the
Appendix A.2, as applications of Theorem A.7.

Remark 2.6. To obtain the window equivalences corresponding to the Grassmannian flop, we
make crucial use of the fact that the generators of our window W0 restrict to X

(d,r)
+ to give a

tilting bundle, in Proposition 3.6. It would be desirable to extend our approach to settings where
a tilting bundle is not so easily available. For instance, replacing X

(d,r)
+ with the cotangent bundle

T∨Gr(r, V ), the analogue of this tilting result no longer holds, as explained in [Don13a, Remark
C.3]. Derived equivalences corresponding to the flop of T∨Gr have, however, been constructed
by other methods [CKL13]. It would be interesting to find a way to apply our approach to this
case, and compare the resulting functors with these established constructions.

3. Proofs

Notation. For a Young diagram δ we write δ = (δ1, . . . , δh) where the δ• are the (non-increasing
sequence of) row lengths of δ. Trailing zeros may be omitted. Given V a vector space of dimension
h, we write SδV for the associated Schur power [Wey03].

Let γ be a Young diagram of width less than or equal to w and height less than or equal to h,
so that we can draw γ inside a w×h rectangle. Take the complement of γ inside this rectangle and
rotate it by 180◦: this produces a new Young diagram which we denote by Comphw(γ). Figure 3
gives an example.

Remark 3.1. We will frequently use the following result from [Wey03, Exercise 2.18(a)]:

SγV ∨ ⊗ detV ⊗w = SComphw(γ)V.

3.1 Windows on Grassmannian flops
Let V be a vector space of dimension d, and S be another vector space of dimension r, where
0 < r 6 d. For simplicity, we will fix a trivialization of detV throughout.
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Figure 3. Young diagram γ = (3, 2) and its complement for h = 3, w = 4.

Our first space is the affine Artin stack

X = [Hom(S, V )⊕Hom(V, S)/GL(S)].

In § 2.1.2 we denoted this by X(d,r), but from now on we will drop the (d, r) from our notation.
There are two possible GIT quotients of this stack, which correspond to open substacks denoted
by

X± X.
iX±

Remark 3.2. One quotient X+ is the locus where the map from S to V is full rank: it is the total
space of the vector bundle Hom(V, S) over Gr(r, V ), where we reuse the notation S to denote
the tautological subspace bundle on the Grassmannian Gr(r, V ).

Dually, X− is the locus where the map from V to S is of full rank: it is the total space of
the vector bundle Hom(S, V ) over the dual Grassmannian Gr(V, r), where now S denotes the
tautological quotient bundle.

As anticipated in § 2.1, we will define some derived equivalences between X+ and X− using
‘windows’ in Db(X). To define these windows we need to recall Kapranov’s exceptional collection
for a Grassmannian [Kap88].

Let δ be a partition of some integer, which as usual we can draw as a Young diagram. Then
associated to δ we have a Schur power SδS∨ of S∨. This is a representation of GL(S) and so
induces a vector bundle on Gr(r, V ). Now we put the following definition.

Definition 3.3.

Γd,r := {Young diagrams γ with height 6 r and width 6 d− r}.

Kapranov’s exceptional collection for Gr(r, V ) (see [Kap88]) is the set

{SδS∨ δ ∈ Γd,r}.

We can also consider this as a set of vector bundles on Gr(V, r), on X±, or on X. These bundles
give us our zeroth window, i.e. we define W0 ⊂ Db(X) as the full subcategory split-generated by
this set of vector bundles. The other windows Wk are obtained by tensoring W0 by powers of
the tautological line bundle

O(1) := detS∨.

Definition 3.4. Wk is the full subcategory of Db(X) split-generated by the set

{SδS∨(k) δ ∈ Γd,r}.
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Figure 4. Young diagram δ ∈ Γ
(1)
d,r and its twist δ̃.

Now observe that if the width of δ is strictly less than d−r then we can create a new diagram
δ̃ ∈ Γd,r by adding on a new column of height r to δ (see Figure 4), and

SδS∨(k) = Sδ̃S∨(k − 1).

These are the bundles that lie in the generating set for bothWk and the neighbouring window
Wk−1. Since this observation will be useful for us later, we make the following definition.

Definition 3.5.

Γ
(1)
d,r = {δ ∈ Γd,r |width(δ) < d− r},

Γ
(2)
d,r = {δ ∈ Γd,r |width(δ) = d− r}.

We will also frequently switch between Schur powers of S∨ and of S. In terms of the latter,
Wk is generated by the set

{SγS(d− r + k) γ ∈ Γd,r}.
The following proposition is the crucial ingredient in constructing our window equivalences.

Proposition 3.6. For any k and 0 < r < d, both functors

i∗X± :Wk −→ Db(X±)

are equivalences.

Proof. By symmetry we only need the argument for i∗X+
. We observe that i∗X+

S∨ = π∗S∨ where
π is the projection X+ →Gr(r, V ). It immediately follows, because Schur powers commute with
pullbacks, that i∗X+

Wk = π∗T , where T is the Kapranov tilting bundle for Gr(r, V ) given by

T :=
⊕
δ∈Γd,r

SδS∨.

An extended exercise in Schur functors [Don13a, Appendix C] gives that π∗T is tilting on X+.
It then suffices to show that the natural restriction map of derived functors

RHomX(Wk,Wk) −→ RHomX+(i∗X+
Wk, i

∗
X+
Wk)

induces isomorphisms on cohomology. There is no higher cohomology on the left-hand side
because Wk is locally free and the stack X is affine, and none on the right-hand side by the
above tilting property. It therefore remains to show that the restriction map of ordinary Hom
functors

HomX(Wk,Wk) −→ HomX+(i∗X+
Wk, i

∗
X+
Wk)

is an isomorphism. Consider, then, the complement of X+ in X. This is the pull-up via the
projection π : X→ Hom(S, V ) of the locus in Hom(S, V ) consisting of maps of rank strictly less
than r = dimS. We then see from [BV88, Proposition 1.1(b)] that its codimension is d−r+1 > 2,
and hence the required isomorphism follows by normality. 2
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The next theorem immediately follows.

Theorem 3.7. For 0 < r < d there exists a window equivalence ψk defined by the composition

ψk : Db(X+) Wk Db(X−).∼
(i∗X+

)−1

∼
i∗X−

Remark 3.8. Theorem 3.7 is obtained in [BLvdB11, § 5] using a different method which works
in arbitrary characteristic.

Consequently, we have the following definition.

Definition 3.9. We define window-shift autoequivalences ωk,l by

ωk,l := ψ−1
k ψl : Db(X+)

∼−→ Db(X+).

3.2 The geometric construction
In [Don13a], the first author constructed an endofunctor of Db(X+) using more geometric
techniques, and proved that it was an autoequivalence when r 6 2. In this section we will
show that this endofunctor agrees with the window shift ω0,1, and hence that it is in fact an
autoequivalence for all r.

In addition to the vector spaces V and S, let H be a third vector space, of dimension r − 1.
Consider the affine Artin stack

Y = [Hom(H,V )⊕Hom(V,H)/GL(H)]

which is of course the same thing as X(d,r−1). It contains an open substack Y+ (=X
(d,r−1)
+ )

consisting of the locus where the map from H to V has full rank: this is the total space of a
vector bundle over Gr(r − 1, V ).

Now let
Z̄ = [Hom(S, V )⊕Hom(V,H)⊕Hom(H,S)/GL(H)×GL(S)].

There are obvious maps
Y π
←− Z̄ j−→ X

given by composing the relevant two linear maps in Z̄, and then forgetting the redundant
group action. This defines a correspondence between Y and X, however it is not exactly the
correspondence that we want; rather we will define

Z ⊂ Z̄
to be the substack where the map from H to S is an injection. This is the correspondence that
we want to consider.

There is an open substack Z ⊂ Z where the map from S to V is also required to be an
injection. We have a commutative diagram as follows:

Y Z X

Y+ Z X+

π j

iY+

π

iZ

j

iX+ (15)

Remark 3.10. The lower line of this diagram gives a correspondence between Y+ and X+. This
was introduced in [Don13a] (in that paper X0 denotes the space that we are calling Y+, and B̂
denotes the correspondence that we are calling Z), where it was used to construct endofunctors
of Db(X+) and Db(Y+) as we shall now explain. Note also that the correspondence is analogous
to the Hecke correspondences in [CKL13].
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Consider the functor
F := j∗π

∗ : Db(Y+) −→ Db(X+).

It has a right adjoint
R := π∗j

! : Db(X+) −→ Db(Y+)

where
j!(−) = j∗(−)⊗Kj [dim j].

It also has a left adjoint
L := π∗(j

∗(−)⊗Kπ)[dimπ].

Both X+ and Y+ are Calabi–Yau [Don13a, § 3.2], so Kπ = Kj , so we deduce that

R = L[−σ]

where
σ = dimπ − dim j = 2(d− r) + 1.

This means that F and R are biadjoint functors up to a shift. By applying standard Fourier–
Mukai techniques [Don13a, Appendix A] we may take cones on units and counits to give four
endofunctors.

Definition 3.11. (i) The twist functor TF : Db(X+) −→ Db(X+) is the cone

TF := Cone(FR −→ id).

It has a right adjoint
T †F := Cone(id −→ FR[σ]).

(ii) The cotwist functor CF : Db(Y+) −→ Db(Y+) is the cone

CF := Cone(id −→ RF ).

It has a right adjoint
C†F := Cone(RF [σ] −→ id)[−1].

General theory [AL10] says that TF is an equivalence if and only if CF is an equivalence,
given the fact that X+ and Y+ are Calabi–Yau.

For r 6 2 these functors were proven to be equivalences in [Don13a]: it is an immediate
corollary of the following theorem that in fact TF is an equivalence for all r < d.

Theorem 3.12. For r < d, the twist functor TF is naturally isomorphic to the window shift ω0,1.

Proof. This proceeds formally from Lemmas 3.15, 3.16 and 3.17, as in the proof of
Proposition 2.2. 2

Theorem 3.12 implies that CF is also an equivalence, and so C†F = C−1
F , at least for r < d.

However, we can say more: since Y+ = X
(d,r−1)
+ , we also have window-shift autoequivalences

ωYk,l : Db(Y+) −→ Db(Y+)

and we prove the following theorem.

Theorem 3.13. The shifted inverse cotwist functor C−1
F [−σ] is naturally isomorphic to the

window shift ωY−1,0.
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Proof. This follows from Lemmas 3.18, 3.19 and 3.20, once again using the method of proof in
Proposition 2.2. 2

Theorem 3.13 was proved in [Don13a] for the r 6 2 case.
We now temporarily reinstate the ds and rs into our notation, and state these theorems in

a slightly different way. We have a whole chain of correspondences, going between X
(d,r)
+ and

X
(d,r+1)
+ for every r (see diagram (14)). So for every d and r, we have both twist and cotwist

endofunctors

T
(d,r)
F and C

(d,r)
F : Db(X

(d,r)
+ )

∼−→ Db(X
(d,r)
+ ).

We also have our window-shift autoequivalences ω
(d,r)
k,l of Db(X

(d,r)
+ ), and our result is that

T
(d,r)
F = ω

(d,r)
0,1 ,

C
(d,r)
F [−σd,r] = ω

(d,r)
0,−1,

where σd,r = 2(d− r)− 1. This means these two functors are almost inverse to each other. More
precisely, the relations (1) between window shifts imply the following corollary.

Corollary 3.14.

(T
(d,r)
F )−1 = (⊗O(1)) ◦ C(d,r)

F [−σd,r] ◦ (⊗O(−1))

Notation. Finally, we introduce a little more notation. On Z there are two tautological line
bundles given by the determinants of S and H. To distinguish between them we put

O(1) := (detS)∨,

O〈1〉 := (detH)∨.

3.2.1 Analysis of correspondences. Before we begin the proofs of our two theorems, let us
make an observation about the diagram (15). The left-hand square is trivial in the Hom(V,H)
directions, and at various points in the following proofs we will be considering sheaves and maps
that are constant over these trivial directions. Therefore it is helpful to introduce the notation

Q P

Q P

π

iQ iP

π

(16)

for the square that we obtain by deleting the Hom(V,H) directions, so for example Q is the
stack [Hom(H,V )/GL(H)].

Now look at the right-hand square in (15). This square is a fibre product, with the map
j : Z → X+ being just the restriction of j : Z → X to the open substack X+ ⊂ X. Furthermore,
the map j : Z → X is trivial in the Hom(S, V ) directions, and removing them gives a map which
we denote

j : S −→ T .
We do some more analysis of these two squares in the appendix.

3.2.2 Twist. We now turn to the proof of Theorem 3.12. The structure of the proof is as
outlined in § 2.2: the result follows formally from the existence of a transfer functor, as in the
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proof of Proposition 2.2. The functor we need to consider is

TF := Cone(FR −→ id) : Db(X) −→ Db(X)

where
F := j∗π

∗ : Db(Y) −→ Db(X)

and
R := π∗j

! : Db(X) −→ Db(Y).

Then we just need to establish the following three properties.

Lemma 3.15. i∗X−TF = i∗X−

Lemma 3.16. TF maps the window W1 to the window W0.

Lemma 3.17. The following diagram commutes.

W1 Db(X)

Db(X) Db(X)

TF

i∗X+
i∗X+

TF

Lemma 3.15 is obvious, since the image of j is exactly the unstable locus that gets deleted
to form X−. The remaining two lemmas are rather more involved.

Proof of Lemma 3.16. We need to calculate the effect of TF = [FR → id] on the vector bundles

{SδS∨(1) δ ∈ Γd,r}
and verify that each one ends up in the window W0. Recall that

FR = j∗π
∗π∗j

!.

We will send our vector bundles through each of these functors in turn. The first one is

j!(−) = (Kj ⊗ j∗(−))[dim j] = j∗(−)(r − d− 1)〈d− r〉[r − d− 1]. (17)

Note that the calculation of the canonical bundle here is straightforward as the spaces
involved are open substacks of quotients of vector spaces: recall also that detV is trivialized.
Let γ = Comprd−r(δ), so

SδS∨(1) = SγS(d− r + 1)

and then we have
j!(SδS∨(1)) = SγS〈d− r〉[r − d− 1]. (18)

Next we apply π∗ to this object, and by the projection formula it suffices to know what π∗SγS is.
Everything here is constant along the Hom(V,H) directions in Z and Y, so Proposition A.1(i)
tells us that

π∗SγS = SγH
and so

π∗j
!(SδS∨(1)) = SγH〈d− r〉[r − d− 1]. (19)

This expression will be zero if and only if the height of γ is r, or equivalently if and only if the
width of δ is less than d− r. So if δ ∈ Γ

(1)
d,r then

TF (SδS∨(1)) = SδS∨(1).
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Since these bundles are the ones that also lie in the target window W0, we have verified the
lemma on this subset of our generating set.

For the remaining bundles, we continue with the calculation of TF . Let δ ∈ Γ
(2)
d,r, so the height

of γ is less than r and we can define δ̂ = Compr−1
d−r(γ), which is δ with its first row deleted. Then

SγH〈d− r〉 = Sδ̂H∨

and
FR(SδS∨(1)) = j∗(Sδ̂H∨)[r − d− 1].

This is a (shift of a) torsion sheaf on X. Since everything here is constant in the Hom(S, V )
directions, the sheaf is evidently the pull-up of the sheaf j∗(Sδ̂H∨) from the stack T . In the
appendix (Theorem A.7) we construct a free resolution of j∗(Sδ̂H∨), of length d − r + 1. If we
pull this resolution up to X and shift it by [r − d − 1] then we get a complex of vector bundles
situated in non-negative degrees

{Sδ̂KS∨ ⊗ ∧sKV · · · Sδ̂1S∨ ⊗ ∧s1V Sδ̂0S∨} (20)

which is quasi-isomorphic to FR(SδS∨(1)). Remarks A.10 following Theorem A.7 tell us more
about the terms in this complex. Firstly, by Remark A.10(v), δ̂K is the Young diagram of height
r and width d− r + 1 such that if we delete the first row and the first column we get back δ̂, so
we find that

Sδ̂KS∨ = SδS∨(1).

Also sK = d by Remark A.10(iii), and det(V ) is trivialized, so the term in degree zero is SδS∨(1).
Secondly, for k < K we have δ̂k ∈ Γd,r by Remark A.10(iv), so every term in positive degree lies
in the target window W0.

From this description, we see that the natural map FR(SδS∨(1)) → SδS∨(1) is given by
some non-zero map of bundles

ι : SδS∨(1) −→ SδS∨(1)

since there are no higher Ext groups between vector bundles on the stack X. This map arises,
via adjunction, from the natural map

π∗π∗j
!(SδS∨(1)) −→ j!(SδS∨(1))

which is (by (18) and (19)) a shift and twist of a map

SγH −→ SγS.

It follows from the proof of Proposition A.1 that this is actually the tautological map, so
in particular it is constant over the Hom(S, V ) directions. Therefore the map ι must also
be constant in those directions, and so is the pull-up of a map that lives on the smaller
stack S. By Lemma A.13, it must be an isomorphism. Consequently, the cone TF (SδS∨(1))
is quasi-isomorphic to the positive-degree part of the complex (20), so it lives in the target
window W0. 2

Proof of Lemma 3.17. Recall the diagram (15). TF is the cone [j∗π
∗π∗j

! → id] of endofunctors
of Db(X), and TF is the same cone of endofunctors of Db(X+). We wish to compare i∗X+

TF with
TF i

∗
X+

.
The right-hand square in (15) is a fibre square and the open inclusion iX+ is flat, so

i∗X+
j∗ = j∗i

∗
Z
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and hence
i∗X+

j∗π
∗π∗j

! = j∗i
∗
Zπ
∗π∗j

! = j∗π
∗i∗Y+π∗j

!.

The left-hand square is not a fibre square, so we have only a natural transformation

τ : i∗Y+π∗ −→ π∗i
∗
Z .

Then for any E ∈ Db(X) we get a morphism

j∗π
∗i∗Y+π∗j

!E j∗π
∗π∗i

∗
Zj

!E = j∗π
∗π∗j

!i∗X+
E

j∗π∗(τj!E)
(21)

where the final equality holds because iX+ and iZ are open inclusions. Thus we have a square

i∗X+
j∗π
∗π∗j

!E i∗X+
E

j∗π
∗π∗j

!i∗X+
E i∗X+

E

j∗π∗(τj!E)

which commutes by naturality of adjunctions. This means we have a natural transformation from
i∗X+

TF to TF i
∗
X+

. We claim that this becomes a natural isomorphism when we restrict it to the
window W1. It is sufficient to check this on the generating vector bundles, i.e. we just need to
check that (21) is an isomorphism when E is a vector bundle SγS(d− r + 1) for some γ ∈ Γd,r.
By (17) in the proof of Lemma 3.16 we know that j!E is a shift of the bundle

SγS〈d− r〉
so it is sufficient to prove that

i∗Y+π∗S
γS

τSγS−−→ π∗i
∗
ZSγS

is an isomorphism. Everything here is constant in the Hom(V,H) directions, so we can actually
work on the smaller square (16), and Proposition A.1(ii) is the required statement. 2

3.2.3 Cotwist. Now we prove Theorem 3.13. The structure of the proof is exactly the same,
although curiously enough in this case the transfer functor is

RF : Db(Y) −→ Db(Y),

i.e. we do not take the cone from the identity.
We denote the windows on Y by Vk, where each Vk is split-generated by the set

{SδH∨〈k〉 δ ∈ Γd,r−1}.
The three lemmas that we need are as follows.

Lemma 3.18. i∗Y−RF = i∗Y− when restricted to the window V0.

Lemma 3.19. RF maps the window V0 to the window V−1.

Lemma 3.20. The following diagram commutes.

V0 Db(Y)

Db(Y+) Db(Y+)

RF

i∗Y+ i∗Y+

C†F [−σ]
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Notice that unlike the twist case the first lemma is not obvious, and only holds on the window
V0 and not on the whole of Db(Y). We will prove the first two lemmas in reverse order.

Proof of Lemma 3.19. We compute the effect of RF on the generating vector bundles

{SδH∨ δ ∈ Γd,r−1}

of the window V0. By Corollary A.11 we have that j!j∗π
∗SδH∨ is the complex

{SεKS〈d− r〉 ⊗ ∧sKV · · · Sε1S〈d− r〉 ⊗ ∧s1V Sε0S〈d− r〉} (22)

where K = d − r + 1, and the partitions εk and the numbers sk are defined by Algorithm A.4
and (A4).

Suppose that δ ∈ Γ
(1)
d,r−1, i.e. width(δ) < d − r + 1. Then Remark A.12(iv*) tells us that all

the εk except for εK have height r, and Remark A.12(iii*) that sK = d and hence ∧sKV is trivial.
So by Proposition A.1 applying π∗ to (22) kills all the terms in positive degree, and leaves only

π∗(SεKS)〈d− r〉 = SεKH〈d− r〉 = SδH∨

where the final equality is because of Remark A.12(v*). So if δ ∈ Γ
(1)
d,r−1 then

RF(SδH∨) = SδH∨.

These bundles already lie in the target window V−1, so this verifies the lemma on this subset.
Now take δ ∈ Γ

(2)
d,r−1. By Proposition A.1 again we have that for any k,

π∗(SεkS)〈d− r〉 = SεkH〈d− r〉 = Sδ̂kH∨〈−1〉

where δ̂k = Compr−1
d−r+1(εk), which is well defined by Remark A.12(vi*). So we have represented

RF(SδH∨) by a complex of bundles, with each term lying in the target window V−1. 2

Proof of Lemma 3.18. Composing i∗Y− with the unit of the adjunction gives a natural
transformation

i∗Y− −→ i∗Y−RF . (23)

It is sufficient to show that the components of this natural transformation are isomorphisms on
the generating set of vector bundles for V0.

Pick δ ∈ Γd,r−1. We know that j!j∗π
∗SδH∨ is given by the complex (22), so the unit of the

j∗-j
! adjunction is given by some map of bundles on Z,

η : SδH∨ −→ SεKS〈d− r〉 ⊗ ∧sKV.
Furthermore, this map is constant over the Hom(S, V ) directions, i.e. it is pulled up from the
stack S.

If δ lies in Γ
(1)
d,r−1 then we have sK = d and SδH∨ = SεKH〈d− r〉, so by Lemma A.13(ii) the

map η must be a twist of the tautological map, up to a scalar. Therefore the adjoint map under
the π∗–π∗ adjunction given by

SδH∨ −→ RF(SδH∨) = SδH∨

is a scalar multiple of the identity. So on this subset of the generating bundles we have shown
that (23) is an isomorphism even before restricting to Y−.
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Now let δ ∈ Γ
(2)
d,r−1. As we argued in the proof of Lemma 3.19, applying π∗ to the complex

(22) shows that RF(SδH∨) is given by a complex

{Sδ̂KH∨ ⊗ ∧sKV 〈−1〉 · · · Sδ̂1S ⊗ ∧s1V 〈−1〉 Sδ̂0H∨〈−1〉}.

The diagrams δ̂k arose in the following way. Starting from δ0 = δ, we applied Algorithm A.4 to
get a sequence of diagrams δk. These all have width d− r + 1, and so, using (A4), we have

δ̂k = Compr−1
d−r+1(Comprd−r+1(δk)).

Hence δ̂k is the diagram obtained from δk by deleting the first row. This means that if we apply
Algorithm A.4 to the starting diagram δ̂0, and with the parameter r replaced by r − 1, then it
produces the sequence of diagrams δ̂k.

Now recall that Y is the analogue of X but with r replaced by r−1. Therefore by Theorem A.7
there is a complex of bundles on Y

{Sδ̂K+1H∨ ⊗ ∧sK+1V Sδ̂KH∨ ⊗ ∧sKV · · · Sδ̂1H∨ ⊗ ∧s1V Sδ̂0H∨η̃ }
which is a free resolution of a sheaf supported on the unstable locus that we remove when we
form Y−. Furthermore, since width(δ̂0) < d− r+ 2, Remark A.10(iii) tells us that sK+1 = d, and

Sδ̂K+1H∨〈−1〉 = SδH∨

because removing the first column of δ̂K+1 gives δ by Remark A.10(v) and δ̂K+1 has height r−1
by Remark A.10(ii). So we have found a map on Y,

η̃ : SδH∨ −→ Sδ̂KH∨ ⊗ ∧sKV 〈−1〉,
which induces a quasi-isomorphism

i∗Y−S
δH∨ −→ i∗Y−FR(SδH∨).

We claim that η̃ is the adjoint to η under the π∗–π∗ adjunction, at least up to a scalar factor. If
we can show this claim then the proof of the lemma is complete, because then applying (23) to
SδH∨ gives the above quasi-isomorphism.

To show the claim, observe that the adjoint of η̃ is given by the composition

SδH∨ η̃−→ Sδ̂KH∨ ⊗ ∧sKV 〈−1〉
== SεKH〈d− r〉 ⊗ ∧sKV
τ−→SεKS〈d− r〉 ⊗ ∧sKV

on the stack Z, where τ is the tautological map. By construction, τ η̃ is independent of the
Hom(S, V ) directions, so it is pulled up from S. Also, both η and τ η̃ must be SL(V )-equivariant,
because our entire construction is, so by Lemma A.15 they agree up to a scalar factor. 2

Proof of Lemma 3.20. The functor C†F [−σ] is a (shifted) cone on the natural transformation

RF −→ id[−σ].

The arguments in the proof of Lemma 3.17 show that there is a natural transformation

i∗Y+RF −→ RFi∗Y+ .

We claim this induces a natural isomorphism

i∗Y+RF −→ C†F [−σ]i∗Y+
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of functors from V0 to Db(Y+), i.e. for every object E ∈ V0 the two natural morphisms

i∗Y+RF(E) −→ RFi∗Y+(E) −→ i∗Y+E [−σ] (24)

form (two-thirds of) an exact triangle. It is sufficient to prove this claim on the generating set
of vector bundles.

Fix SδH∨ ∈ V0. Arguing again as in Lemma 3.17, there is a natural isomorphism

i∗Zj
!j∗π

∗SδH∨ ' j!j∗π
∗i∗Y+S

δH∨.

Combining this with a component of the natural transformation from i∗Y+π∗ to π∗i
∗
Z gives us the

natural morphism
i∗Y+RF(SδH∨) −→ RFi∗Y+(SδH∨). (25)

By Corollary A.11, j!j∗π
∗SδH∨ is a complex

{SεKS〈d− r〉 ⊗ ∧sKV · · · Sε1S〈d− r〉 ⊗ ∧s1V Sε0S〈d− r〉}.

We can understand the morphism (25) term by term in this complex, i.e. it is the aggregate of
the natural maps

i∗Y+π∗S
εkS −→ π∗i

∗
ZSεkS

twisted by powers of O〈1〉 and exterior powers of V . These maps are constant in the Hom(V,H)
directions in Y+.

Now consider the natural transformation from RF to id[−σ]. It arises in the following way.
For any object E ∈ Db(Y+), the natural morphism

j∗j∗π
∗E −→ π∗E

induces a morphism
j!j∗π

∗E −→ π!E [−σ]

because σ = dimπ−dim j by definition and the relative canonical bundles Kπ and Kj are equal,
as X and Y are Calabi–Yau. Then the π∗–π

! adjunction gives the morphism

RF (E) = π∗j
!j∗π

∗E −→ E [−σ].

We apply this to the case E = i∗Y+S
δH∨. We know that j∗j∗π

∗SδH∨ is a complex

{SδKS∨ ⊗ ∧sKV · · · Sδ1S∨ ⊗ ∧s1V SδS∨ }.

Hence the natural map from j∗j∗π
∗SδH∨ to π∗SδH∨ must be given by some non-zero map of

bundles
SδS∨ −→ π∗SδH∨.

This map must be independent of the Hom(S, V ) directions in Z because both j and π∗SδH∨ are,
i.e. it is the pull-up of a map from the stack S. So by Lemma A.13(ii) it must be the tautological
map (up to a scalar multiple), and in particular it is also constant over the Hom(V,H) directions
in Z. Consequently, the natural map

j!j∗π
∗SδH∨ −→ π!SδH∨[−σ]

is given by a map of bundles
Sε0S〈d− r〉 −→ π!SδH∨[−σ]
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where ε0 = Comprd−r+1(δ) as before, and the natural map from RFi∗Y+(SδH∨) to i∗Y+S
δH∨[−σ]

is obtained by restricting this map to Z and taking its adjoint. Note that

SδH∨ = Sε̃0H〈d− r + 1〉

where ε̃0 = Compr−1
d−r+1(δ) and so ε̃0 is ε0 with its first row removed.

Now we evaluate (24) on the object SδH∨ and verify that we obtain an exact triangle as
required. Combining the above arguments, the result can be written as the twist by O〈d− r〉 of
a diagram as follows:

i∗Y+π∗S
εKS ⊗ ∧sKV · · · i∗Y+π∗S

ε1S ⊗ ∧s1V i∗Y+π∗S
ε0S

π∗i
∗
ZSεKS ⊗ ∧sKV · · · π∗i

∗
ZSε1S ⊗ ∧s1V π∗i

∗
ZSε0S

i∗Y+S
ε̃0H〈1〉[−σ]

All the vertical arrows are constant in the Hom(V,H) directions, so we can analyse them on the
smaller space Q. By Remark A.12(ii*), the width of ε0 is d−r+1, and the width of εk is at most
d− r for k > 0. Then by Proposition A.1(ii) and (iii) (and the discussion following), the first K
columns of the above diagram are isomorphisms, and the final column gives an exact triangle.
So (24) yields an exact triangle on each object SδH∨ ∈ V0 as claimed. 2
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Appendix A. Geometric correspondences and locally-free resolutions

In this appendix we study the behaviour of tautological vector bundles as we push them around
the two squares in the diagram (15) as discussed in § 3.2.1.

Notation. As in the rest of the paper, we let V , S and H be vector spaces of dimensions d, r and
r − 1 respectively, under the assumption that d > r > 0. We also fix a trivialization of detV .

A.1 The left-hand square
Let Q be the affine stack

Q = [Hom(H,V )/GL(H)]

and define a second stack

P ⊂ [Hom(H,S)⊕Hom(S, V )/GL(H)×GL(S)]

to be the locus where the map from H to S is an injection. Then we have a composition map
π : P → Q.
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Let P ⊂ P be the locus where both maps are injections, so P is a partial flag variety. The
image of P under π is the Grassmannian Q ∼= Gr(r− 1, V ) which forms an open substack of Q.
So we have a commutative diagram as follows:

Q P

Q P

π

iQ iP

π

If we choose a point q ∈ Q then the fibre of P over q is the projective space P(V/H). The fibre
of P over q is slightly larger: it is given by the affine stack

[Hom(L, V/H)/GL(L)] (A1)

where L is the one-dimensional space S/H. In particular, the above diagram is not a fibre square.
The fibres of P over points q ∈ Q\Q have the same description, although the dimension of V/H
will jump.

Observe also that the relative canonical bundle of π is

Kπ = (detS)d−r+1 ⊗ (detH)r−d = L⊗d−r+1 ⊗ detH

and the dimension of π is d− r.
Proposition A.1. Let γ be a Young diagram, and let SγS be the associated vector bundle
on P.

(i) We have an isomorphism of bundles on Q,

SγH ' π∗SγS.
(ii) If the width of γ is at most d− r then we have an isomorphism of bundles on Q,

SγH = i∗Qπ∗SγS ' π∗i∗PSγS,
i.e. we have base change for SγS.

(iii) Let γ have width d − r + 1, and let γ̃ be the Young diagram obtained by deleting the
first row of γ. Then there is an exact triangle

SγH π∗i
∗
PSγS Sγ̃H ⊗ detH∨[r − d]

in Db(Q).

Remark A.2. If d > r then (iii) is the statement that the non-zero higher push-down sheaves of
i∗PSγS are

Rkπ∗i∗PSγS =

{
SγH k = 0,

Sγ̃H ⊗ detH∨ k = d− r.
However if d = r then we may get a non-split extension of bundles on Q.

Proof. On P we have a short exact sequence of bundles

0 −→ H −→ S −→ L −→ 0.

Thus SγS has a filtration whose associated graded pieces are⊕
α

(SαH ⊗ L⊗t)⊕cγα,τ (A2)
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where τ is a partition of width t and height 1, and cγα,τ are the Littlewood–Richardson
coefficients [FH96]. This means we can compute π∗SγS and π∗i

∗
PSγS by spectral sequences that

start with the push-downs of this graded bundle. Thus what we need to calculate is π∗(L
⊗t) and

π∗i
∗
P (L⊗t) for t > 0.
Fix a point q ∈ Q; the fibre Pq over this point is the affine stack (A1). The restriction of

L to Pq is the negative tautological line bundle, so any positive powers of it have no (derived)
global sections. Since this is true at all fibres it implies that π∗(L

⊗t) = 0 for t > 0. Similarly,
π∗(O) = O. The fibres of P , on the other hand, are projective spaces, so we still have π∗i

∗
PO = O

and π∗i
∗
P (L⊗t) = 0 for 0 < t < d−r+1, but when t > d−r+1 we have a single higher push-down

sheaf. In particular, we have

π∗i
∗
P (L⊗d−r+1) = detH∨[r − d].

(i) Apply π∗ to (A2). Only the degree-zero piece SγH survives, and the spectral sequence
collapses.

(ii) By the width restriction on γ, no powers of L above L⊗d−r occur in (A2), so when we
apply π∗i

∗
P again only the piece SγH survives.

(iii) By the Littlewood–Richardson rule (or the simpler Pieri rule [FH96]), the degree d−r+1
piece of (A2) is Sγ̃H ⊗ L⊗d−r+1, and there are no pieces of higher degree. So when we apply
π∗i
∗
P we get two surviving terms, the spectral sequence collapses, and π∗i

∗
PSγS is an extension

as claimed. 2

We now say a little more about the second map that occurs in the exact triangle in (iii). This
is used in the proof of Lemma 3.20. Let γ have width d− r + 1. We observed that the filtration
(A2) concludes with a natural map

q : SγS −→ Sγ̃H ⊗ L⊗d−r+1

where, as before, γ̃ is γ with its first row removed. The nature of this map is clearer if we switch
to Schur powers of the dual bundles. Let

δ = Comprd−r+1(γ)

= Compr−1
d−r+1(γ̃).

Then
SγS = SδS∨ ⊗ (detS)r−d−1

and

Sγ̃H ⊗ L⊗d−r+1 = SδH∨ ⊗ (detH)r−d−1 ⊗ L⊗d−r+1

= SδH∨ ⊗ (detS)r−d−1.

The map q is the tautological map from SδS∨ to SδH∨, twisted by a line bundle. We also have
that

Sγ̃H ⊗ L⊗d−r+1 = π!(Sγ̃H ⊗ detH∨[r − d]).

Now restrict to the space P , and use the π∗–π
! adjunction. The map q gets sent to the map

π∗i
∗
PSγS −→ Sγ̃H ⊗ detH∨[r − d]

that occurs in the statement of (iii).
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A.2 The right-hand square
We consider the affine stack

T = [Hom(V, S)/GL(S)].

We also consider a second stack

S̄ = [Hom(V,H)⊕Hom(H,S)/GL(H)×GL(S)],

and let S ⊂ S̄ be the open substack where the map from H to S is an injection. We let j be the
map

j : S −→ T
given by composing the two factors and forgetting the GL(H) action.

As in the body of the paper, we write O(1) := detS∨, and O〈1〉 := detH∨. Then

j!(−) = j∗(−)⊗Kj [dim j] = j∗(−)(r − d− 1)〈d− r〉[r − d− 1] (A3)

(recalling that detV is trivialized), which of course agrees with (17).
The image of j is the degenerate locus in T where the rank of the linear map has dropped.

More specifically, if we fix a point t ∈ T then we have a vector space C defined as the cokernel

V −→ S −→ C −→ 0.

Generically this will be zero-dimensional, and it will jump up in dimension for non-generic t.
The fibre of S over t is the projective space St = P∨C of hyperplanes in C.

Lemma A.3. Let δ be any Young diagram. Then j∗SδH∨ is just a sheaf, i.e. there are no higher
push-down sheaves.

Proof. Pick t ∈ Hom(V, S). The restriction of H to the fibre St is isomorphic to

H̃ ⊕O⊕rk(t)

where H̃ is the tautological subbundle on P∨C. Thus the restriction of SδH∨ to St is a non-
negative bundle, and has no higher cohomology. Since this is true at all fibres, the higher push-
down sheaves vanish. 2

We will construct a locally-free resolution of the torsion sheaf j∗SδH∨, for certain δ. In order
to describe this resolution, we first need to introduce some combinatorics with Young diagrams.

Algorithm A.4. Let δ be a Young diagram of height less than r. We define a sequence of Young
diagrams δ1, δ2, . . . starting from δ0 := δ, by the following procedure:

– δ1 is obtained from δ0 by adding boxes to the first column until it reaches height r;

– δk is obtained from δk−1 by adding boxes to the kth column, until its height is one more
than the height of the (k − 1)th column of δ0.

We let sk denote the total number of boxes added at stage k, i.e. sk is the difference in size
between δk and δ0.

Remark A.5. In Algorithm A.4, the last box added at stage k is immediately to the right of the
first box added at stage k − 1.

Lemma A.6. Writing hk for the height of the kth column of a Young diagram δ of height less
than r given by δ = (δ1, . . . , δr−1), we have

δk = (δ1, . . . , δhk , k, δhk+1 + 1, . . . , δr−1 + 1).

Proof. Induction. 2
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Figure A1. Exact sequence obtained from Theorem A.7 by setting r = 2, d = 4 and δ to be
the empty partition.

Figure A2. Exact sequence from Theorem A.7 for r = 2, d = 4 and δ = (1, 0).

Now we can state the following theorem, whose proof is given in §A.3.

Theorem A.7. Let δ be a Young diagram of height less than r and width less than or equal to
d− r + 1. We have an exact sequence of sheaves on T ,

0 SδKS∨ ⊗ ∧sKV · · · Sδ1S∨ ⊗ ∧s1V Sδ0S∨ j∗SδH∨ 0,

where K = d− r + 1, and the δk and sk are defined in Algorithm A.4.

We give some simple examples showing how Theorem A.7 reproduces certain exact sequences
used in § 2.1.2.

Example A.8. Set r = 2, d = 4, and let δ be the empty partition. The partitions δk and associated
resolution are shown in Figure A1. The dashed line indicates the positions of the boxes added
to δ to produce the various δk. Restricting the resolution to the full rank locus of T , we obtain
a long exact sequence which is the Eagon–Northcott complex used in § 2.1.2.

Example A.9. Set r = 2, d = 4 again, and let δ = (1, 0). The partitions and resolution are shown
in Figure A2. Restricting to the full rank locus of T , we obtain the Buchsbaum–Rim complex
used in § 2.1.2.

We make a few elementary observations on the combinatorics: these all follow from the size
restrictions on δ.

Remark A.10.

(i) We have sK 6 d but sK+1 > d, which explains (at least formally) why the resolution
terminates at K terms.

(ii) The height of δk is r for k > 0, and less than r for k = 0. The width of δk is less than or
equal to d− r + 1 for all k 6 K.

Additionally, if the width of δ is less than d− r + 1 then:

(iii) sK = d;

(iv) the width of δk is less than d− r + 1 for k < K, and the width of δK is d− r + 1;

(v) if we delete the first row and the first column from δK then we recover the diagram δ.
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On the other hand, if the width of δ is equal to d− r + 1 then:

(vi) the width of δk is d− r + 1 for all k 6 K.

Remark (ii) implies that we can define

εk = Comprd−r+1(δk) (A4)

for 0 6 k 6 K. Then the following corollary is immediate using (A3).

Corollary A.11. For δ as before in Theorem A.7, j!j∗SδH∨ is quasi-isomorphic to the complex

{ SεKS〈d− r〉 ⊗ ∧sKV · · · Sε1S〈d− r〉 ⊗ ∧s1V Sε0S〈d− r〉}.

Taking complements in Remark A.10 prompts the following remark.

Remark A.12. (ii*) The width of εk is d− r+ 1 for k = 0, and less than d− r+ 1 for k > 0. The
height of εk is less than or equal to r for all k.

Also if the width of δ is less than d− r + 1 then:

(iii*) sK = d;

(iv*) the height of εk is r for k < K, and the height of εK is less than r;

(v*) εK = Compr−1
d−r(δ).

If the width of δ is equal to d− r + 1 then:

(vi*) the height of εk is less than or equal to r − 1 for all k.

We end this section with some observations on the spaces of maps between various bundles
on S and T .

Lemma A.13. For any partition δ, we have:

(i)
Ext0

S(SδS,SδS) = C

i.e. any map from this bundle to itself is a scalar multiple of the identity;

(ii)
Ext0

S(SδH,SδS) = C

i.e. any map between these two bundles is a scalar multiple of the tautological map.

Proof. We can work on S̄ instead, since the complement of S has codimension at least 2. Then
for (i) we just have to compute the GL(H)×GL(S) invariants in

SδS∨ ⊗ SδS ⊗ Sym(V ⊗H∨ ⊕H ⊗ S∨).

This is an easy calculation using the Littlewood–Richardson rule and the facts that for any vector
spaces A and B we have

Sym(A⊗B) =
⊕
λ,µ

SλA⊗ SµB

[Wey03, Theorem 2.3.2] and

(SλA∨ ⊗ SµA)GL(A) =

{
C λ = µ,

0 λ 6= µ.

Part (ii) is identical. 2

971

https://doi.org/10.1112/S0010437X13007641 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007641


W. Donovan and E. Segal

Lemma A.14. Let δ0, δ1, . . . be a sequence of Young diagrams constructed by Algorithm A.4
above. Then for any k,

HomT (Sδk+1S∨ ⊗ ∧sk+1V,SδkS∨ ⊗ ∧skV )SL(V ) = C,

i.e. the maps in the sequence in Theorem A.7 are determined (up to scalar multiples) by the
requirement of SL(V )-equivariance.

Proof. The calculation is very similar to those in Lemma A.13. Note that the Littlewood–
Richardson coefficient c

δk+1

λ,δk
is zero unless λ is the ‘column’ (1, 1, . . . , 1) of height sk+1 − sk,

in which case it equals 1. 2

We do not actually use Lemma A.14, but it is interesting to note. It can also be considered
a warm-up for the next lemma, which is more technical and is used in the proof of Lemma 3.18.

Lemma A.15. Let δ have height less than r and width equal to d−r+1, and let δ0, δ1, . . . be the
corresponding sequence of Young diagrams. As above, letK = d−r+1, and εK = Comprd−r+1(δK).
Then

Ext0
S(SδH∨,SεKS〈d− r〉 ⊗ ∧sKV )SL(V ) = C.

Proof. As in Lemma A.13 we can work on S̄, and this is a computation of invariants. After
taking GL(S)-invariants, we are left with⊕

λ

SδH ⊗ SεKH ⊗ SλH∨〈d− r〉 ⊗ SλV ⊗ ∧sKV. (A5)

Now consider the expression

SδH ⊗ SεKH ⊗ SλH∨〈d− r〉= SδH〈d− r + 1〉 ⊗ SεKH〈−1〉 ⊗ SλH∨

= Sε̃0H∨ ⊗ Sε̃KH ⊗ SλH∨

where ε̃0 = Compr−1
d−r+1(δ), and ε̃K is the diagram obtained from εK by adding on an extra

column of height r − 1, which is well defined because the height of εK is less than or equal to
r − 1 (Remark A.12(vi*)). Then the GL(H)-invariants in (A5) are⊕

λ

SλV ⊗ ∧sKV ⊕c
ε̃K
ε̃0,λ . (A6)

Now let hK be the height of the Kth column of δ, and use Lemma A.6 to deduce that

ε̃K = (K − δr−1, . . . ,K − δhK+1, 1, . . . , 1)

where the number of rows is r − 1. But by definition

ε̃0 = (K − δr−1, . . . ,K − δhK+1)

and so the Littlewood–Richardson coefficient cε̃Kε̃0,λ is equal to 1 if λ is the column (1, . . . , 1) of
height hk, and equal to 0 otherwise. Hence (A6) is just

∧hKV ⊗ ∧sKV

and this contains a one-dimensional space of SL(V )-invariants, since hK + sK = d. 2
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A.3 Locally-free resolutions
We now prove Theorem A.7, which turns out to be an extreme case of the twisted Lascoux
resolution [Wey03, § 6.1]. Weyman gives this resolution implicitly: we present a Borel–Weil–Bott
calculation that makes it explicit, as required for our purposes. We could not find this given in
the literature, but note that [Fon13] uses the same combinatorics to produce exact sequences on
Grassmannians. We briefly review Weyman’s construction, slightly modifying his language with
the aim of providing a bridge between his account and our application.

Let G be a linearly reductive group, P a parabolic subgroup of G, and T a vector space with
a G-action. We also choose a subspace U of T with a compatible P -action. Consider a diagram

U ×P G

Im j T

j

where j takes (u, g) 7−→ (gu). Say we are interested in obtaining resolutions of torsion sheaves
on T , supported on Im j, which are obtained as direct images under the map j: [Wey03] uses this
setup to calculate syzygies on determinantal varieties, and it turns out to be what we require also.
Following [Wey03, §§ 5.1 and 5.4], we form a diagram as follows, factoring j into an embedding
i and a flat projection q:

U ×P G T ×G/P G/P

T

i

j
q

p

(A7)

Here i takes (u, g) 7−→ (gu, gP ).
The relevant result from Weyman is given in the following theorem.

Theorem A.16 [Wey03, Theorem 5.4.1]. Take a vector bundle E on G/P induced from a
representation of P , and assume that j∗i

∗p∗E is a sheaf on T (i.e. it has no higher push-downs).
Then this sheaf has a G-equivariant resolution given by F•, where

Fk :=
⊕
j>0

Rjq∗(∧k+j((T/U)∨)⊗ p∗E).

Remark A.17. The proof uses the commutativity of (A7) and the projection formula to rewrite
the sheaf in question as

j∗i
∗p∗E = q∗i∗i

∗p∗E = q∗(OIm i ⊗ p∗E)

and then evaluates this using the Koszul resolution of OIm i. The relevant spectral sequence
simplifies because of equivariance considerations [Wey03, § 5.2].

Remark A.18. Note that the bundle E on G/P is the ‘twist’ in the twisted Lascoux resolution
noted above.

Now we are ready for the following proof.

Proof of Theorem A.7. We take G = GL(S), choose an inclusion H ↪→ S, and define P as
the parabolic preserving H. Then we take T to be underlying vector space of our stack T ,
i.e. T := Hom(V, S) with its G-action. T acquires a P -action, compatible with the natural
P -action on U := Hom(V,H).
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We apply the construction explained above to obtain a diagram

Z Hom(V, S)×G/P G/P

Hom(V, S)

i

j
q

p

where Z is Hom(V,H)×P G.
We now just need to reinterpret this in our stacky language: in particular, we relate Z and

our stack S from §A.2. Firstly, we have an equivalence of categories of sheaves on the variety
G/P and on the open substack of

[Hom(H,S)/GL(H)]

where the map from H to S is an injection (these are two alternative descriptions of the projective
space P∨S). It follows that we have a similar equivalence relating Z and the open substack of

[Hom(V,H)⊕Hom(H,S)/GL(H)]

where the map from H to S is an injection. Hence we see that working G-equivariantly with
the morphism j in (A7) is just the same as working with the morphism j : S → T as defined in
§A.2.

Now we consider the representation SδH∨ of P . This induces a sheaf on G/P and also on S,
as appears in the statement of Theorem A.7. We want then to resolve j∗i

∗p∗SδH∨. Lemma A.3
gives that there are no higher push-down sheaves, so Theorem A.16 immediately gives us a
G-equivariant resolution F• on T = Hom(V, S) where

Fk :=
⊕
j>0

Rjq∗(∧k+j(V ⊗ (S/H)∨)⊗ SδH∨).

This yields the required resolution on T . Lemma A.19 below shows that these push-forwards
evaluate to the terms given in the statement of Theorem A.7 in §A.2. 2

Lemma A.19. For 0 6 k 6 K := d− r + 1 we have

Fk = SδkS∨ ⊗ ∧skV
where δk and sk are defined in Algorithm A.4, and Fk = 0 otherwise.

Proof. Rearranging to give

Fk :=
⊕
i>k

Ri−kq∗((S/H)∨i ⊗ SδH∨)⊗ ∧iV,

it suffices to work fibrewise and evaluate

H•(GL(S)/P, (S/H)∨i ⊗ SδH∨).

We explain how to calculate this cohomology group explicitly using the Borel–Weil–Bott theorem
[Wey03, § 4.1]. According to the standard prescription (see, for example, [Wey03, Corollary
4.1.9]), the bundle in question corresponds to a GL(S)-weight

α(i) := (δ1, . . . , δr−1, i).

First we note that if α = α(i) is dominant (i.e. given by a sequence of non-increasing integers)
then we have H0 = SαS∨ and H>0 = 0. More generally, the theorem determines the cohomology,
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which occurs in at most one degree, according to the behaviour of the weight α under the twisted
action of the Weyl group W = Sr. For w ∈ Sr this action is given by

w • α := w(α+ ρ)− ρ
where ρ := (r, . . . , 2, 1). We say that α is regular if there exists a unique w ∈ Sr such that w •α is
dominant. We then have three mutually exclusive cases, with the theorem giving the cohomology
in each:

(1) α dominant =⇒ H0 = SαS∨
(2) α regular, non-dominant =⇒ H l = Sw•αS∨, l = length(w)
(3) α non-regular =⇒ H• = 0.

As i varies we classify the weight α(i) as follows.

– Case 1: α(i) dominant if 0 6 i 6 δr−1.
This is immediate: dominant GL(S)-weights correspond precisely to non-increasing integer
sequences.

– Case 2: α(i) regular, non-dominant if there exists a natural number l 6 r − 1 such that

δr−l < i− l 6 δr−l−1. (A8)

(Here for convenience we set δ0 = ∞ so that when l = r − 1 the second inequality is
redundant.)
In this case the cycle w = (r − l . . . r) gives

w • α(i) = (δ1, . . . , δr−l−1, i− l, δr−l + 1, . . . , δr−1 + 1)

which is dominant by condition (A8).
Now the crucial point is to observe that in fact w • α(i) = δi−l, one of the Young
diagrams obtained by applying Algorithm A.4. This follows from the description of the
δk in Lemma A.6 after noting that the height of the (i− l)th column of w •α(i) is given by
r − l − 1 by condition (A8).
We also observe that si−l = i, because w • α(i) = δi−l has the same number of boxes as
α(i), which is i more than the number of boxes in δ.

– Case 3: α(i) non-regular if there exists a natural number l < r − 1 such that

i− l = δr−l. (A9)

In this case the transposition exchanging r− l and r stabilizes α(i) under the twisted Weyl
group action, because

(α(i) + ρ)r−l := δr−l + l + 1 = i+ 1 =: (α(i) + ρ)r

by condition (A9).

In summary, we have that if α(i) is regular (the first two cases), then there exists a (possibly
trivial) Weyl group element w(i) with length l(i) such that:

(i) w(i) • α(i) = δi−l(i);

(ii) si−l(i) = i.

We see then that α(i) contributes to F• via homology in degree l(i) and thence to Fk when
i − k = l(i). This occurs precisely when k = i − l(i), and for each k this equation has a unique
solution for i, as non-uniqueness would contradict si−l(i) = i. Hence we deduce that

Fk = Rl(i)q∗((S/H)∨i ⊗ SδH∨)⊗ ∧iV.
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Figure A3. Cases arising for α(i) in the proof of Lemma A.19.

The required push-down then comes from

H l(i)(GL(S)/P, (S/H)∨i ⊗ SδH∨) = Sw(i)•α(i)S∨

= Sδi−l(i)S∨

= SδkS∨

and noting that i = si−l(i) = sk gives the result. 2

Example A.20. We illustrate in Figure A3 how the three cases in the proof of Lemma A.19 occur

in the example δ = (3, 1) with r = 3. We give diagrams corresponding to the GL(S)-weights

α(0), . . . , α(5), with the row lengths of the diagrams corresponding to components of the

respective weights. Note that in this example α(6), α(7), . . . are regular with l = 2.
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