ON REGULAR SEQUENCES

J. DIEUDONNÉ
In memory of Tadasi Nakayama

1. The concept of regular sequence of elements of a ring A (first introduced by Serre under the name of A-sequence [2]), has far-reaching uses in the theory of local rings and in algebraic geometry. It seems, however, that it loses much of its importance when A is not a noetherian ring, and in that case, it probably should be superseded by the concept of quasi-regular sequence [1].

One of the convenient properties of a regular sequence t_{1}, \ldots, t_{n} in a noetherian local ring A, where the t_{i} 's belong to the maximal ideal of A, is that the sequence remains regular after an arbitrary permutation of its terms. This is due to the fact that in such a case, the notions of regular sequence and of quasi-regular sequence coincide $[1,15.1 .10]$, and the notion of quasiregular sequence is independent of the order of the elements of the sequence.

I will give below an example of a non noetherian local ring A and of two elements t_{1}, t_{2} of the maximal ideal of A, such that the sequence $\left(t_{1}, t_{2}\right)$ is regular, whilst the sequence (t_{2}, t_{1}) is not. Such unpleasant phenomena greatly reduce the usefulness of the notion of regular sequence.
2. To construct our example, we start with the ring B of all germs of indefinitely differentiable functions of a real variable x in the neighborhood of 0 . It is well known that B is a local ring, whose maximal ideal \mathfrak{n} is generated by the germ i of the identity mapping $x \rightarrow x$; the intersection of all powers $\mathfrak{n}^{k}(k=1,2, \ldots)$ is the ideal $\mathfrak{r} \neq 0$ consisting of all germs of functions whose derivatives all vanish at $x=0$. Observe that the complement of \mathfrak{r} in B consists of regular elements of B (i.e. elements which are not zero-divisors).

Now consider the ring of polynomials $B[T]$ in one indeterminate, and let C be the quotient of $B[T]$ by the ideal $r T B[T]$, consisting of all polynomials $r_{1} T+\cdots+r_{m} T^{m}$ having their coefficients in \mathfrak{r}. We prove that in C, the

Received June 26, 1965.
sequence consisting of the classes s_{1}, s_{2} of i and T respectively, is regular. Indeeed we have $\mathfrak{r} T B[T] \subset i B[T]=\mathfrak{n} B[T]$; furthermore the relation if $\in \mathfrak{r T B}[T]$ for a polynomial $f \in B[T]$ means that if $f[T]=c_{0}+c_{1} T+\cdots+c_{m} T^{m}$, then $i c_{0}=0$ and $i c_{k} \in \mathfrak{r}$ for $k \geqslant 1$; but this implies that $c_{0}=0$, and $c_{k} \in \mathfrak{r}$ for $k \geqslant 1$, by definition of B. Thus we see that s_{1} is a regular element of C; furthermore we have $C / s_{1} C=B[T] / i B[T]=\mathbf{R}[T]$, since $B / i B=B / \mathfrak{n}=\mathbf{R}$ (real field); as $\mathbf{R}[T]$ is an integral domain, the image of s_{2} in $C / s_{1} C$, which is identified with T in $\mathbf{R}[T]$, is a regular element, and this shows that the sequence $\left(s_{1}, s_{2}\right)$ is regular.

On the other hand, by definition s_{2} is a zero-divisor in C, for the images of the elements of \mathfrak{r} (other than 0) in C are $\neq 0$, but the images of their products by T are all 0 . A fortiori the sequence (s_{2}, s_{1}) is not regular.

To form our example, note that the ideal $s_{1} C+s_{2} C$ is a maximal ideal \mathfrak{m}; one has only to take for A the local ring $C_{\mathfrak{m}}$, for t_{1} and t_{2} the images in A of s_{1} and s_{2}; it is readily verified that the elements of the complement of m in C are not zero-divisors, hence t_{2} is a zero-divisor in A; on the other hand, the sequence $\left(t_{1}, t_{2}\right)$ is regular by flatness.
3. The same construction gives an example of a quasi-regular element of C which is not regular, namely the element s_{2} (a regular sequence is quasiregular, and a subsequence of a quasi-regular sequence is quasi-regular [1, 15.1.10 and 15.1.9]).

Bibliography

[1] A. Grothendieck, Eléments de Géométrie algébrique, chap. IV, 1re partie, Publ. math. I.H.E.S. No. 20, 1964.
[2] J. P. Serre, Sur la dimension cohomologique des anneaux et des modules noethériens, Proc. Intern. Symp. on Alg. Number theory, p. 176-189, Tokyo-Nikko, 1955.

University of Nice
Nice, France

