Canad. Math. Bull. Vol. 22 (2), 1979

ON A FUNCTIONAL EQUATION

BY
NADHLA A. AL-SALAM AND WALEED A. AL-SALAM

1. Introduction. Let P stand for a polynomial set (p.s.), i.e., a sequence $\left\{P_{0}(x), P_{1}(x), P_{2}(x), \ldots\right\}$ such that for each $n P_{n}(x)$ is a polynomial in x of exact degree n and $P_{0}(x) \neq 0$. We refer to $P_{n}(x)$ as the nth component of P.
In this note we consider the set Π of all polynomial sets in which multiplication is defined in the following sense: if $P \in \Pi, Q \in \Pi$ such that $P_{n}(x)=$ $\sum_{k=0}^{n} p(n, k) x^{k}$ then $P Q$ is defined as the polynomial set whose nth component is given by $P_{n}(Q)=\sum_{k=0}^{n} p(n, k) Q_{k}(x)$. An interesting example of such umbral composition of polynomial sets is furnished by the Hermite polynomials defined by

$$
\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}=e^{2 x t-t^{2}}
$$

For this set it is well known [1, p. 246] that

$$
H_{n}(H)=5^{\frac{1}{2} n} H_{n}\left(\frac{2}{\sqrt{ } 5} x\right) \quad(n=0,1,2, \ldots)
$$

In this note we examine the functional equations

$$
\begin{equation*}
f_{n}(f(x))=b^{n} f_{n}(c x) \quad(n=0,1,2, \ldots) \tag{1.1}
\end{equation*}
$$

where b and c are real constants and find all solutions of (1.1) in the set Π. Clearly the Hermite case arises when $b=\sqrt{ } 5$ and $c=2 / \sqrt{ } 5$. We must assume that $b \neq 0$ and $c \neq 0$.

In the following we shall always take $q=b c$.
2. Solution of (1.1). Put

$$
\begin{equation*}
f_{n}(x)=\sum_{k=0}^{n} p(n, k) x^{k} \quad p(n, n) \neq 0 . \tag{2.1}
\end{equation*}
$$

Substituting in (1.1) and equating coefficients of powers of x we get that

$$
\begin{equation*}
\sum_{k=j}^{n} p(n, k) p(k, j)=b^{n} c^{j} p(n, j) \quad(j=0,1, \ldots, n) \tag{2.2}
\end{equation*}
$$

The case $j=n$ leads to $p(n, n)=(b c)^{n}=q^{n}$. Next we move the $k=j$ and $k=n$
terms to the right hand side to get after some rearrangements

$$
\begin{equation*}
p(n, n-j) q^{n-j}\left(b^{j}-1-q^{i}\right)=\sum_{k=0}^{j-2} p(n, n-j+k+1) p(n-j+k+1, n-j) \tag{2.3}
\end{equation*}
$$

It is easy to see that $b=1$ leads to $f_{n}(x)=c^{n} x^{n}$. Similarly if $c=1$ then $f_{n}(x)=b^{n} x^{n}$. Thus we may assume that $b \neq 1$ and $c \neq 1$.

Next if there is no positive integer s so that $b^{s}-1-q^{s}=0$ then putting $j=1$ in (2.3) we get that $p(n, n-1)=0$ and, by induction, that $p(n, r)=0 r \neq n$. Hence in this case $f_{n}(x)=q^{n} x^{n}$.

Finally assume that there is an integer $s \geq 1$ so that $b^{s}-1-q^{s}=0$. It is easy to see that in this case $b^{r}-1-q^{r} \neq 0$ for all non-negative integers $r \neq s$.

Now (2.3) implies that $p(n, n-1)=p(n, n-2)=\cdots=p(n, n-s+1)=0$. If we further assume that $p(n, n-s)=0$ then all $p(n, n-j)=0$ for $j=1,2, \ldots, n$. Thus we have again $f_{n}(x)=q^{n} x^{n}$.

On the other hand if we put $p(n, n-s)=k_{n}$ for all n then we make the assertion that for $r=1,2,3, \ldots$

$$
\begin{equation*}
p(n, n-r s)=\frac{k_{n} k_{n-s} \cdots k_{n-r s+s}}{r!} q^{\frac{l}{r}(r-1) s-(r-1) n} \tag{2.4}
\end{equation*}
$$

The proof of this assertion can be carried out by induction on r.
To summarize we state:
Theorem. The solutions of the functional equations

$$
f_{n}(f(x))=b^{n} f_{n}(c x) \quad(n=0,1,2, \ldots)
$$

for $f \in \Pi$ and b and c real are given by
(i) In case either $b=1$ or $c=1$ or in case $b^{s}-1-(b c)^{s} \neq 0$ for all integer $s: f_{n}(x)=(b c)^{n} x^{n}$.
(ii) In case $b^{s}-1-(b c)^{s}=0$, putting $b c=q$, we have

$$
\begin{equation*}
f_{n}(x)=\sum_{r=0}^{(n / s)} \frac{k_{n} k_{n-s} \cdots k_{n-r s+s}}{r!} q^{\frac{1}{2}(r-1)(r s-2 n)} x^{n-r s} \tag{2.5}
\end{equation*}
$$

for an arbitrary sequence $\left\{k_{n}\right\}$.
In (2.5) the coefficient of x^{n} is to be q^{n}.
In case $q=1$ we put $k_{s n+m}=\alpha_{n}^{(m)} \neq 0(m=0,1, \ldots, s-1)$. Then we can write

$$
f_{s n+m}(x)=\sum_{r=0}^{n} \frac{\alpha_{n}^{(m)} \alpha_{n-1}^{(m)} \cdots \alpha_{n-r+1}^{(m)}}{r!} x^{s n+m-r s}
$$

which yields the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{f_{s n+m}(x)}{\alpha_{0}^{(m)} \alpha_{1}^{(m)} \cdots \alpha_{n}^{(m)}} t^{n}=x^{m} e^{t} \psi_{m}\left(x^{s} t\right) \quad(m=0,1, \ldots, s-1) \tag{2.6}
\end{equation*}
$$

where $\psi_{m}(u)$ is a formal power series with non-zero coefficients. Replacing t by t^{s} and multiplying (2.6) by t^{m} for $m=0,1,2, \ldots, s-1$ and adding the resulting equations we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{f_{n}(x)}{c_{0} c_{1} \cdots c_{n}} t^{n}=e^{t^{s}} \Phi(x t) \tag{2.7}
\end{equation*}
$$

where $c_{n}=\alpha_{k}^{(m)}$ if $n=s k+m$. Note that these polynomials are known as Brenke polynomials.

Special cases.
(i) If $b=\sqrt{ } 5, c=2 / \sqrt{ } 5$ so that $q=2$ and $s=2$ and if we put further $k_{n}=$ $-2^{n-2} n(n-1)$ we get $f_{n}(x)=H_{n}(x)$, the Hermite polynomials.
(ii) In case $b-1-b c=0$ so that $s=1$ we have if we also assume that $k_{n}=c_{n}=n\left(1-q^{n}\right)$ we get

$$
f_{n}(x)=\sum_{r=0}^{n}\binom{n}{r}\left[\begin{array}{l}
n \\
r
\end{array}\right](q)_{r} q^{\frac{1}{r}(r-1)-(r-1) n} x^{n-r}
$$

where $\left[\begin{array}{l}n \\ r\end{array}\right]$ is the q-binomial coefficient defined by

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]=\prod_{j=1}^{r} \frac{1-q^{n-j+1}}{\left(1-q^{i}\right)}
$$

Reference

E. D. Rainville, Special Functions, New York, 1960.

Department of Mathematics
University of Alberta
Edmonton, Alberta, Canada
T6G 2G1

