ON A FUNCTIONAL EQUATION

BY

NADHLA A. AL-SALAM AND WALEED A. AL-SALAM

1. Introduction. Let P stand for a polynomial set (p.s.), i.e., a sequence $\{P_0(x), P_1(x), P_2(x), \ldots\}$ such that for each $n P_n(x)$ is a polynomial in x of exact degree n and $P_0(x) \neq 0$. We refer to $P_n(x)$ as the nth component of P.

In this note we consider the set Π of all polynomial sets in which multiplication is defined in the following sense: if $P \in \Pi$, $Q \in \Pi$ such that $P_n(x) = \sum_{k=0}^{n} p(n, k)x^k$ then PQ is defined as the polynomial set whose *n*th component is given by $P_n(Q) = \sum_{k=0}^{n} p(n, k)Q_k(x)$. An interesting example of such umbral composition of polynomial sets is furnished by the Hermite polynomials defined by

$$\sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!} = e^{2xt-t^2}.$$

For this set it is well known [1, p. 246] that

$$H_n(H) = 5^{\frac{1}{2}n} H_n\left(\frac{2}{\sqrt{5}}x\right) \qquad (n = 0, 1, 2, ...)$$

In this note we examine the functional equations

(1.1)
$$f_n(f(x)) = b^n f_n(cx)$$
 $(n = 0, 1, 2, ...)$

where b and c are real constants and find all solutions of (1.1) in the set Π . Clearly the Hermite case arises when $b = \sqrt{5}$ and $c = 2/\sqrt{5}$. We must assume that $b \neq 0$ and $c \neq 0$.

In the following we shall always take q = bc.

2. Solution of (1.1). Put

(2.1)
$$f_n(x) = \sum_{k=0}^n p(n, k) x^k \qquad p(n, n) \neq 0.$$

Substituting in (1.1) and equating coefficients of powers of x we get that

(2.2)
$$\sum_{k=j}^{n} p(n,k)p(k,j) = b^{n}c^{j}p(n,j) \qquad (j=0,1,\ldots,n).$$

The case j = n leads to $p(n, n) = (bc)^n = q^n$. Next we move the k = j and k = n

Received by the editors March 13, 1978.

terms to the right hand side to get after some rearrangements

(2.3)
$$p(n, n-j)q^{n-j}(b^j-1-q^j) = \sum_{k=0}^{j-2} p(n, n-j+k+1)p(n-j+k+1, n-j).$$

It is easy to see that b=1 leads to $f_n(x) = c^n x^n$. Similarly if c=1 then $f_n(x) = b^n x^n$. Thus we may assume that $b \neq 1$ and $c \neq 1$.

Next if there is no positive integer s so that $b^s - 1 - q^s = 0$ then putting j = 1 in (2.3) we get that p(n, n-1) = 0 and, by induction, that p(n, r) = 0 $r \neq n$. Hence in this case $f_n(x) = q^n x^n$.

Finally assume that there is an integer $s \ge 1$ so that $b^s - 1 - q^s = 0$. It is easy to see that in this case $b^r - 1 - q^r \ne 0$ for all non-negative integers $r \ne s$.

Now (2.3) implies that $p(n, n-1) = p(n, n-2) = \cdots = p(n, n-s+1) = 0$. If we further assume that p(n, n-s) = 0 then all p(n, n-j) = 0 for j = 1, 2, ..., n. Thus we have again $f_n(x) = q^n x^n$.

On the other hand if we put $p(n, n-s) = k_n$ for all n then we make the assertion that for r = 1, 2, 3, ...

(2.4)
$$p(n, n-rs) = \frac{k_n k_{n-s} \cdots k_{n-rs+s}}{r!} q^{\frac{1}{2}r(r-1)s-(r-1)n}$$

The proof of this assertion can be carried out by induction on r.

To summarize we state:

THEOREM. The solutions of the functional equations

$$f_n(f(x)) = b^n f_n(cx)$$
 $(n = 0, 1, 2, ...)$

for $f \in \Pi$ and b and c real are given by

(i) In case either b = 1 or c = 1 or in case $b^s - 1 - (bc)^s \neq 0$ for all integer $s: f_n(x) = (bc)^n x^n$.

(ii) In case $b^s - 1 - (bc)^s = 0$, putting bc = q, we have

(2.5)
$$f_n(x) = \sum_{r=0}^{(n/s)} \frac{k_n k_{n-s} \cdots k_{n-rs+s}}{r!} q^{\frac{1}{2}(r-1)(rs-2n)} x^{n-rs}$$

for an arbitrary sequence $\{k_n\}$.

In (2.5) the coefficient of x^n is to be q^n .

In case q = 1 we put $k_{sn+m} = \alpha_n^{(m)} \neq 0$ (m = 0, 1, ..., s - 1). Then we can write

$$f_{sn+m}(x) = \sum_{r=0}^{n} \frac{\alpha_n^{(m)} \alpha_{n-1}^{(m)} \cdots \alpha_{n-r+1}^{(m)}}{r!} x^{sn+m-rs}$$

which yields the generating function

(2.6)
$$\sum_{n=0}^{\infty} \frac{f_{sn+m}(x)}{\alpha_0^{(m)} \alpha_1^{(m)} \cdots \alpha_n^{(m)}} t^n = x^m e^t \psi_m(x^s t) \qquad (m = 0, 1, \dots, s-1)$$

June

where $\psi_m(u)$ is a formal power series with non-zero coefficients. Replacing t by t^s and multiplying (2.6) by t^m for m = 0, 1, 2, ..., s - 1 and adding the resulting equations we get

(2.7)
$$\sum_{n=0}^{\infty} \frac{f_n(x)}{c_0 c_1 \cdots c_n} t^n = e^{t^*} \Phi(xt)$$

where $c_n = \alpha_k^{(m)}$ if n = sk + m. Note that these polynomials are known as Brenke polynomials.

SPECIAL CASES.

(i) If $b = \sqrt{5}$, $c = 2/\sqrt{5}$ so that q = 2 and s = 2 and if we put further $k_n = -2^{n-2}n(n-1)$ we get $f_n(x) = H_n(x)$, the Hermite polynomials.

(ii) In case b-1-bc=0 so that s=1 we have if we also assume that $k_n = c_n = n(1-q^n)$ we get

$$f_n(x) = \sum_{r=0}^n \binom{n}{r} \binom{n}{r} \binom{n}{r} q_r^{\frac{1}{2}r(r-1)-(r-1)n} x^{n-r}$$

where $\begin{bmatrix} n \\ r \end{bmatrix}$ is the q-binomial coefficient defined by

$$\begin{bmatrix} n \\ r \end{bmatrix} = \prod_{j=1}^{r} \frac{1-q^{n-j+1}}{(1-q^{j})}.$$

REFERENCE

E. D. Rainville, Special Functions, New York, 1960.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ALBERTA EDMONTON, ALBERTA, CANADA T6G 2G1