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Abstract
We write arbitrary separable nuclear C∗-algebras as limits of inductive systems of finite-dimensional C∗-algebras
with completely positive connecting maps. The characteristic feature of such CPC∗-systems is that the maps
become more and more orthogonality preserving. This condition makes it possible to equip the limit, a priori only
an operator space, with a multiplication turning it into a C∗-algebra. Our concept generalizes the NF systems of
Blackadar and Kirchberg beyond the quasidiagonal case.
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Introduction

Nuclear C∗-algebras are those for which the identity map can be approximated in point norm topology by
completely positive contractions through finite-dimensional C∗-algebras. More formally, a C∗-algebra
A has the completely positive approximation property if there are a net (𝐹𝜆)𝜆∈Λ of finite-dimensional
C∗-algebras and completely positive contractive (c.p.c.) maps

𝐴
𝜓𝜆
−−→ 𝐹𝜆

𝜑𝜆
−−→ 𝐴

such that 𝜑𝜆 ◦ 𝜓𝜆 converges pointwise in norm to the identity map id𝐴. For separable C∗-algebras (the
case we are mostly interested in in this paper), one can always restrict to systems of approximations
with countable index sets. Upon composing such approximations one obtains a system of the form

. . . 𝐴 𝐴 𝐴 𝐴 . . .

. . . 𝐹𝑛−1 𝐹𝑛 𝐹𝑛+1 . . .

id𝐴

𝜓𝑛−1

id𝐴

𝜓𝑛

id𝐴

𝜓𝑛+1𝜑𝑛−1

𝜌𝑛,𝑛−1

𝜑𝑛

𝜌𝑛+1,𝑛

𝜑𝑛+1
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2 K. Courtney and W. Winter

with commuting lower triangles, 𝜌𝑛,𝑛−1 � 𝜓𝑛 ◦ 𝜑𝑛−1, and approximately commuting upper triangles
(i.e., 𝜑𝑛 ◦ 𝜓𝑛 −→ id𝐴 in point-norm topology). The sequence of upper triangles (𝐴, 𝜑𝑛 ◦ 𝜓𝑛)𝑛 may be
regarded as an inductive system in the category of operator spaces with c.p.c. maps as morphisms, and
with the inductive limit again being an operator space, more precisely a self-adjoint subspace of the
sequence algebra 𝐴∞ =

∏
𝑛 𝐴/

⊕
𝑛 𝐴, the quotient of bounded sequences modulo null sequences in A.

At least after passing to a subsystem (so that the approximation errors become summable on larger and
larger subsets), this inductive limit will agree with the embedding of A into 𝐴∞ as constant sequences,
and in particular, it will indeed be a C∗-algebra. In this situation, it is then reasonable to expect that the
lower row

. . . 𝐹𝑛−1 𝐹𝑛 𝐹𝑛+1 . . .
𝜌𝑛,𝑛−1 𝜌𝑛+1,𝑛

also encodes all pertinent information about A. This is a tempting point of view, since it would allow one
to write any separable nuclear C∗-algebra as an inductive limit of finite-dimensional ones in a suitable
category: Such a limit, say X, will be contained in the sequence algebra 𝐹∞ =

∏
𝑛 𝐹𝑛/

⊕
𝑛 𝐹𝑛. It can be

described as (the norm closure of) the union
⋃

𝑛 𝜌𝑛 (𝐹𝑛), where 𝜌𝑛 : 𝐹𝑛 −→ 𝐹∞ denotes the limit map
for each n, and there will be an induced c.p.c. isometry Ψ : 𝐴 −→ 𝑋 . The space X will certainly reflect
the linear structure of A and also the order (even after passing to matrix amplifications), since the maps
involved are completely positive. It will, however, in general not be a sub-C∗-algebra of 𝐹∞, and the
map Ψ will not be multiplicative.

Studying operator algebras as inductive limits has a long history, spanning from Murray and von
Neumann’s work on hyperfiniteness in [18] to semidiscreteness and Connes’ celebrated classification
of injective II1 factors ([7]) on the von Neumann algebra side, and featuring the classification of UHF,
AF, AT and AH algebras on the C∗-algebra side (see [8, 9, 10]). Inductive limits have been used to
construct fundamental C∗-algebras with prescribed structural, K-theoretic and tracial data, such as the
Jiang–Su Algebra Z [13, 21] and the Razak–Jacelon Algebra W [12]. More recently, inductive limits of
Cartan pairs as described in [2] were used in [17] to show that all classifiable stably-finite C∗-algebras
admit groupoid models. The inductive systems appearing in these results all have ∗-homomorphisms as
connecting maps. This entails that, at least on the C∗-algebra side, one has to admit more complicated
building block algebras than just finite-dimensional ones in order to reach a reasonable bandwidth of
examples. (Often one uses algebras built from bundles of finite-dimensional C∗-algebras over locally
compact spaces, which poses limitations on the existence of sufficiently many connecting maps.)

In this paper, we explore how to relax conditions on the connecting maps while keeping the building
blocks finite-dimensional, and hence as easy as possible. Our Ansatz is it to write an arbitrary separable
nuclear C∗-algebra as an inductive limit of finite-dimensional C∗-algebras in the category of operator
spaces. In order to be conceptually satisfactory and to give access to applications, such an approach
would have to meet some minimal requirements: One needs to be able to recover the C∗-algebra structure
from the operator system X (or from the inductive system, for that matter) in a practical way, and one
needs to be able to concisely describe the limit operator spaces arising in this manner. There are,
however, two obstacles to overcome.

First, the connecting maps 𝜌𝑛,𝑛−1 can in general not be arranged to be multiplicative, not even
approximately: requiring multiplicativity would only grant access to AF algebras, a small albeit
interesting subclass of nuclear C*-algebras. In [4], Blackadar and Kirchberg suggested the notion of
NF systems, which incorporates a certain type of asymptotic multiplicativity and which covers the
substantially larger class of NF algebras. While much broader than AF algebras, this class is still far
from covering all nuclear C∗-algebras. Therefore, we are looking for a notion of inductive systems of
finite-dimensional C∗-algebras which is sufficiently flexible in the sense that every separable nuclear
C∗-algebra can be written as the inductive limit of such a system, while at the same, time it is rigid
enough to encode not only the linear and matrix order structure, but also the multiplicative structure of
an initially given C∗-algebra. It will be important that the algebraic structure is not only encoded in the
system, but that it can actually be accessed and extracted in a meaningful and sufficiently concrete way.
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Second, assuming one has a notion of inductive systems as above, we need to distinguish them from
arbitrary inductive systems of finite-dimensional C∗-algebras in the category of operator spaces. Ideally,
we will want to derive an intrinsic characterization of the respective limits. (Theoretically, one could
compare the limit to every C∗-algebra and check for the existence of an isomorphism in a suitable sense,
but such an extrinsic characterization would be unsatisfactory both conceptually and practically, since
it would largely obscure any information related to the finite-dimensional approximations.)

The aforementioned notion of NF algebras as introduced by Blackadar and Kirchberg addresses the
first obstacle and reveals a subtle facet of the second.

Definition [4]. A system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 consisting of a sequence (𝐹𝑛)𝑛 of finite-dimensional C∗-algebras
together with c.p.c. connecting maps 𝜌𝑛+1,𝑛 : 𝐹𝑛 −→ 𝐹𝑛+1 is called an NF system if it is asymptotically
multiplicative in the sense that for any 𝜀 > 0, 𝑘 ≥ 0 and 𝑥, 𝑦 ∈ 𝐹𝑘 , there exists an 𝑀 > 𝑘 so that for all
𝑚 > 𝑛 > 𝑀 , we have

‖𝜌𝑚,𝑛
(
𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)

)
− 𝜌𝑚,𝑛

(
𝜌𝑛,𝑘 (𝑥)

)
𝜌𝑚,𝑛

(
𝜌𝑛,𝑘 (𝑦)

)
‖ < 𝜀. (a)

The limit of such a system is indeed a sub-C∗-algebra of 𝐹∞, with product given by

𝜌𝑘 (𝑥)𝜌𝑘 (𝑦) = lim
𝑛

𝜌𝑛
(
𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)

)
(b)

for any 𝑘 ≥ 0 and 𝑥, 𝑦 ∈ 𝐹𝑘 . Therefore, asymptotic multiplicativity of the involved connecting maps
does encode the multiplicative structure of the limit, thus addressing the first obstacle above.

Blackadar and Kirchberg then characterize limits of NF systems, so-called NF algebras, as nuclear
and quasidiagonal C∗-algebras. While this is a large and highly relevant class of C∗-algebras, it is not
closed under taking quotients or extensions, which restricts the range of applications of NF systems
considerably. This is subtly related to the fact that quasidiagonality is an external approximation property,
characterized extrinsically, in terms of comparison maps into other C∗-algebras.

We propose here a generalization of NF systems which permits to encode the multiplicative structure
of the limit in terms of the connecting maps between its finite dimensional approximands, yet renders
access to all separable nuclear C∗-algebras, and therefore allows for an intrinsic characterization. As the
key feature of our main definition, we ask the connecting maps to become more and more order zero,
thus replacing the asymptotic multiplicativity of NF systems. We recall from [24] that, for a c.p.c. map,
‘order zero’ just means ‘orthogonality preserving’, and that order zero c.p.c. maps remember a lot of
the multiplicative structure through formulae of the type 𝜃 (𝑥)𝜃 (𝑦𝑧) = 𝜃 (𝑥𝑦)𝜃 (𝑧). In case the domain is
unital, one can characterize order zero maps via

𝜃 (1)𝜃 (𝑦𝑧) = 𝜃 (𝑦)𝜃 (𝑧). (c)

Definition A (Definition 2.2). A system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 consisting of a sequence (𝐹𝑛)𝑛 of finite-
dimensional C∗-algebras along with c.p.c. connecting maps 𝜌𝑛+1,𝑛 : 𝐹𝑛 −→ 𝐹𝑛+1 is called a CPC∗-
system if it is asymptotically order zero in the sense that for any 𝜀 > 0, 𝑘 ≥ 0 and 𝑥, 𝑦 ∈ 𝐹𝑘 , there exists
an 𝑀 > 𝑘 so that for all 𝑚 > 𝑛, 𝑙 > 𝑀 , we have

‖𝜌𝑚,𝑙 (1𝐹𝑙 )𝜌𝑚,𝑛
(
𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)

)
− 𝜌𝑚,𝑛

(
𝜌𝑛,𝑘 (𝑥)

)
𝜌𝑚,𝑛

(
𝜌𝑛,𝑘 (𝑦)

)
‖ < 𝜀. (d)

Note that in view of (c), the approximate identity (d) may indeed be viewed as an order zero version
of (a). For inductive limits of such systems, one may still describe a product as in (b).

Proposition B (Proposition 2.6). Let 𝑋 ⊂ 𝐹∞ be the limit of a CPC∗-system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛. Then there
exists an associative bilinear map � : 𝑋 × 𝑋 −→ 𝑋 satisfying

𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦) = lim
𝑛

𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦))
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4 K. Courtney and W. Winter

for all 𝑘 ≥ 0 and 𝑥, 𝑦 ∈ 𝐹𝑘 , so that (𝑋, �) is a C∗-algebra with the involution and norm inherited as a
subspace of 𝐹∞.

We denote the C∗-algebra above by C∗
�(𝑋) and call it the CPC∗-limit of the system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛.

With a C∗-algebra structure established, the next question is: When is the limit nuclear? Thanks to
Ozawa and Sato’s ‘one-way-CPAP’ from [22, Theorem 5.1] (an approximation property which only
involves the upwards maps 𝜑𝑛), the answer is ‘always’. Remarkably, while CPC∗-limits readily satisfy
the one-way-CPAP, in order to arrive at nuclearity, the proof of [22, Theorem 5.1] first confirms that
C∗
�(𝑋)∗∗ is injective, which by Connes’ theorem implies that C∗

�(𝑋) is nuclear. Hence, this result is
non-constructive, meaning one does not build a completely positive approximation directly from the
system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛. This is in line with Blackadar and Kirchberg’s characterization of NF algebras as
the nuclear and quasidiagonal C∗-algebras, which involves the fact that nuclearity passes to quotients,
and hence also relies on Connes’ theorem and is non-constructive in a similar way.

As a converse, we show that any system of c.p.c. approximations of a separable nuclear C∗-algebra
A with approximately order zero downwards maps has a subsystem which gives rise to a CPC∗-system
with CPC∗-limit isomorphic to A. It follows implicitly from [4, 24] and explicitly from [5] that every
nuclear C∗-algebra does admit such a system of approximations.

Combining these results, we can now describe all separable nuclear C∗-algebras as inductive limits
of finite-dimensional C∗-algebras:

Theorem C. For a separable C∗-algebra A, the following are equivalent:

(i) A is nuclear.
(ii) A is ∗-isomorphic to a CPC∗-limit.

Proposition B shows how to extract the multiplicative structure from a CPC∗-limit, thus addressing
the first of the two issues raised above. As for the second, our description of CPC∗-systems and the
characterization of their limits is indeed an intrinsic one, not requiring any comparison with C∗-algebras
outside. In upcoming work, we will explore how to apply this notion practically, in particular how to
describe permanence properties of nuclearity and how to access K-theory in terms of CPC∗-systems.

The article is arranged as follows. Section 1 establishes results on c.p.c. and order zero maps that
will be used throughout. Some results in this section are well-known and some are new. In Section 2, we
define CPC∗-systems and prove (ii)=⇒(i) of Theorem C. Section 3 is dedicated to proving the reverse
implication, and Section 4 relates CPC∗-systems to NF systems.

1. Order zero maps and order embeddings

In this section, we highlight some properties of completely positive maps, with a particular focus on
order zero maps and on complete order embeddings.

We write 𝐴+ for the cone of positive elements of a C∗-algebra A, 𝐴1 and 𝐴1
+ for the respective closed

unit balls, 𝑋 ′ ∩ 𝐴 ⊂ 𝑀 for the relative commutant in A of a set X (with A and X both contained in a
larger C∗-algebra M), 𝐶𝐴 = 𝐶0 ((0, 1], 𝐴) for the cone, M𝑟 (𝐴) for 𝑟 × 𝑟 matrices over A, and M(𝐴) for
the multiplier algebra of A (regarded as a subalgebra of the double dual 𝐴∗∗).

Definition 1.1. Let A and B be C∗-algebras with self-adjoint subspaces 𝑋 ⊂ 𝐴, 𝑌 ⊂ 𝐵 and 𝜃 : 𝑋 −→ 𝑌 a
linear map. We say 𝜃 is positive if 𝜃 (𝑥) ∈ 𝑌 ∩𝐵+ for all 𝑥 ∈ 𝑋∩ 𝐴+. We say it is completely positive (c.p.)
if this holds for all matrix amplifications 𝜃 (𝑟 ) : M𝑟 (𝑋) −→ M𝑟 (𝑌 ). We say 𝜃 is completely contractive
if sup𝑟 ≥1 ‖𝜃

(𝑟 ) ‖ ≤ 1. A map which is completely positive and completely contractive is referred to as
completely positive contractive (c.p.c.).

Remark 1.2. When 1𝐴 ∈ 𝑋 is a unital self-adjoint subspace of a unital C∗-algebra A (what is usually
called an operator (sub)system), then for any c.p. map 𝜃 : 𝑋 −→ 𝑌 , we have

‖𝜃‖ ≤ sup
𝑟 ≥1

‖𝜃 (𝑟 ) ‖ ≤ ‖𝜃 (1𝐴)‖.
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It follows that any completely positive and contractive map from a unital self-adjoint subspace of a
C∗-algebra is automatically completely contractive. The respective statement holds when A is a (not
necessarily unital) C∗-algebra.

A particularly special class of completely positive maps consists of orthogonality preserving or order
zero maps. At the end of this section, we will highlight several properties that order zero maps share
with ∗-homomorphisms and that may fail for general c.p.c. maps.

Definition 1.3. A c.p. map 𝜃 : 𝐴 −→ 𝐵 between C∗-algebras is order zero if it maps orthogonal elements
to orthogonal elements, or equivalently if for any 𝑎, 𝑏 ∈ 𝐴+,

𝑎𝑏 = 0 =⇒ 𝜃 (𝑎)𝜃 (𝑏) = 0.

Examples of c.p. order zero maps include ∗-homomorphisms, but there exist c.p. order zero maps
which are not multiplicative, such as the canonical embedding 𝜄 : 𝐴 −→ 𝐶𝐴 of a C∗-algebra into its
cone. Nonetheless, order zero maps are remarkably close to ∗-homomorphisms, as is made evident by
the structure theorem for c.p. order zero maps [24, Theorem 3.3]. The following rendition combines
elements of [24, Theorem 3.3] and [24, Proposition 3.2].

Theorem 1.4 (Structure theorem for order zero maps [24]). Let A and B be C∗-algebras, 𝜃 : 𝐴 −→ 𝐵
a c.p. order zero map, 𝐶 = C∗(𝜃 (𝐴)), {𝑢𝜆}𝜆 an increasing approximate identity for A, and
ℎ = s.o.- lim𝜆 𝜃 (𝑢𝜆) ∈ 𝐶∗∗. Then 0 ≤ ℎ ∈ M(𝐶) ∩ 𝐶 ′ ⊂ 𝐶∗∗ with ‖ℎ‖ = ‖𝜃‖, and there exists a
∗-homomorphism 𝜋𝜃 : 𝐴 −→ M(𝐶) so that for all 𝑎 ∈ 𝐴,

𝜃 (𝑎) = ℎ𝜋𝜃 (𝑎) = ℎ1/2𝜋𝜃 (𝑎)ℎ
1/2.

Remarks 1.5. (i) ([24, Proposition 3.2]) When A is unital, we have ℎ = 𝜃 (1𝐴), and in general, the map
𝜃∼ : 𝐴∼ −→ M(𝐶) given by 𝜃∼(𝑎 + 𝜆1𝐴∼) = 𝜃 (𝑎) + 𝜆ℎ is the unique c.p. order zero extension of 𝜃. (By
𝐴∼ we denote the minimal unitization of A, so that 𝐴∼ = 𝐴 when A is unital.) In any case, ℎ ≥ 𝜃 (𝑎)
for all 𝑎 ∈ 𝐴1

+. Note that for 𝜃∼ to be order zero, one can replace h with 1M(𝐶) only if 𝜃 is in fact
multiplicative, since u.c.p. order zero maps are automatically ∗-homomorphisms.

(ii) The structure theorem for order zero maps gives a useful characterization of when a c.p. map with
unital domain is order zero: Assume A and B are C∗-algebras with A unital. Then a c.p. map 𝜃 : 𝐴 −→ 𝐵
is order zero if and only if 𝜃 (𝑎)𝜃 (𝑏) = 𝜃 (1𝐴)𝜃 (𝑎𝑏) for all 𝑎, 𝑏 ∈ 𝐴.

Definition 1.6. Let A and B be C∗-algebras and 𝑋 ⊂ 𝐴, 𝑌 ⊂ 𝐵 two self-adjoint subspaces. We
say a linear map 𝜃 : 𝑋 −→ 𝑌 is a complete order embedding if 𝜃 is c.p. and completely isometric
with c.p. inverse 𝜃−1 : 𝜃 (𝑋) −→ 𝐴 (i.e., for all 𝑟 ≥ 1, 𝜃 (𝑟 ) : M𝑟 (𝑋) −→ M𝑟 (𝑌 ) is isometric and
𝑥 ∈ M𝑟 (𝑋) ∩ M𝑟 (𝐴)+ ⇐⇒ 𝜃 (𝑟 ) (𝑥) ∈ M𝑟 (𝑌 ) ∩ M𝑟 (𝐵)+ for all 𝑥 ∈ M𝑟 (𝑋)). A surjective complete
order embedding is called a complete order isomorphism.

Remarks 1.7. (i) A complete order isomorphism between C∗-algebras is automatically a ∗-isomorphism
(cf. [3, Theorem II.6.9.17]).

(ii) If 𝑋 = 𝐴 and 𝜃 : 𝐴 −→ 𝑌 ⊂ 𝐵 is c.p. and completely isometric, then it is automatically a complete
order embedding: If 𝜃 (𝑎) ≥ 0 for some 0 ≠ 𝑎 ∈ 𝐴1, then 𝑎 = 𝑎∗ since 𝜃 is injective and ∗-linear.
If 𝑎− ≠ 0, then for 𝑏 � ‖𝑎 ‖

‖𝑎− ‖
𝑎− + 𝑎+, we have

‖𝑎‖ + ‖𝑎−‖ = ‖𝑏 − 𝑎‖

= ‖𝜃 (𝑏) − 𝜃 (𝑎)‖

≤ ‖‖𝜃 (𝑏)‖1𝐵∼ − 𝜃 (𝑎)‖

= ‖‖𝜃 (𝑎)‖1𝐵∼ − 𝜃 (𝑎)‖

≤ ‖𝜃 (𝑎)‖

= ‖𝑎‖,
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a contradiction, so a was positive. The respective argument applies when a lives in some matrix algebra
over A, whence indeed the inverse of 𝜃 is completely positive.

(iii) An isometric c.p. map 𝜃 : 𝐴 −→ 𝐵 between C∗-algebras which is not surjective and not unital
may fail to be a complete order embedding – even if it has a c.p. inverse 𝜃−1 : 𝜃 (𝐴) −→ 𝐴. We will work
out such an example in forthcoming work. The proposition below shows that for all order zero maps,
this issue does not occur. We will use this in Proposition 2.7.

Proposition 1.8. Suppose 𝜃 : 𝐴 −→ 𝐵 is a c.p. order zero map between C∗-algebras A and B. Then 𝜃 is
isometric if and only if it is a complete order embedding.

Proof. A complete order embedding is by definition isometric, so we only need to show that an isometric
c.p. order zero map 𝜃 : 𝐴 → 𝐵 is a complete order embedding; by Remark 1.7(ii), this reduces to showing
that 𝜃 is completely isometric. Without loss of generality, we assume 𝐵 = C∗(𝜃 (𝐴)). Let 𝜄 : 𝐴 −→ 𝐶𝐴
denote the canonical embedding 𝑎 ↦→ id(0,1]) ⊗ 𝑎 of A into its cone. Then by [24, Corollary 4.1], 𝜃
induces a surjective ∗-homomorphism 𝜃 : 𝐶𝐴 −→ 𝐵 so that 𝜃 ◦ 𝜄 = 𝜃.

Set 𝜋 : 𝐵 −→ 𝐵/𝜃 (𝑆𝐴) and �̂� � 𝜋 ◦ 𝜃 : 𝐶𝐴 −→ 𝐵/𝜃 (𝑆𝐴), where 𝑆𝐴 � 𝐶0 ((0, 1)) ⊗ 𝐴 �
𝐶0 ((0, 1), 𝐴) denotes the suspension of A. Then there exists a surjective ∗-homomorphism 𝜑 : 𝐴 −→

𝐵/𝜃 (𝑆𝐴) so that �̂� = 𝜑 ◦ ev1. Altogether, we have the commutative diagram

𝐴 𝐵

𝐶𝐴 𝐵/𝜃 (𝑆𝐴)

𝐴

𝜄

𝜃

𝜋𝜃

�̂�

ev1
𝜑

∗-hom

.

We claim that 𝜑 is injective. If so, then we have 𝜑−1◦𝜋◦𝜃 = id𝐴, and hence, (𝜑−1) (𝑟 ) ◦𝜋 (𝑟 ) ◦𝜃 (𝑟 ) = id(𝑟 )
𝐴

for each 𝑟 ≥ 1. Since 𝜑−1 and 𝜋 are in this case completely contractive, it will then follow that 𝜃 must
be completely isometric.

It suffices to check injectivity on 𝐴+, and so we fix 𝑎 ∈ 𝐴+ with ‖𝑎‖ = 1. Let 𝜌 ∈ 𝑆(𝐵) be a pure
state on B with ‖𝜃 (𝑎)‖ = 𝜌(𝜃 (𝑎)). Then 𝜌 ◦ 𝜃 is a pure state on 𝐶𝐴, and hence, its restriction to the
algebraic tensor product 𝐶0 ((0, 1]) � 𝐴 is of the form ev𝑡 ⊗ 𝜌 for some 𝑡 ∈ (0, 1] and some (pure) state
𝜌𝐴 on A. Since

1 = ‖𝑎‖ = ‖𝜃 (𝑎)‖ = 𝜌 ◦ 𝜃 (id(0,1] ⊗ 𝑎) = 𝑡𝜌𝐴(𝑎) ≤ 𝜌𝐴(𝑎) ≤ ‖𝑎‖,

we must have 𝑡 = 1. In particular, 𝑆𝐴 ⊂ ker(𝜌 ◦ 𝜃), and hence, 𝜃 (𝑆𝐴) ⊂ ker(𝜌). Since 𝜌(𝜃 (𝑎)) = 1, we
conclude that 𝜃 (𝑎) ∉ 𝜃 (𝑆𝐴), and so 𝜑(𝑎) ≠ 0. �

2. CPC∗-systems and their limits

Recall from Remark 1.5(ii) that for C∗-algebras A and B with A unital a c.p.c. map 𝜃 : 𝐴 −→ 𝐵 is
order zero precisely when 𝜃 (𝑎)𝜃 (𝑏) = 𝜃 (1𝐴)𝜃 (𝑎𝑏) for all 𝑎, 𝑏 ∈ 𝐴. The following definition gives an
asymptotic version of this characterization.

Definition 2.1. Given a sequence of C∗-algebras (𝐹𝑛)𝑛, we let

𝐹∞ �
∏

𝐹𝑛/
⊕

𝐹𝑛

be the quotient C∗-algebra of norm bounded sequences modulo null sequences, denoting elements of
the quotient in the form [(𝑥𝑛)𝑛].
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If in addition we have c.p.c. connecting maps 𝜌𝑛+1,𝑛 : 𝐹𝑛 −→ 𝐹𝑛+1 for all 𝑛 ≥ 0, we set 𝜌𝑚,𝑛 �
𝜌𝑚,𝑚−1 ◦ . . . ◦ 𝜌𝑛+1,𝑛 and 𝜌𝑛,𝑛 = id𝐹𝑛 for all 𝑚 > 𝑛 ≥ 0, and define induced maps 𝜌𝑛 : 𝐹𝑛 −→ 𝐹∞ by

𝜌𝑛 (𝑥) = [(𝜌𝑚,𝑛 (𝑥))𝑚>𝑛]

for all 𝑥 ∈ 𝐹𝑛 and define the inductive limit of the system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 to be the closed self-adjoint
subspace

(𝐹𝑛, 𝜌𝑛)𝑛 �
⋃

𝑛𝜌𝑛 (𝐹𝑛) ⊂ 𝐹∞.

In general, such an inductive limit exists in the category of operator spaces; in order to equip it with
the structure of a C∗-algebra, one needs additional hypotheses.

Definition 2.2. Let (𝐹𝑛)𝑛 be a sequence of finite-dimensional C∗-algebras together with c.p.c. maps
𝜌𝑛+1,𝑛 : 𝐹𝑛 −→ 𝐹𝑛+1 for all 𝑛 ≥ 0. We call (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 a CPC∗-system if for any 𝑘 ≥ 0, 𝑥, 𝑦 ∈ 𝐹𝑘 , and
𝜀 > 0, there exists 𝑀 > 𝑘 so that for all 𝑚 > 𝑛, 𝑙 > 𝑀 ,

‖𝜌𝑚,𝑙 (1𝐹𝑙 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)) − 𝜌𝑚,𝑘 (𝑥)𝜌𝑚,𝑘 (𝑦)‖ < 𝜀. (2.1)

In this situation, we call the limit (𝐹𝑛, 𝜌𝑛)𝑛 a CPC∗-limit.

The aim of this section is to prove that a CPC∗-limit can be turned, in a very robust sense, into a
C∗-algebra (Proposition 2.6), denoted by C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
, which is nuclear (Theorem 2.13), and such

that the map Θ � id
(𝐹𝑛 ,𝜌𝑛) 𝑛

: C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
−→ 𝐹∞ is an order zero complete order embedding

(Proposition 2.7). We begin by accumulating some tools and observations.
Systems as in Definition 2.1 involve c.p.c. maps; hence, they are clearly compatible with taking

matrix amplifications. It is slightly less obvious that the process of lifting individual elements of the
inductive limit is also compatible with the system in the following sense.

Lemma 2.3. Let (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 be a system as in Definition 2.1. For any 𝑟 ≥ 1 and 𝑥 ∈ M𝑟
(
(𝐹𝑛, 𝜌𝑛)𝑛

)
,

if (𝑥𝑛)𝑛 ∈
∏

M𝑟 (𝐹𝑛) is some lift of 𝑥, then lim𝑛 ‖𝑥 − 𝜌 (𝑟 )
𝑛 (𝑥𝑛)‖ = 0.

Proof. Consider 𝑟 = 1 and fix 𝑥 ∈ (𝐹𝑛, 𝜌𝑛)𝑛, a lift (𝑥𝑛)𝑛 ∈
∏

𝐹𝑛 of 𝑥, and 𝜀 > 0. Let 𝑦𝑘 𝑗 ∈ 𝐹𝑘 𝑗 so that
𝑥 = lim 𝑗 𝜌𝑘 𝑗 (𝑦𝑘 𝑗 ). Since the maps are coherent, we can assume for simplicity that the 𝑘 𝑗 are increasing
and set 𝑦𝑛 � 𝜌𝑛,𝑘 𝑗 (𝑦𝑘 𝑗 ) for 𝑘 𝑗 < 𝑛 < 𝑘 𝑗+1. Then we have lim𝑛 𝜌𝑛 (𝑦𝑛) = 𝑥. Now fix 𝑘 > 0 so that
‖𝜌𝑘 (𝑦𝑘 ) − 𝑥‖ < 𝜀/4. Then we may choose 𝑀 > 𝑘 so that ‖𝜌𝑛,𝑘 (𝑦𝑘 ) − 𝑥𝑛‖ < 𝜀/2 for all 𝑛 > 𝑀 . Then
for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜌𝑚,𝑛 (𝑥𝑛) − 𝑥𝑚‖ ≤ ‖𝜌𝑚,𝑛 (𝑥𝑛 − 𝜌𝑛,𝑘 (𝑦𝑘 ))‖ + ‖𝜌𝑚,𝑘 (𝑦𝑘 ) − 𝑥𝑚‖

≤ ‖𝑥𝑛 − 𝜌𝑛,𝑘 (𝑦𝑘 )‖ + ‖𝜌𝑚,𝑘 (𝑦𝑘 ) − 𝑥𝑚‖

< 𝜀.

It follows that lim𝑛 𝜌𝑛 (𝑥𝑛) = [(𝑥𝑛)𝑛] = 𝑥.
Note that the argument for 𝑟 = 1 uses only that the maps 𝜌𝑚,𝑛 are coherent and c.p.c., which is also

true for their matrix amplifications, and so the exact same proof goes through for 𝑟 ≥ 1. �

A key tool for us will be a distinguished matrix order unit1 for the limit of a CPC∗-system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛,
which we define to be

𝑒 � [(𝜌𝑛+1,𝑛 (1𝐹𝑛 ))𝑛] ∈ 𝐹∞. (2.2)

1This terminology is justified by Lemma 2.5(ii).
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Note that we do not in general assume that e is an element of (𝐹𝑛, 𝜌𝑛)𝑛. That latter situation would
correspond to C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
being unital (with 𝑒 = lim𝑛 𝜌𝑛 (1𝐹𝑛 )), in which case, (2.1) can be slightly

simplified by eliminating the variable l.
We also set

𝑒 (𝑟 ) � [(𝜌 (𝑟 )
𝑛+1,𝑛 (1M𝑟 (𝐹𝑛) )𝑛] ∈ M𝑟 (𝐹∞), for 𝑟 ≥ 1.

Remark 2.4. Note that (2.1) implies that for any 𝑘 ≥ 0 and 𝑥, 𝑦 ∈ 𝐹𝑘 , we have

𝜌𝑘 (𝑥)𝜌𝑘 (𝑦) = lim
𝑛

𝑒𝜌𝑛
(
𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)

)
.

The following lemma will allow us to interpret e as a commuting nondegenerate order unit for
(𝐹𝑛, 𝜌𝑛)𝑛.

Lemma 2.5. Let (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 be a CPC∗-system, and let e be as defined in (2.2).

(1) For each 𝑘 ≥ 0, 𝑥 ∈ 𝐹𝑘 and 𝜀 > 0, there exists 𝑀 > 𝑘 so that for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑘 (𝑥) − 𝜌𝑚,𝑘 (𝑥)𝜌𝑚,𝑛 (1𝐹𝑛 )‖ < 𝜀.

In particular, 𝑒 ∈
(
(𝐹𝑛, 𝜌𝑛)𝑛

) ′.
(2) For any 𝑟 ≥ 1 and any self-adjoint 𝑥 ∈ M𝑟 ((𝐹𝑛, 𝜌𝑛)𝑛), we have ‖𝑥‖𝑒 (𝑟 ) ≥ 𝑥 in M𝑟 (𝐹∞).
(3) For any 𝑥 ∈ (𝐹𝑛, 𝜌𝑛)𝑛 and any 𝑗 ≥ 1, we have ‖𝑒 𝑗𝑥‖ = ‖𝑥‖. In particular, for any 𝑥, �̄� ∈ (𝐹𝑛, 𝜌𝑛)𝑛

and 𝑗 ≥ 1, if 𝑒 𝑗𝑥 = 𝑒 𝑗 �̄�, then 𝑥 = �̄�.

Proof. For (i), we fix 𝑘 ≥ 0, 𝑥 ∈ 𝐹𝑘 and 𝜀 > 0; without loss of generality, it suffices to assume 𝑥 ∈ (𝐹𝑘 )
1
+ .

It follows from a standard functional calculus argument using polynomial approximations of 𝑡 ↦→ 𝑡1/2

on [0, 1] that we are finished when we find for any 𝜂 > 0 an 𝑀 > 𝑘 so that for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑘 (𝑥)
2 − 𝜌𝑚,𝑘 (𝑥)

2𝜌𝑚,𝑛 (1𝐹𝑛 )‖ < 𝜂. (2.3)

To that end, we utilize (2.1) to choose 𝑀 > 𝑘 so that for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2) − 𝜌𝑚,𝑘 (𝑥)

2‖ < 𝜂/6. (2.4)

Then we have

‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑘 (𝑥)
2 − 𝜌𝑚,𝑘 (𝑥)

2𝜌𝑚,𝑛 (1𝐹𝑛 )‖

≤ ‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑘 (𝑥)
2 − 𝜌𝑚,𝑛 (1𝐹𝑛 )

2𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2)‖

+ ‖𝜌𝑚,𝑛 (1𝐹𝑛 )
2𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)

2) − 𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2)𝜌𝑚,𝑛 (1𝐹𝑛 )‖

+ ‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2)𝜌𝑚,𝑛 (1𝐹𝑛 ) − 𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)

2)𝜌𝑚,𝑛 (1𝐹𝑛 )
2‖

+ ‖𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2)𝜌𝑚,𝑛 (1𝐹𝑛 )

2 − 𝜌𝑚,𝑘 (𝑥)
2𝜌𝑚,𝑛 (1𝐹𝑛 )‖

≤ ‖𝜌𝑚,𝑛 (1𝐹𝑛 )‖‖𝜌𝑚,𝑘 (𝑥)
2 − 𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)

2)‖

+ ‖𝜌𝑚,𝑛 (1𝐹𝑛 )‖‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2) − 𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)

2)𝜌𝑚,𝑛 (1𝐹𝑛 )‖

+ ‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2) − 𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)

2)𝜌𝑚,𝑛 (1𝐹𝑛 )‖‖𝜌𝑚,𝑛 (1𝐹𝑛 )‖

+ ‖
(
𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)

2)𝜌𝑚,𝑛 (1𝐹𝑛 ) − 𝜌𝑚,𝑘 (𝑥)
2)∗‖‖𝜌𝑚,𝑛 (1𝐹𝑛 )‖
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≤ 2‖𝜌𝑚,𝑘 (𝑥)
2 − 𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)

2)‖

+ 2‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2) − 𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)

2)𝜌𝑚,𝑛 (1𝐹𝑛 )‖

(2.4)
< 𝜂/3 + 2‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)

2) − 𝜌𝑚,𝑘 (𝑥)
2‖

+ 2‖𝜌𝑚,𝑘 (𝑥)
2 − 𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)

2)𝜌𝑚,𝑛 (1𝐹𝑛 )‖

= 𝜂/3 + 2‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2) − 𝜌𝑚,𝑘 (𝑥)

2‖

+ 2‖
(
𝜌𝑚,𝑘 (𝑥)

2 − 𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2)𝜌𝑚,𝑛 (1𝐹𝑛 )

)∗
‖

= 𝜂/3 + 4‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)
2) − 𝜌𝑚,𝑘 (𝑥)

2‖

(2.4)
< 𝜂,

which establishes (2.3) and hence (i).
For the order unit condition (ii), we first consider 𝑟 = 1. For any self-adjoint 𝑥 ∈ (𝐹𝑛, 𝜌𝑛)𝑛 and any

self-adjoint lift (𝑥𝑛)𝑛 ∈
∏

𝐹𝑛 of 𝑥, Lemma 2.3 tells us 𝑥 = lim𝑛 𝜌𝑛 (𝑥𝑛). Hence, it suffices to prove the
claim for 𝜌𝑘 (𝑥) for any fixed 𝑘 ≥ 0 and any self-adjoint 𝑥 ∈ 𝐹𝑘 . For each 𝑛 > 𝑘 , we have ‖𝜌𝑛,𝑘 (𝑥)‖1𝐹𝑛 ≥

𝜌𝑛,𝑘 (𝑥), and so ‖𝜌𝑛,𝑘 (𝑥)‖𝜌𝑛 (1𝐹𝑛 ) ≥ 𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)) = 𝜌𝑘 (𝑥). Since all the maps are c.p.c., it follows that
𝑒 ≥ 𝜌𝑛 (1𝐹𝑛 ) for all 𝑛 ≥ 0, and hence, ‖𝜌𝑛,𝑘 (𝑥)‖𝑒 ≥ 𝜌𝑘 (𝑥) for all 𝑛 > 𝑘 . Moreover, (‖𝜌𝑛,𝑘 (𝑥)‖)𝑛>𝑘 is
bounded and non-increasing, which means ‖𝜌𝑘 (𝑥)‖ = lim sup𝑛 ‖𝜌𝑛,𝑘 (𝑥)‖ = lim𝑛 ‖𝜌𝑛,𝑘 (𝑥)‖, and so

‖𝜌𝑘 (𝑥)‖𝑒 = lim
𝑛

‖𝜌𝑛,𝑘 (𝑥)‖𝑒 ≥ 𝜌𝑘 (𝑥).

Since the argument for 𝑟 = 1 uses only Lemma 2.3 and that the maps are c.p.c., we may repeat the same
argument for 𝑟 ≥ 1.

For the nondegeneracy condition (iii), we assume (𝐹𝑛, 𝜌𝑛)𝑛 ≠ {0} (otherwise, the claim is trivial).
We first consider the case where 𝑥 ∈ (𝐹𝑛, 𝜌𝑛)𝑛 is self-adjoint, and we assume moreover that ‖𝑥‖ = 1.
By possibly replacing 𝑥 with −𝑥, we may assume 1 ∈ 𝜎(𝑥), the spectrum of 𝑥. From (i), we know e
and 𝑥 commute, and so we may identify C∗(𝑒, 𝑥) ⊂ 𝐹∞ with 𝐶0 (Ω) for some locally compact Hausdorff
space Ω ⊂ 𝜎(𝑒) × 𝜎(𝑥) ⊂ [0, 1] × [−1, 1]. Then (ii) implies 𝑠 ≥ 𝑡 for all (𝑠, 𝑡) ∈ Ω. Since we assumed
1 ∈ 𝜎(𝑥), it follows that (1, 1) ∈ Ω, and so for any 𝑚 ≥ 1,

1 = ‖𝑥‖ ≥ ‖𝑒𝑚𝑥‖ = sup
(𝑠,𝑡) ∈Ω

|𝑠𝑚𝑡 | ≥ 1.

Now, we handle the general case of any 𝑥 ∈ (𝐹𝑛, 𝜌𝑛)𝑛. Because
⋃

𝑛 𝜌𝑛 (𝐹𝑛) is dense in (𝐹𝑛, 𝜌𝑛)𝑛, it
suffices to check that (iii) holds for any fixed 𝑥 = 𝜌𝑘 (𝑥) with 𝑘 ≥ 0 and 𝑥 ∈ 𝐹𝑘 . From Remark 2.4, we
know that

𝜌𝑘 (𝑥)
∗𝜌𝑘 (𝑥) = lim

𝑛
𝑒𝜌𝑛

(
𝜌𝑛,𝑘 (𝑥)

∗𝜌𝑛,𝑘 (𝑥)
)
. (2.5)

Since 𝜌𝑚
(
𝜌𝑚,𝑘 (𝑥)

∗𝜌𝑚,𝑘 (𝑥)
)
− 𝜌𝑛

(
𝜌𝑛,𝑘 (𝑥)

∗𝜌𝑛,𝑘 (𝑥)
)
∈ (𝐹𝑛, 𝜌𝑛)𝑛 is self-adjoint for all 𝑚 > 𝑛 > 𝑘 , we

already know that

‖𝑒𝜌𝑚
(
𝜌𝑚,𝑘 (𝑥)

∗𝜌𝑚,𝑘 (𝑥)
)
− 𝑒𝜌𝑛

(
𝜌𝑛,𝑘 (𝑥)

∗𝜌𝑛,𝑘 (𝑥)
)
‖

= ‖𝜌𝑚
(
𝜌𝑚,𝑘 (𝑥)

∗𝜌𝑚,𝑘 (𝑥)
)
− 𝜌𝑛

(
𝜌𝑛,𝑘 (𝑥)

∗𝜌𝑛,𝑘 (𝑥)
)
‖,

which together with (2.5) implies that
(
𝜌𝑛

(
𝜌𝑛,𝑘 (𝑥)

∗𝜌𝑛,𝑘 (𝑥)
) )

𝑛 is Cauchy and hence converges to some
self-adjoint 𝑧 ∈ (𝐹𝑛, 𝜌𝑛)𝑛 with 𝑒𝑧 = 𝜌𝑘 (𝑥)

∗𝜌𝑘 (𝑥). From this and the self-adjoint case, we have

‖𝜌𝑘 (𝑥)‖
2 = ‖𝜌𝑘 (𝑥)

∗𝜌𝑘 (𝑥)‖ = ‖𝑒𝑧‖ = ‖𝑧‖.

https://doi.org/10.1017/fms.2024.123 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.123


10 K. Courtney and W. Winter

Since 𝑧 is self-adjoint, (ii) tells us ‖𝜌𝑘 (𝑥)‖
2𝑒 = ‖𝑧‖𝑒 ≥ 𝑧. By (i), e commutes with 𝑧 and moreover with

|𝜌𝑘 (𝑥) |. It follows that

‖𝜌𝑘 (𝑥)‖
2𝑒2 ≥ 𝑒𝑧 = 𝜌𝑘 (𝑥)

∗𝜌𝑘 (𝑥),

which implies

‖𝜌𝑘 (𝑥)‖𝑒 ≥ |𝜌𝑘 (𝑥) |.

With this, the proof of the self-adjoint case also shows that ‖𝑒𝑚 |𝜌𝑘 (𝑥) |‖
= ‖|𝜌𝑘 (𝑥) |‖ for any 𝑚 ≥ 1, and so it follows that for any 𝑚 ≥ 1, we have

‖𝑒𝑚𝜌𝑘 (𝑥)‖
2 = ‖𝑒2𝑚 |𝜌𝑘 (𝑥) |

2‖

= ‖(𝑒𝑚 |𝜌𝑘 (𝑥) |)
2‖

= ‖𝑒𝑚 |𝜌𝑘 (𝑥) |‖
2

= ‖|𝜌𝑘 (𝑥) |‖
2

= ‖𝜌𝑘 (𝑥)‖
2. �

With these preliminary observations covered, we are now ready to prove our first structural result
about CPC∗-limits.

Proposition 2.6. Let (𝐹𝑛, 𝜌𝑛)𝑛 be the limit of a CPC∗-system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛. Then there exists an
associative bilinear map � : (𝐹𝑛, 𝜌𝑛)𝑛 × (𝐹𝑛, 𝜌𝑛)𝑛 −→ (𝐹𝑛, 𝜌𝑛)𝑛 satisfying

𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦) = lim
𝑛

𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)) (2.6)

for all 𝑘 ≥ 0 and 𝑥, 𝑦 ∈ 𝐹𝑘 and

𝑒(𝑥 ��̄�) = 𝑥�̄� (2.7)

for all 𝑥, �̄� ∈ (𝐹𝑛, 𝜌𝑛)𝑛, so that with respect to the multiplication �, (𝐹𝑛, 𝜌𝑛)𝑛 is a C∗-algebra with norm
‖ · ‖𝐹∞

, denoted C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
.2

Proof. We begin by defining � :
⋃

𝑛 𝜌𝑛 (𝐹𝑛)×
⋃

𝑛 𝜌𝑛 (𝐹𝑛) −→ (𝐹𝑛, 𝜌𝑛)𝑛. For elements 𝑥, �̄� in the nested
union

⋃
𝑛 𝜌𝑛 (𝐹𝑛), we may choose 𝑘 ≥ 0 and 𝑥, 𝑦 ∈ 𝐹𝑘 so that 𝑥 = 𝜌𝑘 (𝑥) and �̄� = 𝜌𝑘 (𝑦) and define

𝑥 ��̄� by

𝑥 ��̄� � lim
𝑛

𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)). (2.8)

That the given limit exists follows immediately from Remark 2.4 and Lemma 2.5(iii). Moreover, this
definition is independent of the particular choice of k and 𝑥, 𝑦 ∈ 𝐹𝑘 . Indeed, for any (𝑥𝑛)𝑛, (𝑦𝑛)𝑛 ∈

∏
𝐹𝑛

with [(𝑥𝑛)𝑛] = 𝜌𝑘 (𝑥) = 𝑥 and [(𝑦𝑛)𝑛] = 𝜌𝑘 (𝑦) = �̄�, we have [(𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦))𝑛] = [(𝑥𝑛𝑦𝑛)𝑛]. Then
for any 𝜀 > 0 and 𝑀 > 𝑘 with sup𝑛>𝑀 ‖𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦) − 𝑥𝑛𝑦𝑛‖ < 𝜀, we have ‖𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)) −

𝜌𝑛 (𝑥𝑛𝑦𝑛)‖ < 𝜀 for all 𝑛 > 𝑀 , and so the sequence 𝜌𝑛 (𝑥𝑛𝑦𝑛) ∈ (𝐹𝑛, 𝜌𝑛)𝑛 also converges to
lim𝑛 𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)).

2We are simultaneously viewing (𝐹𝑛 , 𝜌𝑛)𝑛 as a subspace of 𝐹∞ and as the space C∗
�

(
(𝐹𝑛 , 𝜌𝑛)𝑛

)
. For the sake of clarity,

multiplication in 𝐹∞ will always be denoted by the usual concatenation (e.g., �̄� �̄�), and multiplication in C∗
�

(
(𝐹𝑛 , 𝜌𝑛)𝑛

)
will

always be denoted with the � (e.g., �̄� ��̄�). So, for 𝑒 ( �̄� ��̄�) , we are taking the 𝐹∞-product of e and �̄� ��̄�.
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Bilinearity of this map follows from that of the usual product in the 𝐹𝑛’s. For each 𝑘 ≥ 0 and
𝑥, 𝑦 ∈ 𝐹𝑘 , we have from Remark 2.4 that

𝜌𝑘 (𝑥)𝜌𝑘 (𝑦) = 𝑒(𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦)), (2.9)

which by the nondegeneracy condition in Lemma 2.5(iii) implies

‖𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦)‖ = ‖𝑒(𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦))‖ = ‖𝜌𝑘 (𝑥)𝜌𝑘 (𝑦)‖. (2.10)

For 𝑥, �̄� ∈ (𝐹𝑛, 𝜌𝑛)𝑛 and (𝑥𝑛)𝑛, (𝑦𝑛)𝑛 ∈
∏

𝐹𝑛 with 𝑥 = [(𝑥𝑛)𝑛] and �̄� = [(𝑦𝑛)𝑛], it follows from (2.9)
and Lemma 2.3 that

lim
𝑛

𝑒
(
𝜌𝑛 (𝑥𝑛) �𝜌𝑛 (𝑦𝑛)

)
= lim

𝑛
𝜌𝑛 (𝑥𝑛)𝜌𝑛 (𝑦𝑛) = 𝑥𝑦.

Moreover, by Lemma 2.5(iii), we have for all 𝑚 > 𝑛 ≥ 0,

‖𝑒
(
𝜌𝑚(𝑥𝑚) �𝜌𝑚(𝑦𝑚) − 𝜌𝑛 (𝑥𝑛) �𝜌𝑛 (𝑦𝑛)

)
‖

= ‖𝜌𝑚 (𝑥𝑚) �𝜌𝑚(𝑦𝑚) − 𝜌𝑛 (𝑥𝑛) �𝜌𝑛 (𝑦𝑛)‖.

Hence, lim𝑛 𝜌𝑛 (𝑥𝑛) �𝜌𝑛 (𝑦𝑛) exists, and we may extend the map to � : (𝐹𝑛, 𝜌𝑛)𝑛 × (𝐹𝑛, 𝜌𝑛)𝑛 −→

(𝐹𝑛, 𝜌𝑛)𝑛 by defining

𝑥 ��̄� � lim
𝑛

𝜌𝑛 (𝑥𝑛) �𝜌𝑛 (𝑦𝑛)

for each (𝑥, �̄�) ∈ (𝐹𝑛, 𝜌𝑛)𝑛 × (𝐹𝑛, 𝜌𝑛)𝑛, where (𝑥𝑛)𝑛, (𝑦𝑛)𝑛 ∈
∏

𝐹𝑛 are any lifts of 𝑥 and �̄�. Note that
we still have

𝑒(𝑥 ��̄�) = 𝑒
(
lim
𝑛

𝜌𝑛 (𝑥𝑛) �𝜌𝑛 (𝑦𝑛)
)
= lim

𝑛
𝜌𝑛 (𝑥𝑛)𝜌𝑛 (𝑦𝑛) = 𝑥�̄�,

and so it follows again from nondegeneracy (Lemma 2.5(iii)) that 𝑥 ��̄� is the unique element 𝑧 ∈ (𝐹𝑛, 𝜌𝑛)𝑛
so that 𝑒𝑧 = 𝑥�̄�. In summary, our map � : (𝐹𝑛, 𝜌𝑛)𝑛 × (𝐹𝑛, 𝜌𝑛)𝑛 −→ (𝐹𝑛, 𝜌𝑛)𝑛 is well-defined, bilinear
and satisfies (2.7) and (2.6). To see that it is associative, fix 𝑥, �̄�, 𝑧 ∈ (𝐹𝑛, 𝜌𝑛)𝑛. Then we have

𝑒2((𝑥 ��̄�) �𝑧) = 𝑒((𝑥 ��̄�)𝑧)

= ((𝑥�̄�)𝑧)

= (𝑥( �̄�𝑧))

= 𝑥𝑒( �̄� �𝑧)

= 𝑒(𝑥( �̄� �𝑧))

= 𝑒2(𝑥 �( �̄� �𝑧)).

It follows from nondegeneracy that

(𝑥 ��̄�) �𝑧 = 𝑥 �( �̄� �𝑧).

So, ((𝐹𝑛, 𝜌𝑛)𝑛, �) is an algebra. To see that it is a ∗-algebra with respect to the involution it inherits
from 𝐹∞, we set 𝑥, �̄� ∈ (𝐹𝑛, 𝜌𝑛)𝑛, and observe that

𝑒(𝑥 ��̄�)∗ = (𝑥 ��̄�)∗𝑒 = (𝑒(𝑥 ��̄�))∗ = (𝑥�̄�)∗ = �̄�∗𝑥∗ = 𝑒( �̄�∗ �𝑥∗).

Again, it follows from nondegeneracy that (𝑥 ��̄�)∗ = 𝑥 ��̄�, so indeed, ((𝐹𝑛, 𝜌𝑛)𝑛, �) is a ∗-algebra.
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Since ((𝐹𝑛, 𝜌𝑛)𝑛, �) is already a Banach space with respect to the given norm on 𝐹∞, it remains to
confirm that it is in fact a Banach ∗-algebra and that the norm still satisfies the C∗-identity. Both of these
follow immediately from the fact that

‖𝑥 ��̄�‖ = ‖𝑒(𝑥 ��̄�)‖ = ‖𝑥�̄�‖ (2.11)

for any 𝑥, �̄� ∈ (𝐹𝑛, 𝜌𝑛)𝑛. �

Proposition 2.7. Let (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 be a CPC∗-system. Then

Θ � id
(𝐹𝑛 ,𝜌𝑛) 𝑛

: C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
−→ 𝐹∞

is an order zero complete order embedding.

Proof. Clearly, the map is isometric, ∗-preserving and linear since the given ∗-linear structures and
norms on C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
and (𝐹𝑛, 𝜌𝑛)𝑛 ⊂ 𝐹∞ are the same. Moreover, from (2.11), we can conclude

that Θ is order zero. By Proposition 1.8, it remains only to show that it is completely positive (i.e., for
any 𝑟 ≥ 1 and 𝑥 ∈ M𝑟 (C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
), the element 𝑥∗ �𝑥 ∈ M𝑟 ((𝐹𝑛, 𝜌𝑛)𝑛) is in M𝑟 (𝐹∞)+). (We still

use � to denote the multiplication in M𝑟 (C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
).)

Fix 𝑟 ≥ 1, and note that by applying (2.7) coordinate-wise, we have for any 𝑥 ∈ M𝑟 (C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
)

that

𝑒 (𝑟 ) (𝑥∗ �𝑥) = 𝑥∗𝑥 ≥ 0.

So it suffices to show that 𝑒 (𝑟 ) �̄� ≥ 0 implies �̄� ≥ 0 for any �̄� ∈ M𝑟 ((𝐹𝑛, 𝜌𝑛)𝑛) ⊂ M𝑟 (𝐹∞).
To that end, fix �̄� ∈ M𝑟 ((𝐹𝑛, 𝜌𝑛)𝑛) ⊂ M𝑟 (𝐹∞) and assume 𝑒 (𝑟 ) �̄� ≥ 0. If 𝑦 = 0, there is nothing to

show, so we assume ‖ �̄�‖ = 1. Using Lemma 2.5(iii), we also get a nondegeneracy condition for 𝑒 (𝑟 ) ,
which says that 𝑒 (𝑟 ) 𝑧 = 0 implies 𝑧 = 0 for any 𝑧 ∈ M𝑟 ((𝐹𝑛, 𝜌𝑛)𝑛) ⊂ M𝑟 (𝐹∞). Then since

𝑒 (𝑟 ) �̄� = (𝑒 (𝑟 ) �̄�)∗ = 𝑒 (𝑟 ) �̄�∗,

we conclude that �̄� = �̄�∗.
From Lemma 2.5(ii), we know 𝑒 (𝑟 ) − �̄� and 𝑒 (𝑟 ) + �̄� ∈ M𝑟 (𝐹∞)+. Since 𝑒 (𝑟 ) and �̄� commute (by

Lemma 2.5(i)), this implies that 𝑒 (𝑟 ) ≥ | �̄� | and that we can identify C∗(𝑒 (𝑟 ) , �̄�) ⊂ M𝑟 (𝐹∞) with 𝐶0 (Ω)
for some locally compact Ω ⊂ 𝜎(𝑒 (𝑟 ) ) × 𝜎( �̄�), where 𝑒 (𝑟 ) corresponds to the map (𝑠, 𝑡) ↦→ 𝑠 and �̄�
corresponds to the map (𝑠, 𝑡) ↦→ 𝑡. Since 𝑒 (𝑟 ) ≥ | �̄� |, we have 𝑠 ≥ |𝑡 | for all (𝑠, 𝑡) ∈ Ω. Now, suppose
there exists 𝑡0 ∈ 𝜎( �̄�) ∩ (−∞, 0), and let 𝑠0 ∈ 𝜎(𝑒 (𝑟 ) ) so that (𝑠0, 𝑡0) ∈ Ω. Then 𝑠0 ≥ |𝑡0 | > 0 implies
𝑠0 > 0, whence 𝑠0𝑡0 < 0, contradicting 𝑒 (𝑟 ) �̄� ≥ 0. Hence, �̄� ≥ 0, and our proof is complete. �

Corollary 2.8. Let (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 be a CPC∗-system, and let Θ be as in Proposition 2.7. Then for
any C∗-algebra A and complete order embedding 𝜓 : 𝐴 −→ 𝐹∞ with 𝜓(𝐴) = (𝐹𝑛, 𝜌𝑛)𝑛, the map
Θ−1 ◦ 𝜓 : 𝐴 −→ C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
is a ∗-isomorphim.

Proof. With Proposition 2.7, we see that Θ−1 ◦ 𝜓 : 𝐴 −→ C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
is a surjective complete order

isomorphism. The claim then follows from Remark 1.7(i). �

Remark 2.9. By definition, (𝐹𝑛, 𝜌𝑛)𝑛 and C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
are identical as involutive Banach spaces.

With the previous results at hand, we may describe the C∗-algebra structure in two alternative ways:
Let C denote the C∗-algebra generated by (𝐹𝑛, 𝜌𝑛)𝑛 in 𝐹∞ and 𝜋Θ : C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
−→ M(𝐶) the ∗-

homomorphism guaranteed by Theorem 1.4. From Theorem 1.4, we see that ker(𝜋Θ) = ker(Θ) = {0},
which means 𝜋Θ is injective, and C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
� 𝜋Θ

(
C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

) )
, so we may regard C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)

https://doi.org/10.1017/fms.2024.123 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.123


Forum of Mathematics, Sigma 13

as a C∗-algebra of multipliers of C. Moreover, if 𝑒 ∈ C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
, then Θ(𝑥) = 𝑥 = 𝑒𝜋Θ (𝑥) for all

𝑥 ∈ C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
.

On the other hand, if 𝑒 ∈ (𝐹𝑛, 𝜌𝑛)𝑛, then one can also show that ((𝐹𝑛, 𝜌𝑛)𝑛, {M𝑟 ((𝐹𝑛, 𝜌𝑛)𝑛) ∩

M𝑟 (𝐹∞)+}𝑟 , 𝑒) forms an abstract operator system (cf. [6] or [20, Chapter 13]). As an operator system,
this is equal to the operator system (C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
, {M𝑟

(
C∗
�((𝐹𝑛, 𝜌𝑛)𝑛)

)
}𝑟 , 𝑒), which happens to also

be a C∗-algebra, and so for each 𝑟 ≥ 1, the norm on M𝑟
(
C∗
�((𝐹𝑛, 𝜌𝑛)𝑛)

)
agrees with the matrix

norm on M𝑟
(
(𝐹𝑛, 𝜌𝑛)𝑛

)
induced by the matrix order. Hence, by [11, Corollary 4.2], we may identify

C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
with the enveloping C∗-algebra of this operator system.

Remark 2.10. Though the subspace (𝐹𝑛, 𝜌𝑛)𝑛 ⊂ 𝐹∞ might not be a sub-C∗-algebra in general, the
correspondence between (𝐹𝑛, 𝜌𝑛)𝑛 and C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
is so robust that we take the liberty to call both

(𝐹𝑛, 𝜌𝑛)𝑛 and C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
the limit of a CPC∗-system, and we refer to C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
as a CPC∗-limit.

As we mentioned before, e need not be in (𝐹𝑛, 𝜌𝑛)𝑛. Nonetheless, the sequence (𝜌𝑛 (1𝐹𝑛 ))𝑛 will still
provide an approximate identity for the limit of the system.

Corollary 2.11. Let (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 be a CPC∗-system. Then (𝜌𝑛 (1𝐹𝑛 ))𝑛 forms an increasing approximate
identity for C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
.

Proof. The sequence (𝜌𝑛 (1𝐹𝑛 ))𝑛 is increasing in 𝐹∞ since the maps 𝜌𝑚,𝑛 are all c.p.c., and so by
Proposition 2.7, it is also increasing in C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
.

To see that this forms an approximate identity, it suffices to consider elements of the form 𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦)

for some 𝑘 ≥ 0 and 𝑥, 𝑦 ∈ 𝐹𝑘 . Indeed, since C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
is a C∗-algebra, it follows that for any

𝑧 ∈ (𝐹𝑛, 𝜌𝑛)𝑛, there exists 𝑥, �̄� ∈ (𝐹𝑛, 𝜌𝑛)𝑛 so that 𝑧 = 𝑥 ��̄�. Then for any lift (𝑥𝑛)𝑛, (𝑦𝑛)𝑛 of 𝑥 and �̄�,
respectively, Lemma 2.3 tells us 𝜌𝑛 (𝑥𝑛) −→ 𝑥 and 𝜌𝑛 (𝑦𝑛) −→ �̄�, and so 𝜌𝑛 (𝑥𝑛) �𝜌𝑛 (𝑦𝑛) −→ 𝑥 ��̄� = 𝑧.

Now fix 𝑘 ≥ 0, 𝑥, 𝑦 ∈ 𝐹𝑘 , and 𝜀 > 0, and choose 𝑀 > 𝑘 so that

‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)) − 𝜌𝑚,𝑘 (𝑥)𝜌𝑚,𝑘 (𝑦)‖ < 𝜀/2 and
‖𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦) − 𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦))‖ < 𝜀/2

for all 𝑚 > 𝑛 > 𝑀 . Then using Lemma 2.5(iii) and (2.7), we have for all 𝑛 > 𝑀 ,

‖𝜌𝑛 (1𝐹𝑛 )
�(𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦)) − 𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦)‖

= ‖𝑒
(
𝜌𝑛 (1𝐹𝑛 )

�(𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦))) − 𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦)
)
‖

= ‖𝜌𝑛 (1𝐹𝑛 )
(
𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦)

)
− 𝜌𝑘 (𝑥)𝜌𝑘 (𝑦)‖

< 𝜀/2 + ‖𝜌𝑛 (1𝐹𝑛 )𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)) − 𝜌𝑘 (𝑥)𝜌𝑘 (𝑦)‖

≤ 𝜀. �

It remains to show that all CPC∗-limits are nuclear. For this, we will use Ozawa and Sato’s one-way-
CPAP, which appeared implicitly in [19] (via [16]); see [22, Theorem 5.1] for the explicit statement and
its proof.

Theorem 2.12 [19, 22]. A C∗-algebra A is nuclear if and only if there exists a net {𝜑𝜆 : 𝐹𝜆 −→ 𝐴}𝜆∈Λ
of c.p.c. maps from finite-dimensional C∗-algebras {𝐹𝜆}𝜆∈Λ such that the induced c.p.c. map

Φ = (𝜑𝜆)𝜆 :
∏

𝐹𝜆/
⊕

𝐹𝜆 −→ ℓ∞(Λ, 𝐴)/𝑐0(Λ, 𝐴),

given by Φ([(𝑥𝜆)𝜆∈Λ]) = [(𝜑𝜆 (𝑥𝜆))𝜆∈Λ], satisfies

𝜄(𝐴1) ⊂ Φ
(
(
∏

𝐹𝜆/
⊕

𝐹𝜆)
1) ,
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where 𝜄 : 𝐴 −→ ℓ∞(Λ, 𝐴)/𝑐0(Λ, 𝐴) denotes the identification of A with the sub-C∗-algebra of
ℓ∞(Λ, 𝐴)/𝑐0(Λ, 𝐴) consisting of equivalence classes of constant nets.

Theorem 2.13. CPC∗-limits are nuclear.

Proof. Let (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 be a CPC∗-system with complete order embedding Θ �
id

(𝐹𝑛 ,𝜌𝑛) 𝑛

: C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
−→ 𝐹∞ from Proposition 2.7. For each 𝑚 ≥ 0, we define 𝜑𝑚 �

Θ−1 ◦ 𝜌𝑚 : 𝐹𝑚 −→ C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
. It follows from Proposition 2.7 that each 𝜑𝑚 is a c.p.c. map.

We denote the sequence algebra
∏

𝑚 C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
/
⊕

𝑚 C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
by C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
∞

, and we
write 𝜄 : C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
−→ C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
∞

for the embedding as equivalence classes of constant se-
quences. Let Φ : 𝐹∞ −→ C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
∞

be the c.p.c. map induced by the 𝜑𝑚 as in Theorem 2.12 with
Φ([(𝑥𝑚)𝑚]) = [(𝜑𝑚(𝑥𝑚))𝑚]. Note that for 𝑘 ≥ 0 and 𝑥 ∈ 𝐹𝑘 , we have

Φ(𝜌𝑘 (𝑥)) = Φ([(𝜌𝑚,𝑘 (𝑥))𝑚>𝑘 ])

= [(𝜑𝑚 (𝜌𝑚,𝑘 (𝑥)))𝑚>𝑘 ]

= [((Θ−1 ◦ 𝜌𝑚) (𝜌𝑚,𝑘 (𝑥))𝑚>𝑘 ]

= [(Θ−1 ◦ 𝜌𝑘 (𝑥))𝑚>𝑘 ]

= 𝜄 ◦ Θ−1 ◦ 𝜌𝑘 (𝑥)

= 𝜄 ◦ 𝜑𝑘 (𝑥).

Since these elements are dense in (𝐹𝑛, 𝜌𝑛)𝑛, it follows that Φ(𝑥) = 𝜄 ◦Θ−1 (𝑥) for each 𝑥 ∈ (𝐹𝑛, 𝜌𝑛)𝑛 ⊂

𝐹∞. Since Θ−1 is isometric, that gives us

𝜄
(
C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)1) = 𝜄 ◦ Θ−1 ((𝐹𝑛, 𝜌𝑛)
1
𝑛

)
= Φ

(
(𝐹𝑛, 𝜌𝑛)

1
𝑛

)
⊂ Φ(𝐹1

∞).

Now with [22, Theorem 5.1] (as stated above in Theorem 2.12), we conclude that C∗
�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
is

nuclear. �

3. CPC∗-systems from systems of c.p.c. approximations

The goal of this section is a converse to Theorem 2.12: Any separable nuclear C∗-algebra is ∗-isomorphic
to a CPC∗-limit. Moreover, the CPC∗-system will arise from a system of c.p.c. approximations. We first
recall some facts regarding systems of c.p.c. approximations of separable nuclear C∗-algebras.

Definition 3.1. Let A be a separable nuclear C∗-algebra.
(i) A system of c.p.c. approximations for A is a sequence (𝐴

𝜓𝑛
−−→ 𝐹𝑛

𝜑𝑛
−−→ 𝐴)𝑛, where the 𝐹𝑛 are

finite-dimensional C∗-algebras and 𝐴
𝜓𝑛
−−→ 𝐹𝑛

𝜑𝑛
−−→ 𝐴 are c.p.c. maps so that for all 𝑎 ∈ 𝐴,

lim
𝑛

‖𝜑𝑛 ◦ 𝜓𝑛 (𝑎) − 𝑎‖ = 0.

(ii) We call a system of c.p.c. approximations as above summable if there exists a decreasing sequence
(𝜀𝑛)𝑛 ∈ ℓ1(N)1

+ such that for all 𝑛 > 𝑘 ≥ 0,

‖𝜑𝑘 − 𝜑𝑛 ◦ 𝜓𝑛 ◦ 𝜑𝑘 ‖ < 𝜀𝑛.

(iii) We say a system of c.p.c. approximations as in (i) has approximately multiplicative downwards
maps if for any 𝑎, 𝑏 ∈ 𝐴, we have lim𝑛 ‖𝜓𝑛 (𝑎𝑏) − 𝜓𝑛 (𝑎)𝜓𝑛 (𝑏)‖ = 0.

(iv) We say a system of c.p.c. approximations as in (i) has approximately order zero downwards maps
if for any 𝑎, 𝑏 ∈ 𝐴+ with 𝑎𝑏 = 0, we have lim𝑛 ‖𝜓𝑛 (𝑎)𝜓𝑛 (𝑏)‖ = 0.
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(v) Given a system of c.p.c. approximations as in (i), we define for all 𝑚 > 𝑛 ≥ 0,

𝜌𝑚,𝑛 � 𝜓𝑚 ◦ 𝜑𝑚−1 ◦ . . . ◦ 𝜑𝑛 : 𝐹𝑛 −→ 𝐹𝑚 and
𝜌𝑛,𝑛 � id𝐹𝑛 .

thus obtaining an associated system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛.

Remarks 3.2. (i) We will usually consider summable systems of c.p.c. approximations, in which case
𝜌𝑚,𝑛 and 𝜓𝑚 ◦ 𝜑𝑛 become arbitrarily close for 𝑚 > 𝑛 sufficiently large. Moreover, for any 𝑘 ≥ 0 and
𝑥 ∈ 𝐹𝑘 , the sequence (𝜑𝑛 (𝜌𝑛,𝑘 (𝑥)))𝑛 converges in A.

(ii) Asking for summability will not result in any loss of generality, since after passing to a subsystem,
we can always arrange this for any choice of (𝜀𝑛)𝑛 ∈ ℓ1(N)1

+ . Indeed, given a system (𝐴
𝜓𝑛
−−→ 𝐹𝑛

𝜑𝑛
−−→ 𝐴)𝑛

of c.p.c. approximations of a nuclear C∗-algebra A and a decreasing sequence (𝜀 𝑗 ) ∈ ℓ1(N)1
+ , we can

use compactness of the unit balls of the 𝐹𝑛 to find an increasing sequence (𝑛 𝑗 ) 𝑗 ⊂ N so that for all
𝑛𝑘 ≥ 0 and 𝑗 > 𝑘 ,

‖𝜑𝑛𝑘 − 𝜑𝑛 𝑗 ◦ 𝜓𝑛 𝑗 ◦ 𝜑𝑛𝑘 ‖ < 𝜀𝑛 𝑗 .

(iii) For a system of c.p.c. approximations of a C∗-algebra A as in 3.1 and any 𝑎 ∈ 𝐴, we have

lim
𝑛

‖𝑎 − 𝑎𝜑𝑛 (1𝐹𝑛 )‖ = 0.

To see this, it suffices to consider 𝑎 ∈ 𝐴1
+. Let 𝜀 > 0, and choose 𝜂 > 0 so that 2𝜂 +

√
3𝜂 < 𝜀 and

𝑁 > 0 so that ‖𝑎 − 𝜑𝑛 (𝜓𝑛 (𝑎))‖ < 𝜂 and ‖𝑎2 − 𝜑𝑛 (𝜓𝑛 (𝑎
2))‖ < 𝜂 for all 𝑛 > 𝑁 . Then a consequence of

Stinespring’s Theorem ([15, Lemma 3.5]), guarantees that ‖𝜑𝑛 (𝜓𝑛 (𝑎)𝑏) − 𝜑𝑛 (𝜓𝑛 (𝑎))𝜑𝑛 (𝑏)‖ <
√

3𝜂
for any 𝑏 ∈ (𝐹𝑛)

1. Applying this to 𝑏 = 1𝐹𝑛 yields

‖𝑎 − 𝑎𝜑𝑛 (1𝐹𝑛 )‖ ≤ 2𝜂 + ‖𝜑𝑛 (𝜓𝑛 (𝑎)) − 𝜑𝑛 (𝜓𝑛 (𝑎))𝜑𝑛 (1𝐹𝑛 )‖

= 2𝜂 + ‖𝜑𝑛 (𝜓𝑛 (𝑎)1𝐹𝑛 ) − 𝜑𝑛 (𝜓𝑛 (𝑎))𝜑𝑛 (1𝐹𝑛 )‖

< 2𝜂 +
√

3𝜂

< 𝜀.

One can always ask for approximately order zero downwards maps, as follows from [4] in connection
with [23, Theorem 5]); see [5, Theorem 3.1] for an explicit statement:

Theorem 3.3. For a separable C∗-algebra A, the following are equivalent.

(i) A is nuclear.
(ii) A admits a system of c.p.c. approximations with approximately order zero downwards maps.

Lemma 3.4. Let (𝐴
𝜓𝑛
−−→ 𝐹𝑛

𝜑𝑛
−−→ 𝐴)𝑛 be a system of c.p.c. approximations of a separable nuclear

C∗-algebra A. Then the induced map Ψ : 𝐴 −→ 𝐹∞ given for all 𝑎 ∈ 𝐴 by

Ψ(𝑎) � [(𝜓𝑛 (𝑎))𝑛]

is a complete order embedding.
If the system of approximations is summable, then we have Ψ(𝐴) = (𝐹𝑛, 𝜌𝑛)𝑛, (i.e., the image of Ψ

agrees with the limit of the associated system in the sense of Definitions 3.1(v) and 2.1).

Proof. Since each 𝜓𝑛 is c.p.c., it follows that Ψ is a c.p.c. map. Moreover, since the maps 𝜓𝑛, 𝜑𝑛 are all
c.p.c., it follows that

lim inf𝑛 ‖𝜓 (𝑟 )
𝑛 (𝑎)‖ ≥ ‖𝑎‖
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for all 𝑟 ≥ 1 and 𝑎 ∈ M𝑟 (𝐴). Hence, ‖Ψ (𝑟 ) (𝑎)‖ ≥ ‖𝑎‖ for all 𝑟 ≥ 0 and 𝑎 ∈ M𝑟 (𝐴), and so Ψ is
completely isometric and hence a complete order embedding.

Now we assume moreover that the system is summable with respect to some decreasing sequence
(𝜀𝑛)𝑛 ∈ ℓ1(N)1

+ . Let 𝑘 ≥ 0 and 𝑥 ∈ 𝐹𝑘 , and set 𝑎 � lim𝑛 𝜑𝑛 (𝜌𝑛,𝑘 (𝑥)). (Recall that the limit exists by
Remark 3.2(i).) Then we have

𝜌𝑘 (𝑥) = [(𝜌𝑚,𝑘 (𝑥))𝑚>𝑘 ] (3.1)
= [(𝜓𝑚 (𝜑𝑚−1 (𝜌𝑚−1,𝑘 (𝑥))))𝑚>𝑘 ]

= [(𝜓𝑚 (𝑎))𝑚]

= Ψ(𝑎),

and so
⋃

𝑛𝜌𝑛 (𝐹𝑛) = {Ψ
(
lim𝑚 𝜑𝑚 ◦ 𝜌𝑚,𝑛 (𝑥)

)
| 𝑘 ≥ 0, 𝑥 ∈ 𝐹𝑛} ⊂ Ψ(𝐴). (3.2)

On the other hand, it follows from summability that

‖𝜑𝑚 ◦ 𝜌𝑚,𝑛 ◦ 𝜓𝑛 − 𝜑𝑛 ◦ 𝜓𝑛‖ <
∑𝑚

𝑗=𝑛+1𝜀 𝑗

for all 𝑚 > 𝑛 ≥ 0. Hence, for any given 𝑎 ∈ 𝐴 and 𝜀 > 0, we can find 𝑀 > 0 such that for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜑𝑚 ◦ 𝜌𝑚,𝑛 ◦ 𝜓𝑛 (𝑎) − 𝑎‖ (3.3)
≤ ‖𝜑𝑚 ◦ 𝜌𝑚,𝑛 ◦ 𝜓𝑛 (𝑎) − 𝜑𝑛 ◦ 𝜓𝑛 (𝑎)‖ + ‖𝜑𝑛 ◦ 𝜓𝑛 (𝑎) − 𝑎‖

< 𝜀.

From this, we conclude that the set {lim𝑛 𝜑𝑛 ◦ 𝜌𝑛,𝑘 (𝑥) | 𝑘 ≥ 0, 𝑥 ∈ 𝐹𝑘 } is dense in A, and so by (3.2),
⋃

𝑛𝜌𝑛 (𝐹𝑛) is dense in Ψ(𝐴). Since Ψ is isometric, that means Ψ(𝐴) =
⋃

𝑛𝜌𝑛 (𝐹𝑛) = (𝐹𝑛, 𝜌𝑛)𝑛. �

In the situation of Lemma 3.4, if the system of c.p.c. approximations has approximately order zero
downwards maps, then the map Ψ clearly is order zero. In this case, since the codomain is 𝐹∞, we
obtain refined information about the positive contraction appearing in the structure theorem for order
zero maps (Theorem 1.4).

Proposition 3.5. Let (𝐴
𝜓𝑛
−−→ 𝐹𝑛

𝜑𝑛
−−→ 𝐴)𝑛 be a system of c.p.c. approximations of a separable nuclear

C∗-algebra A with approximately order zero downwards maps, and let Ψ : 𝐴 −→ 𝐹∞ be the order zero
complete order embedding from Lemma 3.4. We write C for the C∗-algebra generated by Ψ(𝐴) in 𝐹∞

and 𝐽𝐶 = {𝑏 ∈ 𝐹∞ | 𝑏𝐶 ∪ 𝐶𝑏 ⊂ 𝐶} for the idealizer of C in 𝐹∞, and we denote by h the element in
M(𝐶) provided by the structure theorem for order zero maps; cf. Theorem 1.4.

Then there exists ℎ̄ ∈ (𝐽𝐶 )
1
+ ⊂ 𝐹∞ so that ℎ̄𝑐 = ℎ𝑐 for all 𝑐 ∈ 𝐶. In particular, for all 𝑎, 𝑏 ∈ 𝐴,

ℎ̄Ψ(𝑎) = Ψ(𝑎) ℎ̄, (3.4)

‖ ℎ̄Ψ(𝑎)‖ = ‖Ψ(𝑎)‖ = ‖𝑎‖, and (3.5)

ℎ̄Ψ(𝑎𝑏) = Ψ(𝑎)Ψ(𝑏). (3.6)

Moreover, (3.4), (3.5) and (3.6) still holds when replacing ℎ̄ by any 𝑒 ∈ (𝐹∞)
1
+ such that 𝑒Ψ(𝑎) = ℎ̄Ψ(𝑎)

for all 𝑎 ∈ 𝐴.

Proof. Since C is an ideal in 𝐽𝐶 , there is a unique ∗-homorphism 𝜃 : 𝐽𝐶 −→ M(𝐶) extending the
canonical embedding 𝐶 −→ M(𝐶) so that 𝜃 (𝑏)𝑐 = 𝑏𝑐 and 𝑐𝜃 (𝑏) = 𝑐𝑏 for all 𝑏 ∈ 𝐽𝐶 and 𝑐 ∈ 𝐶. We
claim that 𝜃 is surjective. Indeed, let 𝜋 :

∏
𝐹𝑛 −→ 𝐹∞ denote the quotient map. Since C is separable,

we can find a separable sub-C∗-algebra 𝐷 ⊂
∏

𝐹𝑛 with 𝜋(𝐷) = 𝐶. Though D may be degenerate
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in
∏

𝐹𝑛 (in the sense that its support projection is not 1∏𝐹𝑛 ), it is nondegenerate in its ultra-weak
closure 𝐷

𝜎-wk
⊂
∏

𝐹𝑛 (in the same sense), and so [1, Proposition 2.4] tells us we can identify M(𝐷)

with {𝑏 ∈ 𝐷
𝜎-wk

| 𝑏𝐷 ∪ 𝐷𝑏 ⊂ 𝐷} ⊂
∏

𝐹𝑛, and with this identification, we have 𝜋(M(𝐷)) ⊂ 𝐽𝐶 .
Since D is separable and 𝜋 |𝐷 : 𝐷 −→ 𝐶 is a surjection, [1, Theorem 4.2] guarantees a surjective
∗-homomorphism �̂� : M(𝐷) −→ M(𝐶) so that for all 𝑑 ∈ 𝐷 and 𝑥 ∈ M(𝐷), we have �̂�(𝑥)𝜋(𝑑) =
𝜋(𝑥𝑑) and 𝜋(𝑑)�̂�(𝑥) = 𝜋(𝑑𝑥). All this together gives us the following diagram, which we claim
commutes:

𝐷 M(𝐷)

𝐶 𝐽𝐶 M(𝐶)

𝜋 |𝐷

⊆

𝜋 |M(𝐷)
�̂�

⊆
𝜃

To see that �̂� = 𝜃 ◦ 𝜋 |M(𝐷) , let 𝑥 ∈ M(𝐷) and 𝑐 ∈ 𝐶, and choose 𝑑 ∈ 𝐷 such that 𝜋(𝑑) = 𝑐. Then

𝜃 (𝜋(𝑥))𝑐 = 𝜋(𝑥)𝑐 = 𝜋(𝑥)𝜋(𝑑) = 𝜋(𝑥𝑑) = �̂�(𝑥)𝜋(𝑑) = �̂�(𝑥)𝑐,

and likewise, 𝑐𝜃 (𝜋(𝑐)) = 𝑐�̂�(𝑥). Hence, �̂� = 𝜃 ◦ 𝜋 |M(𝐷) , and 𝜃 is surjective, as desired.
Now let ℎ̄ ∈ (𝐽𝐶 )

1
+ be a lift of h. Then we have for each 𝑐 ∈ 𝐶

ℎ̄𝑐 = 𝜃 ( ℎ̄)𝑐 = ℎ𝑐 and 𝑐ℎ̄ = 𝑐𝜃 ( ℎ̄) = 𝑐ℎ.

It then follows from our choice of h that for all 𝑎, 𝑏 ∈ 𝐴,

ℎ̄Ψ(𝑎𝑏) = ℎΨ(𝑎𝑏) = Ψ(𝑎)Ψ(𝑏), and
ℎ̄Ψ(𝑎) = ℎΨ(𝑎) = Ψ(𝑎)ℎ = Ψ(𝑎) ℎ̄.

Since Ψ is isometric, ‖𝑎‖2ℎ = ‖Ψ(𝑎𝑎∗)‖ℎ ≥ Ψ(𝑎𝑎∗) for all 𝑎 ∈ 𝐴 (see Remark 1.5(i)), and so

‖𝑎‖4 = ‖Ψ(𝑎)‖4

= ‖Ψ(𝑎)∗Ψ(𝑎)Ψ(𝑎)∗Ψ(𝑎)‖

≤ ‖Ψ(𝑎)∗Ψ(𝑎𝑎∗)Ψ(𝑎)‖

≤ ‖Ψ(𝑎)∗‖𝑎‖2ℎΨ(𝑎)‖

≤ ‖𝑎‖3‖ℎΨ(𝑎)‖.

In particular, for all 𝑎 ∈ 𝐴,

‖ ℎ̄Ψ(𝑎)‖ = ‖ℎΨ(𝑎)‖ = ‖Ψ(𝑎)‖ = ‖𝑎‖.

Finally, suppose 𝑒 ∈ (𝐹∞)
1
+ and 𝑒Ψ(𝑎) = ℎ̄Ψ(𝑎) = ℎΨ(𝑎) for all 𝑎 ∈ 𝐴. Then for each 𝑎 ∈ 𝐴,

‖𝑒Ψ(𝑎) − Ψ(𝑎)𝑒‖ = ‖ℎΨ(𝑎) − Ψ(𝑎)𝑒‖ = ‖ℎΨ(𝑎)∗ − 𝑒Ψ(𝑎)∗‖ = 0,

and it follows that Ψ(𝑎)𝑒 = Ψ(𝑎) ℎ̄ = Ψ(𝑎)ℎ for all 𝑎 ∈ 𝐴 as well. Since this extends to all 𝑐 ∈ 𝐶, it
follows that 𝑒 ∈ (𝐽𝐶 )

1
+ and 𝜃 (𝑒) = ℎ. Since 𝑒 is also a lift of h, the preceding arguments establish (3.4),

(3.5) and (3.6) for 𝑒. �

Now we are ready to prove the main result of this section.

Theorem 3.6. Let (𝐴
𝜓𝑛
−−→ 𝐹𝑛

𝜑𝑛
−−→ 𝐴)𝑛 be a system of c.p.c. approximations of a separable nuclear

C∗-algebra A with approximately order zero downwards maps. After possibly passing to a subsystem
of approximations, the associated system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 is a CPC∗-system in the sense of Definition 2.2,
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and the map Ψ : 𝐴 −→ 𝐹∞ from Lemma 3.4 is an order zero complete order embedding with Ψ(𝐴) =
(𝐹𝑛, 𝜌𝑛)𝑛.

Upon composing Ψ with the inverse of Θ from Proposition 2.7, we obtain an isomorphism
Θ−1 ◦ Ψ : 𝐴 −→ C∗

�

(
(𝐹𝑛, 𝜌𝑛)𝑛

)
. In particular, any separable nuclear C∗-algebra is ∗-isomorphic to a

CPC∗-limit.

Proof. As we saw in Remark 3.2(ii), after possibly passing to a subsystem, we may assume that the
system of approximations (and any further subsystem) is summable.

Let Ψ : 𝐴 −→ 𝐹∞ be the induced order zero complete order embedding from Lemma 3.4, h be
the element in M(C∗(Ψ(𝐴))) from the structure theorem for order zero maps (Theorem 1.4), and
ℎ̄ ∈ (𝐹∞)

1
+ be an element guaranteed by Proposition 3.5 so that ℎ̄Ψ(𝑎) = ℎΨ(𝑎) for all 𝑎 ∈ 𝐴. We fix a

lift (ℎ𝑛)𝑛 ∈ (
∏

𝐹𝑛)
1
+ of ℎ̄ and note that since

‖Ψ(𝑏)Ψ(𝑎) − ℎ̄Ψ(𝑎)‖
(3.6)
= ‖ ℎ̄Ψ(𝑏𝑎) − ℎ̄Ψ(𝑎)‖

= ‖ ℎ̄Ψ(𝑏𝑎 − 𝑎)‖

(3.5)
= ‖𝑏𝑎 − 𝑎‖

for all 𝑎, 𝑏 ∈ 𝐴, we have that for any 𝑎, 𝑏 ∈ 𝐴 and 𝜀 > 0, there exists 𝑀 > 0 so that for all 𝑚 ≥ 𝑀 ,

‖𝜓𝑚(𝑏)𝜓𝑚(𝑎) − ℎ𝑚𝜓𝑚(𝑎)‖ < ‖𝑏𝑎 − 𝑎‖ + 𝜀. (3.7)

Now we are ready to determine an appropriate subsystem of approximations. Fix a countable dense
subset {𝑎𝑘 }𝑘 ⊂ 𝐴1 and a strictly decreasing sequence (𝜀𝑛)𝑛 ∈ ℓ1(N)1

+ . By Remark 3.2(iii), we may
choose 𝑗0 > 0 so that

‖𝜑 𝑗0 (1𝐹𝑗0
)𝑎0 − 𝑎0‖ < 𝜀0/2.

Then we can choose 𝑗1 > 𝑗0 so that for all 𝑚 ≥ 𝑗1 and 𝑖 ∈ {1, 2},

‖𝜓𝑚 (𝜑 𝑗0 (1𝐹𝑗0
))𝜓𝑚(𝑎0) − ℎ𝑚𝜓𝑚(𝑎0)‖

(3.7)
< ‖𝜑 𝑗0 (1𝐹𝑗0

)𝑎0 − 𝑎0‖ + 𝜀0/2

< 𝜀0,

max
0≤𝑘≤1

‖𝜑 𝑗1 (1𝐹𝑗1
)𝑎𝑘 − 𝑎𝑘 ‖ < 𝜀1/2, and

‖𝜑 𝑗1 (𝜓 𝑗1 (𝜑 𝑗0 (1𝐹𝑗0
)𝑖)) − 𝜑 𝑗0 (1𝐹𝑗0

)𝑖 ‖ < 𝜀2
1/3.

For all 𝑛 > 0, we may inductively choose 𝑗𝑛 > 𝑗𝑛−1 so that for all 𝑚 ≥ 𝑗𝑛 and 𝑖 ∈ {1, 2},

max
0≤𝑘<𝑛

‖𝜓𝑚 (𝜑 𝑗𝑛−1 (1𝐹𝑗𝑛−1
))𝜓𝑚(𝑎𝑘 ) − ℎ𝑚𝜓𝑚(𝑎𝑘 )‖ < 𝜀𝑛−1, (3.8)

max
0≤𝑘≤𝑛

‖𝜑 𝑗𝑛 (1𝐹𝑗𝑛
)𝑎𝑘 − 𝑎𝑘 ‖ < 𝜀𝑛/2, and (3.9)

‖𝜑 𝑗𝑛 (𝜓 𝑗𝑛 (𝜑 𝑗𝑛−1 (1𝐹𝑗𝑛−1
)𝑖)) − 𝜑 𝑗𝑛−1 (1𝐹𝑗𝑛−1

)𝑖 ‖ < 𝜀2
𝑛/3. (3.10)

Let Ψ̂ : 𝐴 −→
∏

𝐹𝑗𝑛/
⊕

𝐹𝑗𝑛 denote the map induced by the subsystem (𝐴
𝜓𝑗𝑛
−−−→ 𝐹𝑗𝑛

𝜑 𝑗𝑛
−−−→ 𝐴)𝑛. Then

Ψ̂ is still an order zero complete order embedding, and for ˆ̄ℎ = [(ℎ 𝑗𝑛 )𝑛] ∈
∏

𝐹𝑗𝑛/
⊕

𝐹𝑗𝑛 , we still have
ˆ̄ℎΨ̂(𝑎) = ℎ̂Ψ̂(𝑎) for all 𝑎 ∈ 𝐴, where ℎ̂ ∈ M(C∗( ˆΨ(𝐴))) is the element guaranteed by Theorem 1.4.

Thus, we may pass to the (summable) subsystem (𝐴
𝜓𝑗𝑛
−−−→ 𝐹𝑗𝑛

𝜑 𝑗𝑛
−−−→ 𝐴)𝑛, drop the subscripts and write

https://doi.org/10.1017/fms.2024.123 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.123


Forum of Mathematics, Sigma 19

Ψ, h and ℎ̄ for Ψ̂, ℎ̂ and ˆ̄ℎ, respectively. Now (3.8)–(3.10) say that for any 𝑛 > 0, we have for for 𝑚 > 𝑛
and 𝑖 ∈ {1, 2}

max
0≤𝑘≤𝑛

‖𝜓𝑚 (𝜑𝑛 (1𝐹𝑛 ))𝜓𝑚(𝑎𝑘 ) − ℎ𝑚𝜓𝑚(𝑎𝑘 )‖ < 𝜀𝑛, (3.11)

max
0≤𝑘≤𝑛

‖𝜑𝑛 (1𝐹𝑛 )𝑎𝑘 − 𝑎𝑘 ‖ < 𝜀𝑛/2, and (3.12)

‖𝜑𝑛 (𝜓𝑛 (𝜑𝑛−1 (1𝐹𝑛−1 )
𝑖)) − 𝜑𝑛−1 (1𝐹𝑛−1 )

𝑖 ‖ < 𝜀2
𝑛/3. (3.13)

We aim to show that the associated system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 as in Definition 3.1(v) is CPC∗.

Claim 1. For all 𝑎 ∈ 𝐴, we have [(𝜌𝑛+1,𝑛 (1𝐹𝑛 ))𝑛]Ψ(𝑎) = ℎ̄Ψ(𝑎), and (3.4), (3.5) and (3.6) also hold
for [(𝜌𝑛+1,𝑛 (1𝐹𝑛 ))𝑛] in place of ℎ̄.

We check the claim on an element 𝑎𝑘 from our fixed dense subset of 𝐴1. Since

‖𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑘 ) − ℎ𝑛𝜓𝑛 (𝑎𝑘 )‖ (3.14)

= ‖𝜓𝑛 (𝜑𝑛−1 (1𝐹𝑛−1 ))𝜓𝑛 (𝑎𝑘 ) − ℎ𝑛𝜓𝑛 (𝑎𝑘 )‖

(3.11)
< 𝜀𝑛−1

for all 𝑛 > 𝑘 , it follows that [(𝜌𝑛+1,𝑛 (1𝐹𝑛 ))𝑛]Ψ(𝑎) = ℎ̄Ψ(𝑎) for all 𝑎 ∈ 𝐴, which establishes the claim
by Proposition 3.5 with 𝑒 = [(𝜌𝑛+1,𝑛 (1𝐹𝑛 ))𝑛].

Claim 2. For any 𝑎 ∈ 𝐴 and 𝜀 > 0, there exists an 𝑀 > 0 so that for 𝑚 > 𝑛 > 𝑀 ,

‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜓𝑚(𝑎) − 𝜌𝑚,𝑚−1(1𝐹𝑚−1 )𝜓𝑚(𝑎)‖ < 𝜀.

Again, we check the claim on some 𝑎𝑘 from our fixed dense subset of 𝐴1. Fix 𝜀 > 0. It follows from
summability (see Remark 3.2(i)) that we may choose 𝑀 > 𝑘 with 𝜀𝑀 < 𝜀/3 so that ‖𝜌𝑚,𝑛−𝜓𝑚 ◦𝜑𝑛‖ <
𝜀/3 for all 𝑚 > 𝑛 > 𝑀 . Then it follows from (3.11) and (3.14) that for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜓𝑚(𝑎𝑘 ) − 𝜌𝑚,𝑚−1 (1𝐹𝑚−1 )𝜓𝑚(𝑎𝑘 )‖

< ‖𝜓𝑚 (𝜑𝑛 (1𝐹𝑛 ))𝜓𝑚(𝑎𝑘 ) − 𝜌𝑚,𝑚−1 (1𝐹𝑚−1 )𝜓𝑚(𝑎𝑘 )‖ + 𝜀/3
≤ ‖𝜓𝑚(𝜑𝑛 (1𝐹𝑛 ))𝜓𝑚(𝑎𝑘 ) − ℎ𝑚𝜓𝑚(𝑎𝑘 )‖

+ ‖ℎ𝑚𝜓𝑚 (𝑎𝑘 ) − 𝜌𝑚,𝑚−1(1𝐹𝑚−1 )𝜓𝑚(𝑎𝑘 )‖ + 𝜀/3
< 𝜀𝑛 + 𝜀𝑚−1 + 𝜀/3
< 𝜀.

Claim 3. For any 𝑎, 𝑏 ∈ 𝐴 and 𝜀 > 0, there exists an 𝑀 > 0 so that 𝑚 > 𝑛 > 𝑀

‖𝜓𝑚 (𝑎)𝜓𝑚(𝑏) − 𝜌𝑚,𝑛 (1𝐹𝑛 )𝜓𝑚(𝑎𝑏)‖ < 𝜀.

Let 𝑎, 𝑏 ∈ 𝐴1 and 𝜀 > 0. Claim 1 tells us that [(𝜌𝑛+1,𝑛 (1𝐹𝑛 ))𝑛]Ψ(𝑎𝑏) = Ψ(𝑎)Ψ(𝑏), and so there is
an 𝑀0 > 0 so that for all 𝑚 > 𝑀0,

‖𝜓𝑚 (𝑎)𝜓𝑚(𝑏) − 𝜌𝑚,𝑚−1 (1𝐹𝑚−1 )𝜓𝑚(𝑎𝑏)‖ < 𝜀/2.
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Then this with Claim 2 (for 𝑎𝑏 in place of 𝑎 ∈ 𝐴 and 𝜀/2 in place of 𝜀) tells us that there exists 𝑀 > 𝑀0
so that for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜓𝑚 (𝑎)𝜓𝑚 (𝑏) − 𝜌𝑚,𝑛 (1𝐹𝑛 )𝜓𝑚(𝑎𝑏)‖

< ‖𝜌𝑚,𝑚−1 (1𝐹𝑚−1 )𝜓𝑚(𝑎𝑏) − 𝜌𝑚,𝑛 (1𝐹𝑛 )𝜓𝑚(𝑎𝑏)‖ + 𝜀/2
< 𝜀.

Claim 4. For any 𝑎 ∈ 𝐴 and 𝜀 > 0, there exists an 𝑀 > 0 so that for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜌𝑚,𝑛
(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎)

)
− 𝜓𝑚(𝑎)‖ < 𝜀.

Again, we check the claim on some 𝑎𝑘 from our fixed dense subset of 𝐴1. Fix 1 > 𝜀 > 0. By (3.13)
and [14, Lemma 7.11], for each 𝑛 > 0,

‖𝜑𝑛
(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑘 )

)
− 𝜑𝑛 (𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )) 𝜑𝑛 (𝜓𝑛 (𝑎𝑘 ))‖

<
(
3𝜀2

𝑛/3
)1/2

= 𝜀𝑛.

We now can choose 𝑀 > 𝑘 with 𝜀𝑀 < 𝜀/6 so that for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜑𝑛
(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑘 )

)
− 𝜑𝑛 (𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )) 𝜑𝑛 (𝜓𝑛 (𝑎𝑘 ))‖ (3.15)

< 𝜀𝑛

< 𝜀/6,

‖𝜑𝑛 (𝜓𝑛 (𝑎𝑘 )) − 𝑎𝑘 ‖ < 𝜀/6, (3.16)

and

‖𝜌𝑚,𝑛 (𝜓𝑛 (𝑎𝑘 )) − 𝜓𝑚(𝑎𝑘 )‖ ≤ ‖𝜑𝑚−1 ◦ 𝜌𝑚−1,𝑛 (𝜓𝑛 (𝑎𝑘 )) − 𝑎𝑘 ‖ (3.17)
< 𝜀/2.

Then we have for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜌𝑚,𝑛
(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑘 )

)
− 𝜓𝑚(𝑎𝑘 )‖

≤ ‖𝜌𝑚,𝑛
(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑘 )

)
− 𝜌𝑚,𝑛+1 (𝜓𝑛+1 (𝑎𝑘 ))‖

+ ‖𝜌𝑚,𝑛+1 (𝜓𝑛+1 (𝑎𝑘 )) − 𝜓𝑚(𝑎𝑘 )‖

(3.17)
< 𝜀/2 + ‖𝜌𝑚,𝑛

(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑘 )

)
− 𝜌𝑚,𝑛+1 (𝜓𝑛+1 (𝑎𝑘 ))‖

= 𝜀/2 + ‖𝜌𝑚,𝑛+1 ◦ 𝜓𝑛+1
(
𝜑𝑛

(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑘 )

)
− 𝑎𝑘

)
‖

≤ 𝜀/2 + ‖𝜑𝑛
(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑘 )

)
− 𝑎𝑘 ‖

(3.15)
< 𝜀/2 + 𝜀/6 + ‖𝜑𝑛 (𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )) 𝜑𝑛 (𝜓𝑛 (𝑎𝑘 )) − 𝑎𝑘 ‖

(3.16)
< 2𝜀/3 + 𝜀/6 + ‖𝜑𝑛 (𝜌𝑛,𝑛−1 (1𝐹𝑛−1 ))𝑎𝑘 − 𝑎𝑘 ‖

≤ 5𝜀/6 + ‖𝜑𝑛 (𝜌𝑛,𝑛−1 (1𝐹𝑛−1 ))𝑎𝑘 − 𝜑𝑛−1(1𝐹𝑛−1 )𝑎𝑘 ‖

+ ‖𝜑𝑛−1 (1𝐹𝑛−1 )𝑎𝑘 − 𝑎𝑘 ‖

https://doi.org/10.1017/fms.2024.123 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.123


Forum of Mathematics, Sigma 21

(3.13)
< 5𝜀/6 + 𝜀2

𝑛/3 + ‖𝜑𝑛−1 (1𝐹𝑛−1 )𝑎𝑘 − 𝑎𝑘 ‖

(3.12)
< 5𝜀/6 + 𝜀2

𝑛/3 + 𝜀𝑛−1/2

< 𝜀.

This finishes the proof of the claim.
Now we are ready to verify that (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 is a CPC∗-system. Let 𝑘 ≥ 0, 𝑥, 𝑦 ∈ 𝐹1

𝑘 , and 𝜀 > 0.
Define 𝑎 � lim𝑛 𝜑𝑛 (𝜌𝑛,𝑘 (𝑥)) ∈ 𝐴 and 𝑏 � lim𝑛 𝜑𝑛 (𝜌𝑛,𝑘 (𝑦)) ∈ 𝐴. (Recall that these limits exist by
Remark 3.2(i).) We then in particular have

lim
𝑛

‖𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦) − 𝜓𝑛 (𝑎)𝜓𝑛 (𝑏)‖ = 0.

Combining this with Claims 3 and 4, we can choose 𝑀 > 0 so that for all 𝑚 > 𝑛 ≥ 𝑀 ,

‖𝜌𝑚,𝑘 (𝑥)𝜌𝑚,𝑘 (𝑦) − 𝜌𝑚,𝑛 (1𝐹𝑛 )𝜓𝑚(𝑎𝑏)‖ < 𝜀/4 and
‖𝜌𝑚,𝑛

(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑏)

)
− 𝜓𝑚(𝑎𝑏)‖ < 𝜀/2.

Using these two approximations, we compute for 𝑚 > 𝑛, 𝑙 > 𝑀 ,

‖𝜌𝑚,𝑙 (1𝐹𝑙 )𝜌𝑚,𝑛
(
𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)

)
− 𝜌𝑚,𝑘 (𝑥)𝜌𝑚,𝑘 (𝑦)‖

≤ ‖𝜌𝑚,𝑙 (1𝐹𝑙 ) 𝜌𝑚,𝑛
(
𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦) − 𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑏)

)
‖

+ ‖𝜌𝑚,𝑙 (1𝐹𝑙 ) 𝜌𝑚,𝑛
(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑏)

)
− 𝜌𝑚,𝑙 (1𝐹𝑙 ) 𝜓𝑚(𝑎𝑏)‖

+ ‖𝜌𝑚,𝑙 (1𝐹𝑙 )𝜓𝑚(𝑎𝑏) − 𝜌𝑚,𝑘 (𝑥)𝜌𝑚,𝑘 (𝑦)‖

≤ ‖𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦) − 𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑏)‖

+ ‖𝜌𝑚,𝑛
(
𝜌𝑛,𝑛−1 (1𝐹𝑛−1 )𝜓𝑛 (𝑎𝑏)

)
− 𝜓𝑚(𝑎𝑏)‖

+ ‖𝜌𝑚,𝑙 (1𝐹𝑙 )𝜓𝑚(𝑎𝑏) − 𝜌𝑚,𝑘 (𝑥)𝜌𝑚,𝑘 (𝑦)‖

< 𝜀.

Finally, since our subsystem is still summable, Ψ(𝐴) = (𝐹𝑛, 𝜌𝑛)𝑛 by Lemma 3.4, so by Corollary 2.8,
A is ∗-isomorphic to a CPC∗-limit. �

Remark 3.7. If A is a separable unital nuclear C∗-algebra with a summable system (𝐴
𝜓𝑛
−−→ 𝐹𝑛

𝜑𝑛
−−→ 𝐴)𝑛

of c.p.c. approximations with approximately order zero downwards maps, then (𝜑𝑛 (1𝐹𝑛 ))𝑛 converges
to 1𝐴, and hence, Ψ(1𝐴) = lim𝑛 𝜌𝑛 (1𝐹𝑛 ) = 𝑒. In this case, the associated system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 will
automatically be a CPC∗-system even without passing to a subsystem.

We close this section with a description of the product of a nuclear C∗-algebra in terms of an
associated CPC∗-system, interpreting Corollary 2.8 along the lines of Proposition 2.6.

Corollary 3.8. Let (𝐴
𝜓𝑛
−−→ 𝐹𝑛

𝜑𝑛
−−→ 𝐴)𝑛 be a summable system of c.p.c. approximations of a separable

nuclear C∗-algebra A with approximately order zero downwards maps so that the associated system
(𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 is a CPC∗-system. Let Ψ : 𝐴 −→ 𝐹∞ be the induced order zero complete order embedding.
Then for any 𝑘 ≥ 0, 𝑥, 𝑦 ∈ 𝐹𝑘 , and 𝑎 = lim𝑛 𝜑𝑛 (𝜌𝑛,𝑘 (𝑥)), 𝑏 = lim𝑛 𝜑𝑛 (𝜌𝑛,𝑘 (𝑦)) ∈ 𝐴, we have
Ψ(𝑎𝑏) = Ψ(𝑎) �Ψ(𝑏) = lim𝑛 𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)).
Proof. Like in (3.1), we have Ψ(𝑎) = 𝜌𝑘 (𝑥) and Ψ(𝑏) = 𝜌𝑘 (𝑦), and so by Propositions 2.6 and 2.7,

Ψ(𝑎𝑏) = Θ−1(Ψ(𝑎𝑏))

=
(
Θ−1 ◦ Ψ(𝑎)

)
�

(
Θ−1 ◦ Ψ(𝑏)

)

= 𝜌𝑘 (𝑥) �𝜌𝑘 (𝑦)

= lim
𝑛

𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)). �
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4. NF systems and CPC∗-systems

We conclude by comparing our CPC∗-systems with Blackadar and Kirchberg’s NF systems from [4]
and establish that the latter may indeed be regarded as a special case of the former.

Definition 4.1 [4, Definitions 2.1.1 and 5.2.1]. A system (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 consisting of finite dimensional
C∗-algebras and c.p.c. maps as in Definition 2.1 is called an NF system if the maps 𝜌𝑚,𝑛 are asymptotically
multiplicative, in the sense that for all 𝑘 ≥ 0, 𝑥, 𝑦 ∈ 𝐹𝑘 , and 𝜀 > 0, there exists 𝑀 > 𝑘 so that for all
𝑚 > 𝑛 > 𝑀 ,

‖𝜌𝑚,𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)) − 𝜌𝑚,𝑘 (𝑥)𝜌𝑚,𝑘 (𝑦)‖ < 𝜀.

The limit of this system (in the sense of Definition 2.1) is a C∗-algebra with multiplication given for all
𝑘 ≥ 0 and 𝑥, 𝑦 ∈ 𝐹𝑘 by

𝜌𝑘 (𝑥)𝜌𝑘 (𝑦) = lim
𝑛

𝜌𝑛 (𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)).

A C∗-algebra that is ∗-isomorphic to the inductive limit of an NF system is called an NF algebra.

Remark 4.2. A unital CPC∗-system is NF, and if (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 is an NF system such that for any 𝜀 > 0
there exists 𝑀 > 0 so that for all 𝑚 > 𝑛 > 𝑀 ,

‖𝜌𝑚,𝑛 (1𝐹𝑛 ) − 1𝐹𝑚 ‖ < 𝜀,

then it is also a CPC∗-system. With Theorem 4.4 below, one can drop this condition upon passing to a
subsystem.

The following excerpt from [4, Theorem 5.2.2] characterizes nuclear and quasidiagonal C∗-algebras
in terms of NF systems. In comparison with Theorem 3.6, here one asks for approximately multiplica-
tive downwards maps as opposed to just approximately order zero ones; this corresponds to adding
quasidiagonality to the nuclearity hypothesis.

Theorem 4.3. For a separable C∗-algebra A, the following are equivalent:

(i) A is an NF algebra.
(ii) A is nuclear and quasidiagonal.

(iii) There exists a system (𝐴
𝜓𝑛
−−→ 𝐹𝑛

𝜑𝑛
−−→ 𝐴)𝑛 of c.p.c. approximations with approximately multiplica-

tive downwards maps.

Theorem 4.4. Any NF system admits a CPC∗-subsystem.

Proof. Let (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 be an NF system. From this, we form another NF system (𝐵𝑛, 𝜑𝑛+1,𝑛) (with a
different limit) just as in [4, Proposition 5.1.3] by taking 𝐵𝑛 =

⊕𝑛
𝑗=0 𝐹𝑗 and 𝜑𝑛+1,𝑛 � id𝐵𝑛 ⊕ 𝜌𝑛+1,𝑛:

𝐵0 𝐵1 𝐵2 . . .

𝐹0 𝐹0 𝐹0 . . .

𝐹1 𝐹1 . . .

𝐹2 . . .

=

𝜑1,0

=

𝜑2,1

=

𝜌1,0

id

⊕
id

⊕

𝜌2,1

id

⊕
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Then for each 𝑘 ≥ 0, 𝑥 = (𝑥0, ..., 𝑥𝑘 ) ∈ 𝐵𝑘 , and 𝑛 > 𝑘 , we have

𝜑𝑛,𝑘 (𝑥) = 𝑥 ⊕ ⊕𝑛
𝑗=𝑘+1𝜌 𝑗 ,𝑘 (𝑥𝑘 ).

We claim we can find a subsystem (𝐵𝑛 𝑗 , 𝜑𝑛 𝑗+1,𝑛 𝑗 ) 𝑗 which is CPC∗. Set 𝐵 � (𝐵𝑛, 𝜑𝑛)𝑛. Then each
𝜑𝑛+1,𝑛 is a complete order embedding, and hence, so are the induced c.p.c. maps 𝜑𝑛 : 𝐵𝑛 −→ 𝐵 ⊂ 𝐵∞.
Using Arveson’s Extension Theorem (cf. [4, Lemma 5.1.2]), we extend each c.p.c. contraction
𝜑−1
𝑛 : 𝜑𝑛 (𝐵𝑛) −→ 𝐵𝑛 to a c.p.c. map 𝜓𝑛 : 𝐵 −→ 𝐵𝑛 with 𝜓𝑛 ◦ 𝜑𝑛 = id𝐵𝑛 . Since the union

⋃
𝑛 𝜑𝑛 (𝐵𝑛)

is nested, (𝜑𝑚 ◦ 𝜓𝑚) |𝜑𝑛 (𝐵𝑛) = id𝜑𝑛 (𝐵𝑛) for all 𝑚 > 𝑛 ≥ 0, and so (𝐵
𝜓𝑛
−−→ 𝐵𝑛

𝜑𝑛
−−→ 𝐵)𝑛 is a system of

c.p.c. approximations of B. Note that the associated system (𝐵𝑛, 𝜓𝑛+1 ◦ 𝜑𝑛)𝑛 is exactly (𝐵𝑛, 𝜑𝑛+1,𝑛)𝑛:
Indeed, for any 𝑛 ≥ 0 and 𝑥 ∈ 𝐵𝑛, we have for all 𝑚 > 𝑛,

(𝜓𝑚 ◦ 𝜑𝑚−1 ◦ 𝜓𝑚−1 ◦ . . . 𝜑𝑛+1 ◦ 𝜓𝑛+1) (𝜑𝑛 (𝑥)) (4.1)
= 𝜓𝑚 (𝜑𝑛 (𝑥))

= 𝜓𝑚 (𝜑𝑚(𝜑𝑚,𝑛 (𝑥)))

= 𝜑𝑚,𝑛 (𝑥).

Moreover, the downwards maps of our system (𝐵
𝜓𝑛
−−→ 𝐵𝑛

𝜑𝑛
−−→ 𝐵)𝑛 of c.p.c. approximations are

approximately multiplicative. To see this, it suffices to consider 𝜑𝑘 (𝑥), 𝜑𝑘 (𝑦) for some 𝑘 ≥ 0 and
𝑥, 𝑦 ∈ 𝐵𝑘 . Fix 𝜀 > 0. Since

⋃
𝑛 𝜑𝑛 (𝐵𝑛) is dense in B, we may choose 𝑁 > 𝑘 and 𝑧 ∈ 𝐵𝑁 so that

‖𝜑𝑁 (𝑧) − 𝜑𝑘 (𝑥)𝜑𝑘 (𝑦)‖ < 𝜀/3. Since the system is NF, we have

𝜑𝑘 (𝑥)𝜑𝑘 (𝑦) = lim
𝑛

𝜑𝑛
(
𝜑𝑛,𝑘 (𝑥)𝜑𝑛,𝑘 (𝑦)

) (4.1)
= lim

𝑛
𝜑𝑛

(
𝜓𝑛 (𝜑𝑘 (𝑥))𝜓𝑛 (𝜑𝑘 (𝑦))

)
,

and so we may choose 𝑀 > 𝑁 so that

‖𝜑𝑘 (𝑥)𝜑𝑘 (𝑦) − 𝜑𝑚
(
𝜓𝑚 (𝜑𝑘 (𝑥))𝜓𝑚(𝜑𝑘 (𝑦))

)
‖ < 𝜀/3

for all 𝑚 > 𝑀 . Since each 𝜑𝑛 is isometric, we have for all 𝑚 > 𝑀 > 𝑁 ,

‖𝜓𝑚 (𝜑𝑘 (𝑥)𝜑𝑘 (𝑦)) − 𝜓𝑚(𝜑𝑘 (𝑥))𝜓𝑚(𝜑𝑘 (𝑦))‖

< ‖𝜓𝑚 (𝜑𝑁 (𝑧)) − 𝜓𝑚(𝜑𝑘 (𝑥))𝜓𝑚(𝜑𝑘 (𝑦))‖ + 𝜀/3
= ‖𝜑𝑚

(
𝜓𝑚 (𝜑𝑁 (𝑧))

)
− 𝜑𝑚

(
𝜓𝑚(𝜑𝑘 (𝑥))𝜓𝑚(𝜑𝑘 (𝑦)))

)
‖ + 𝜀/3

= ‖𝜑𝑁 (𝑧) − 𝜑𝑚
(
𝜓𝑚(𝜑𝑘 (𝑥))𝜓𝑚(𝜑𝑘 (𝑦))

)
‖ + 𝜀/3

< 𝜀.

Since the downwards maps are approximately multiplicative, they are also approximately order zero,
and so Theorem 3.6 guarantees that the associated system (𝐵𝑛, 𝜓𝑛+1 ◦ 𝜑𝑛)𝑛 = (𝐵𝑛, 𝜑𝑛+1,𝑛)𝑛, has a
CPC∗-subsystem (𝐵𝑛 𝑗 , 𝜑𝑛 𝑗+1 ,𝑛 𝑗 ) 𝑗 .

We claim that the system (𝐹𝑛 𝑗 , 𝜌𝑛 𝑗+1 ,𝑛 𝑗 ) 𝑗 is also CPC∗. Since this will hold without passing to a
further subsystem, at this point, we may drop the subscripts for ease of notation. Fix 𝑘 ≥ 0, 𝑥, 𝑦 ∈ 𝐹𝑘 ,
and 𝜀 > 0. Let 𝑥 = (0, ..., 0, 𝑥), �̂� = (0, ..., 0, 𝑦) ∈ 𝐵𝑘 , and choose 𝑀 > 𝑘 so that for all 𝑚 > 𝑛, 𝑙 > 𝑀 ,
we have

‖𝜑𝑚,𝑙 (1𝐵𝑙 )𝜑𝑚,𝑛
(
𝜑𝑛,𝑘 (𝑥)𝜑𝑛,𝑘 ( �̂�)

)
− 𝜑𝑚,𝑘 (𝑥)𝜑𝑚,𝑘 ( �̂�)‖ < 𝜀. (4.2)

Expanding these terms, we get

𝜑𝑚,𝑘 (𝑥)𝜑𝑚,𝑘 ( �̂�) =
(
𝑥 ⊕

(
⊕𝑚

𝑗=𝑘+1 𝜌 𝑗 ,𝑘 (𝑥)
) ) (

�̂� ⊕
(
⊕𝑚

𝑗=𝑘+1 𝜌 𝑗 ,𝑘 (𝑦)
) )

= 𝑥�̂� ⊕
(
⊕𝑚

𝑗=𝑘+1 𝜌 𝑗 ,𝑘 (𝑥)𝜌 𝑗 ,𝑘 (𝑦)
)
,

𝜑𝑚,𝑙 (1𝐵𝑙 ) = 1𝐵𝑙 ⊕
(
⊕𝑚

𝑗=𝑙+1 𝜌 𝑗 ,𝑙 (1𝐹𝑙 )
)
,
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and

𝜑𝑚,𝑛 (𝜑𝑛,𝑘 (𝑥)𝜑𝑛,𝑘 ( �̂�))

= 𝜑𝑚,𝑛
(
𝑥�̂� ⊕

(
⊕𝑛

𝑗=𝑘+1 𝜌 𝑗 ,𝑘 (𝑥)𝜌 𝑗 ,𝑘 (𝑦)
) )

= 𝑥�̂� ⊕
(
⊕𝑛

𝑗=𝑘+1 𝜌 𝑗 ,𝑘 (𝑥)𝜌 𝑗 ,𝑘 (𝑦)
)
⊕
(
⊕𝑚

𝑗=𝑛+1 𝜌 𝑗 ,𝑘
(
𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)

) )
.

By considering only the 𝑚th entries of these, it follows from (4.2) that

‖𝜌𝑚,𝑛 (1𝐹𝑛 )𝜌𝑚,𝑛
(
𝜌𝑛,𝑘 (𝑥)𝜌𝑛,𝑘 (𝑦)

)
− 𝜌𝑚,𝑘 (𝑥)𝜌𝑚,𝑘 (𝑦)‖ < 𝜀,

which shows that (𝐹𝑛, 𝜌𝑛+1,𝑛)𝑛 is a CPC∗-system. �
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