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Terahertz (THz) radiation from a plasma cylinder with embedded radial electric and axial magnetic fields is investigated. The
plasma density and the electric and magnetic fields are such that the electron plasma frequency is near the electron cyclotron
frequency and in the THz regime. Two-dimensional particle-in-cell simulations show that the plasma electrons oscillate not only
in the azimuthal direction but also in the radial direction. Spectral analysis shows that the resulting oscillating current pattern has a
clearly defined characteristic frequency near the electron cyclotron frequency, suggesting resonance between the cyclotron and
plasma oscillations. The resulting far-field THz radiation in the axial direction is also discussed.

1. Introduction

The frequency regime of Terahertz (THz) radiation lies
between that of microwaves and optical waves. Because of
shortage of effective sources, the THz regime was often
considered as a gap in the usable electromagnetic-wave
spectrum. Generation and manipulation of THz radiation
(or T-rays) have been extensively investigated because of
its relevance in many areas of basic science and appli-
cation. In particular, it has potential use in medical and
security-detection imaging and communication, as well as
in investigating molecular dynamics in matter in the
condensed phase.

Many approaches have been proposed for generating
T-rays, including synchrotron radiation [1], optical transi-
tion radiation [2, 3], and nonlinear frequency upconversion
[4]. Optical transition radiation is produced by relativistic
electrons as they cross the interface of different dielectric

media. Frequency up- or downconversion of electromag-
netic radiation can be realized through nonlinear wave-
matter and wave-wave interaction. THz radiation can also be
produced in intense laser interaction with matter
[3, 5, 6-14]. T-rays can also be produced by the oscillating
electrons in laser-induced wakefields [15-17], Smith—Purcell
effect of the electron beams in laser-matter interactions [18],
two-color laser gas-plasma interaction [19, 20], transition-
Cherenkov effect from laser filaments [21], laser-driven
wire-guided helical undulators [22], and linear and non-
linear mode conversion [23], as well as laser interaction with
strongly magnetized plasmas [24-27]. However, most such
sources of T-rays are rather complex and inconvenient to
realize in practice.

We consider in this paper an unusual but simple source
of T-rays, namely, a plasma cylinder with embedded axial
magnetic electric and radial fields. Two-dimensional (2D)
particle-in-cell (PIC) simulations show that electrons in the
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plasma cylinder oscillate in the azimuthal as well as radial
directions. The evolution of the oscillating current distri-
bution is investigated. It is found that resonance-like be-
havior between the electron oscillations near the plasma and
cyclotron frequencies can take place, and the resulting
current pattern can produce T-rays in the axial direction.

This paper is organized as follows. In Section 2, the
proposed scheme and simulation parameters are described.
Section 3 presents the simulation results at the initial stage,
and Section 4 considers the long-time behavior. The far-field
power of the T-ray emitted from the plasma cylinder is given
in Section 5. Section 6 gives the summary.

2. Proposed Scheme and Simulation Parameters

We consider here an unusual source of THz radiation,
namely, from a plasma cylinder with external radial electric
field and axial magnetic field, as shown in Figure 1. The
electric field producing the plasma could be from a radial
capacitor discharge and the magnetic field from a solenoid
coil outside the cylinder. The electron motion is governed by

1
d, (yu) =—e<E+EuxB>, (1)
e
diy= —uXE, (2)
mc

where u is the electron velocity, y is the relativistic factor,
and e, m, and c are the electron charge and mass, and the
speed of light, respectively. The dynamics of both electrons
and (hydrogen) ions are fully included in the PIC simula-
tions [28]. However, as expected, within the picosecond time
of interest here, the electron motion is dominant. The
constant embedded electric and magnetic fields are E; = E7
and B, = Byz, where E; =3.4x 10" V/m and B, = 11.4T,
which we note are readily realizable. The cylindrical plasma
cylinder is of radius R = 3286 ym and initially of uniform
density ny = 1.26 x 10° m™~>. The temperature of the elec-
trons and ions is 300 eV. The parameters have been chosen
such that the electron cyclotron frequency w. = eB,/mc and
plasma frequency w,, = (4me*ny/m)*’* are both in the THz
regime, so that resonance of the electron oscillations can be
expected.

To investigate the evolution of such a plasma cylinder,
we use the 2D3V (two-dimensional in space and three-
dimensional in velocity) PIC simulation code LAPINE
[28]. The size of the simulation box is 9418 ym x 9418 ym.
The spatial mesh has 1024 x 1024 cells, containing 4 x 107
each of electrons and ions, and the simulation time step is
13 fs. As mentioned, the ion dynamics is fully included, as
they might play a role in the long-time behavior of the
system.

3. Initial Stage of the Evolution

Figure 2 shows the self-consistently induced electric field
AE, att=13.18 ps and t=16.11 ps. In this beginning stage of
the evolution, besides the cyclotron motion, the plasma
electrons are driven radially by external electric field E; and
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F1GURE 1: The plasma cylinder with external radial electric field E,
and axial magnetic field By, where E;=3.4x10"°V/m and
By, =11.4T.  The (hydrogen) plasma  density  is
1y = 1.26 x 102 m~3,

acquire a radial velocity v,. The induced electric field AE,, of
order hundreds V/m, is much weaker than E,. The Lorentz
force from B, and v, also cause the electrons to move in the
azimuthal direction, and the resulting azimuthal velocity in
turn causes the electrons to move in the radial direction,
leading to the oscillations. The much heavier ions have
hardly moved (not shown).

The evolution of the current density distribution in the
early stage, involving about two oscillation periods, is shown
in Figure 3. Figure 3(a) shows that, at = 11.72 ps, the current
density near the cylinder center is larger than that near the
boundary. Furthermore, the local current vectors (black
arrows) indicate that the stronger current is in the anti-
clockwise direction (note that the electrons near the center
rotate in the clockwise direction). For t=13.18ps,
Figure 3(b) shows that the outward-moving electrons ap-
proach the boundary of the circular column. They are then
reflected by the sheath there and move inwards toward the
center, as can be seen in Figure 3(c). Roughly, Figures 3(a)
and 3(c) correspond to near-minimum amplitudes and
Figures 3(b) and 3(d) to near-maximum amplitudes, of the
current oscillations. The evolution of the current density in
Figure 3 shows that besides rotating in the anticlockwise
direction, the electrons oscillate in a rather complicated
manner.

4. Long-Time Behavior

Figure 3 shows the electron dynamics in the initial two
oscillation cycles. To see the behavior at longer times, we
now focus on a fixed location inside the plasma cylinder.
Figures 4(a) and 4(c) show the evolution of the radial and
azimuthal currents at (x, y) =(7346.04 ym, 7346.04 ym).
One can see that, during the 80ps long interval, the
electron currents J, and ], have undergone many oscil-
lation cycles. Figures 4(b) and 4(d) show the
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FIGURE 2: Snapshots of the induced electric field AE, at (a) ¢t = 13.18 ps and (b) t = 16.11 ps. Note that the induced electric field is much
weaker than the embedded electric field.
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FIGURE 3: Snapshots of the current distribution at (a) ¢t =11.72, (b)t =13.18, (c) t =14.65, and (d) t =16.11 ps. The black arrows represent
local current vectors. Close inspection shows that the currents oscillate both radially and azimuthally. The white dashed circles mark the
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F1GURE 4: Evolution of the (a) radial current density J, and (c) azimuthal current density J, at (x, y) = (7346.04 um, 7346.04 ym). (b, d) The
corresponding frequency spectra.
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F1Gure 5: Evolution of the (a) total current density Y’ |J(x)| and (b) its frequency spectrum.
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FI1GURE 6: The frequency spectrum of the THz radiation. The peak is
at ~0.35 THz, and the bandwidth is ~5.7%.

corresponding frequency spectra. We can see in both the
radial and azimuthal spectra a dominant peak at
f~0.35THz (or w ~ 2.2rad/sec). In fact, their overall
spectral profiles are almost identical, suggesting that a 2D
normal-mode-like structure has formed.

Figure 5 shows the evolution of the total current density
Y 1] (x)] in the simulation box. Figure 5(a) shows that the
initial oscillations of the total current density are of large
amplitude (to be expected since the initial plasma and fields
do not form a self-consistent system), and the corre-
sponding rate of decrease of the envelope is — 4.9 A/m?/ps.
At later times, the rate of decrease becomes
—0.0012 A/m?/ps. Figure 5(b) shows the corresponding
frequency spectrum, showing that the characteristic fre-
quency of the current oscillations at this location is also
~0.35THz.

5. Terahertz Radiation

Using the temporal and spatial current density from the
simulation, one can obtain the far-field radiation. The total
electromagnetic energy per unit solid angle Q) per unit
frequency is given by the following equation [15, 29]:

d’1 W’

—~ 2
3 o~ iw (t—n-x/c)
G ™ o) 4 | AR g

(3)

where 7 is the direction of the observer with respect to the
radiating body. The intensity distribution of the radiation in
the z-direction is then [15]

d’1 B W’
dwdQ - 47-[2(;3

2
, (4)

Jdt](t) &t

where J(t) = f d®xJ (x,t). The corresponding result is
shown in Figure 6. We can see that the radiation spectrum
has a broad peak centered at f,~0.35 THz, as to be expected
in view of the current density spectra discussed above. The
tull-width-at-half-maximum bandwidth Af/f, is about
0.057.

6. Summary

In this paper, we have shown that a bounded plasma cylinder
with embedded radial electric and axial magnetic fields can
emit T-rays if the parameters of the plasma and the electric
and magnetic fields are such that the electron plasma and
cyclotron frequencies nearly match and are in the THz re-
gime. As a result, resonance-like behavior of the electrons can
occur. The electrons not only rotate in the azimuthal direction
but also oscillate in both the radial and azimuthal directions.
The resulting currents can emit THz radiation. Finally, it may
be of interest to note that, in a nonperturbative analysis of the
cold fluid and Maxwell equations, where all the electric and
magnetic fields are self-consistent, similar coupled oscillation
behavior of the charged particles can exist in an unbounded
and self-consistently expanding plasma [30].
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