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APPROXIMATIONS: REPLACING RANDOM
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BY JOE GANI

Abstract

One of the standard methods for approximating a bivariate continuous-time Markov chain
{X(t), Y (t) : t ≥ 0}, which proves too difficult to solve in its original form, is to replace
one of its variables by its mean, This leads to a simplified stochastic process for the
remaining variable which can usually be solved, although the technique is not always
optimal. In this note we consider two cases where the method is successful for carrier
infections and mutating bacteria, and one case where it is somewhat less so for the SIS
epidemics.
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1. Introduction

2014 marks the fiftieth anniversary of the founding of the Applied Probability Trust (APT)
in 1964. The APT is currently the publisher of four journals (Journal of Applied Probability,
Advances in Applied Probability, Mathematical Spectrum, and The Mathematical Scientist) as
well as several occasional Festschrifts and other volumes. The present volume celebrates this
anniversary, and the efforts of the APT Trustees, the editors of these journals, the numerous
authors of their articles, and not least the members of the editorial office in Sheffield. I can
only wish the APT continuing success in the future; as one of the APT’s founding fathers, it
has been a singular privilege to witness its growth and its contributions to the development of
the field of applied probability.

The study of models in applied probability is riven with approximations. This note illustrates
both ‘success’ and ‘failure’ of a common technique of approximating the behaviour of a
stochastic process by replacing a component by a suitably defined first moment so as, hopefully,
to elicit more information about other aspects of the process.

2. The case of carrier infectives

In the basic model for an epidemic spread via carriers, the probability distribution of the
number of susceptibles X(t) at time t after the onset of disease spread, with n susceptibles
initially, is known to be

pr(t) = P{X(t) = r} =
(

n

r

) n∑
j=r

(−1)j−r

(
n − r

j − r

)[
ρ + je−(ρ+j)t

ρ + j

]b

with probability generating function (PGF)

E[uX(t)] =
n∑

j=0

(
n

j

)
(u − 1)j

[
ρ + je−(ρ+j)t

ρ + j

]b

, 0 < u ≤ 1,
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where b is the initial numbers of carriers, X(0) = n, and ρ = a/β with a the death rate of
carriers and β the infection rate. (For further details, see Bailey (1975, p. 194) and Daley and
Gani (1999, p. 97)).

A possible approximation to the stochastic model is obtained by replacing Y (t), the number
of carriers at time t , by its mean be−at . In this case, the probability pr(t) = P{X(t) =
r | X(0) = n} satisfies the forward Kolmogorov equation

dpr(t)

dt
= (−βrbe−at )pr(t) + β(r + 1)be−atpr+1(t)

for r = 0, 1, . . . , n. The PGF f (u, t) = ∑n
r=0 pru

r , 0 < u ≤ 1, satisfies the partial
differential equation

∂f

∂t
= −βb e−at (1 − u)

∂f

∂u
.

This equation is readily solved by the method of characteristics, yielding

(u − 1)e(βb/a)e−at = C, f = K,

where C and K are constants. It follows that

f (u, t) = g((u − 1)e(βb/a)e−at

),

where g is an unknown function, such that, for t = 0,

f (u, 0) = un = g((u − 1)eβb/a).

Writing w = (u − 1)eβb/a , or u = 1 + we−βb/a , we obtain

f (u, t) = [(u − 1)eβb/a(e−at − 1) + 1]n,
a binomial with

E[X(t)] = n e(−βb/a)(1−e−at ) = n e−(b/ρ)(1−e−at ).

The exact mean is known to be

n

[
ρ + e−(ρ+1)t

ρ + 1

]b

,

although both are asymptotically the same for small t . Here the exact and approximate models
are similar, but as we shall see in Section 4, the replacement of a random variable by its mean
does not always work so well.

3. Mutating bacteria

Consider now a pool of bacteria X(t) which reproduce at rate k, some of which mutate to
Y (t) at rate β and may then become unresponsive to antibiotics. The mutants reproduce at
rate a, and die at rate m. See Figure 1.

For the bivariate probability pxy at time t ≥ 0, defined by

pxy = P{(X, Y )(t) = (x, y) | (X, Y )(0) = (x0, 0)},
we derive the forward Kolmogorov equations

dpxy

dt
= −[(k + β)x + (a + m)y]pxy + k(x − 1)px−1,y + β(x + 1)px+1,y−1.
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Figure 1: Mutating bacteria.

The PGF f (u, v, t) = ∑∞
x,y=0 pxy(t)u

xvy, 0 < u, v ≤ 1, satisfies the partial differential
equation

∂f

∂t
= (ku2 − (k + β)u + βv)

∂f

∂u
+ (av2 − (a + m)v + m)

∂f

∂v
,

whose auxiliary equations are

dt

−1
= du

ku2 − (k + β)u + βv
= dv

av2 − (a + m)v + m
= df

0
.

These equations are difficult to solve, so we fall back on the replacement of X(t) by its
deterministic mean x0e(k−β)t . The Kolmogorov equations for the probabilities py = P{Y (t) =
y | Y (0) = 0} are then

dpy(t)

dt
= −((k + β)x0 e(k−β)t+(a+m)y)pxy + kx0e(k−β)tpy + βx0e(k−β)tpy−1

+ a(y − 1)py−1 + m(y + 1)py+1

for which the PGF f (v, t) = ∑∞
y=0 py(t)v

y, 0 < v ≤ 1, satisfies the partial differential
equation

∂f

∂t
= (av2 − (a + m)v + m)

∂f

∂v
− βx0(v − 1) f e(k−β)t .

The auxiliary equations here are

dt

1
= dv

(v − 1)(m − av)
= df

βx0(v − 1)f e(k−β)t
,

yielding
av − m

v − 1
e−(a−m)t = C or v = m e(m−a)t − C

a e(m−a)t − C
,

where C is a constant. Hence,

df

f
= β(v − 1)x0 e(k−β)t = βx0e(k−β)t (m − a)e(m−a)t

ae(m−a)t − C
,

so that

ln f =
∫

(m − a)βx0e(k−β+m−a)t

ae(m−a)t − C
dt.

This is not easy to integrate unless k = β, when we see that

df

βx0(v − 1)f
= dv

(m − av)(v − 1)
or

df

βx0f
= dv

m − av
,
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so that

ln f = −βx0

a
ln(av − m).

Hence, when k = β, f (av − m)βx0/a = f ((av − m)e−(a−m)t/(v − 1)).

When t = 0,

(av − m)βx0/a = f

(
av − m

v − 1

)
.

Writing z = (av − m)/(v − 1), we find that

f (z) =
[
(a − m)z

z − a

]βx0/a

,

so that

f (v, t) =
[

a − m

av(1 − e(a−m)t + ae(a−m)t − m)

]βx0/a

.

From this, we can obtain an approximation to the mean of Y (t) as

E[Y (t)] ≈ βx0

a − m
(e(a−m)t − 1).

4. The case of the SIS epidemic

We now consider the standard deterministic SIS epidemic, with x susceptibles and y infec-
tives governed by the equations

dx

dt
= −βxy + ay,

dy

dt
= βxy − ay = −dx

dt
,

where β is the infection parameter and a is the rate of recovery of the infectives; see Figure 2.
This is a case where the replacement of the infectives by their mean in the stochastic version
leads to a model somewhat different from the original.

If x(0) = N and y(0) = 1, where x + y = N + 1 for all t ≥ 0, solving the differential
equations shows that

x(t) = (N + 1)(a − βN) − a e(β(N+1)−a)t

a − βN − β e(β(N+1)−a)t

and

y(t) = N + 1 − x(t) = K

β + (βN − a)e−Kt
,

where K = β(N + 1) − a.

Infectives
y t( )

Susceptibles
x t( )

Bxy

ay

Figure 2: SIS epidemic.
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We proceed to replace Y (t) in the stochastic version of this model by its deterministic
mean y(t). Writing

pi(t) = P{X(t) = i | X(0) = N},
we obtain the forward Kolmogorov equations as

dpi

dt
= β(N + 1) − a

β + (βN − a)e−Kt

[−(βi + a)pi + β(i + 1)pi+1 + api−1
]
.

Define now

T = 1

β
ln

(
1 + β(eKt − 1)

K

)
,

where dT/dt = y(t), with T = 0 when t = 0. Hence,

dpi

dT
= −(βi + a)pi + β(i + 1)pi+1 + api−1,

whose PGF f (u, T ) = ∑N+1
i=0 pi(t)u

i satisfies the partial differential equation

∂f

∂T
= −β(u − 1)

∂f

∂u
+ a(u − 1)f.

Its auxiliary equations are

dT

1
= du

β(u − 1)
= df

a(u − 1)f
,

leading to ln f = (a/β)u + C and ln(u − 1) = βT + D, where C and D are constants. Thus,

f e−a/β = g
(
(u − 1)e−βT

)
with g an unknown function, where

uN = (g(u − 1))e(a/β)u when T = 0.

Writing w = (u − 1), we find that (w + 1)N = g(w)e(a/β)(w+1), so that

f (u, t) = [1 + (u − 1)e−βT ]N exp

(
a

β
(1 − e−βT )(u − 1)

)
,

with mean E[X(t)] = (N − a/β)e−βT + a/β. This convolution of a death and immigration
process appears to differ from the original stochastic model to some degree, but may still prove
useful as an approximation.

5. Concluding remarks

Each of the three models discussed in this paper can be formally described as a continuous-
time Markov process {(X(t), Y (t)) : t ≥ 0} on a countable state space, whose probability
distribution we may not know easily but for which, when Y (·) is replaced by a suitable
approximation to its expectation, the distribution of X(t) may become more accessible. The
extent to which this distribution resembles the marginal distribution in the original process
can depend on the detailed relation of the structures of the original and approximation: the
parameters of the particular model may be close to a critical point in the parameter space
(e.g. k = β and a = m in Section 3) or the approximation may be better when interpreted
conditionally (e.g. Y (t) �= 0 in Section 4). These are matters left to another place.
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