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Abstract

We study polynomials over an integral domain R which, for infinitely many prime ideals P, induce
a permutation of R/P. In many cases, every polynomial with this property must be a composition of
Dickson polynomials and of linear polynomials with coefficients in the quotient field of R. In order to find
out which of these compositions have the required property we investigate some number theoretic aspects
of composition of polynomials. The paper includes a rather elementary proof of 'Schur's Conjecture'
and contains a quantitative version for polynomials of prime degree.
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Introduction

A polynomial f(x) with coefficients in an integral domain R is said to be a
permutation polynomial (abbreviated as p.p.) modulo an ideal / of R if the mapping
induced on the residue class ring R/I is bijective. For R = Z it has long been known
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that every composition of Dickson polynomials (defined in 1.1) with degrees coprime
with 6 is a p.p. for infinitely many primes p (that is, is a p.p. mod(/?)). Conversely,
Schur proved in 1923 that every integral polynomial of prime degree which is a p.p.
for infinitely many p is, up to linear transformations, a Dickson polynomial. The
conjecture that every integral polynomial which is a p.p. for infinitely many p is
a composition of linear polynomials and Dickson polynomials came to be known
as 'Schur's Conjecture'. By means of very troublesome computations subsequent
authors extended Schur's approach to prove the conjecture in more general cases, for
example if the degree is a product of two odd prime powers. A breakthrough came in
1970 when M. Fried essentially proved a general version of the conjecture for every
R which is the ring of algebraic integers of an algebraic number field. He observed
that a polynomial which is a p.p. for infinitely many prime ideals can be written
as a composition of indecomposable polynomials f(x) such that the polynomial
(f(x) — f(y))/(x — y) is not absolutely irreducible. Schur's Conjecture thus follows
from the implication '(iii) implies (i)' of (the number field case of) the following
result.

THEOREM 1. Let K be afield and f(x) e K[x] be a tame polynomial of degree
n > 1. Then the following assertions are equivalent.

(i) (f(x) — f(y))/(x — y) is absolutely irreducible.
(ii) (f(x) — f(y))/(x — y) is irreducible over AT(£) where £ is a primitive n-th

root of unity.
(iii) f(x) is indecomposable and ifn is an odd prime then we do not have / (x) =

aDn(a, x + b) + cfora, a,b,c e K with a = 0 ifn = 3.

(Every polynomial is tame if char^f = 0; if chaxK = p > 0 then all polynomials
of degree less than p are tame (Definition 4.1); f{x) is indecomposable if and only if
it cannot be written as a composition of two polynomials of degree greater than one;
Dn{a, x) is the Dickson polynomial of degree n with parameter a.)

Theorem 1 also yields the following general form of Schur's Conjecture which
applies to arbitrary subrings of the ring of algebraic integers of any number field and
to polynomial rings (in one variable) over finite fields.

THEOREM 2. Let K be the quotient field of an integral domain R such that R/I
is finite for every non-zero ideal I and let f(x) e R[x] be a tame polynomial which
is a p.p. for infinitely many prime ideals of R. Then f(x) is a composition of linear
polynomials atx + ft e K[x] and Dickson polynomials Dnj(aj, x) with af e R where
every n, is an odd prime and a, = 0 ifnt•. = 3.

In the following three theorems we assume that R is the ring of algebraic integers
of some number field K. In this situation we can make Theorem 2 much more precise.
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THEOREM 3. Let f(x) e R[x] be a composition of linear polynomials atx + fr e
K[x] and Dickson polynomials Dn.(aj,x) with a-} e R. Choose c e R, c ^ 0,
such that ca,, c/?, € R for all i. Then f(x) is a p.p. for infinitely many prime
ideals of R if and only if f(x) is a p.p. for some non-zero prime ideal not dividing
deg(/) c [Ica, Ua^oaJ-

THEOREM 4. Let f(x) e R[x] have leading coefficient a and degree n > 1. Ifn is
not divisible by any ramified prime then the following conditions are equivalent:

(i) f(x) is a p.p. mod P for infinitely many prime ideals P of R.
(ii) a"~lf(x) = ( / io. . .o fr){ax) where f{x) — Dni(at, x+fc,) +c, withsuitable

a,-, bj, c, € R and odd primes «, such that a, = 0 ifnt — 3.
(iii) n is odd and f(x) is a p.p. for every prime ideal P of degree one with

NP = 2mod n and a # P.

THEOREM 5. Let f(x) e R[x] have prime degree n and assume that the image
of every coefficient under every embedding of K into C has modulus at most C; put
d = [K : Q]. If there exists a prime ideal P of norm at least (nC)nd such that f(x)
is a p.p. mod P then n > 3, f(x) is linearly related (over K) to Dn(a, x) for some
a e K, and f(x) is a p.p. for infinitely many prime ideals.

In Section 1 various properties of the Dickson polynomials are collected. In
particular, the factorization of Dn (a, x) — Dn (a, y)inK[x, y]is given. InSection2we
study polynomials with coefficients in an integral domain with respect to composition.
Moreover it is shown that if R is a Dedekind domain and n is not divisible by any
ramified prime Dn(a, x + b) + c e R[x] implies a,b,c e R except for some special
cases. In Section 3 we consider the Galois group Gf of f(x) — t over K(t). The
connection between properties of f(x) and properties of the permutation group Gf is
an important ingredient for the proof of Theorem 1. As an application we present a
general class of polynomials f(x) such that Gf is the symmetric group and classify
the polynomials for which Gf is solvable. This generalizes work of Hilbert and Ritt,
respectively, for K — C.

The main results are proved in Section 4. For the proof of Theorem 1 (=Theorem
4.5) use is made of two theorems of Burnside and Schur on primitive permutation
groups. Theorem 2 follows from Lemma 4.10 and Theorem 4.9 where more general
rings (including all Dedekind domains) are considered. The main tools of the proof
are Theorem 1 and a special case of Weil's estimate of the number of points on an
absolutely irreducible curve over a finite field. (See Remark 4.16.) Theorem 3 is
obvious from Remark 4.21 and the equivalence of (i), (ii) in Theorem 4.30. Theorem
4.30 and Theorem 4.32 (both originating from the work of Matthews) are the main
results of a considerable portion of Section 4 (starting with 4.21 and ending with 4.33)
devoted to the problem of determining under which circumstances Dn (1, jc)m is a p.p.
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for infinitely many prime ideals in a given number field. Theorem 4 is contained
in Theorem 4.34 which follows from Theorem 2 together with a generalization of
Dirichlet's theorem on primes in an arithmetic progression. Theorem 5 is an immediate
consequence of Theorem 4.17 (where additional information is provided) and Theorem
4.37. In Section 5 we conclude with comments on the history of Schur's Conjecture
and its solution.

This work grew out of an attempt to give a short and reasonably self-contained
proof of a correct version of Schur's Conjecture; with very few exceptions, the
versions appearing in the literature are fallacious. The proof of Theorem 2, however,
requires only a small portion of the results presented here. (See Remark 4.16) Apart
from the mentioned theorems of Burnside, Schur, and Weil, only quite elementary
results are needed. In particular, we do not employ the theory of Riemann surfaces.
Special attention is paid to the fact that one cannot assume atx+# € R[x] in Theorem
2.

A polynomial with coefficients in a field K is said to be linearly related to a Dickson
polynomial if it is of the form a Dn (a, yx + 8) + fi where a, a, ft, y, S belong to some
extension field L of K (such that x is transcendental over L). If / is an ideal of an
integral domain R then, as is usual in the case where R is a ring of algebraic integers,
we call \R/I\ the norm of / and denote it by NI. If P is a non-zero prime ideal of a
Dedekind domain R with quotient field K then, for every a e K, vP(a) denotes the
multiplicity of P in the fractional ideal (a). A rational prime p is called ramified (in
K) if vP(p) > 1 for some P. The sets P(m, n; K) appearing in several results in
Section 4 are defined in 4.21. P(m, n; K) is the set of non-zero prime ideals P in K
such that Dn(\, x)m is a p.p. mod P.

1. Dickson polynomials

R denotes an integral domain with quotient field K (with algebraic closure K).

LEMMA 1.1. For every a e R and every positive integer n there is a unique
polynomial Dn(a,x) € R[x] such that Dn(a,x + (a/x)) = x" + (a/x)n. The
polynomial Dn(a,x) is monic of degree n and the coefficients are integral polynomials
in a. The following properties hold (for all a,b € R andm, n > 1):

(i) Dx(a,x) =x,D2(a,x) = x2 -2a, Dn+2(a,x) =xDn+l(a,x) -aDn(a,x).
(ii) Dn(0, x) = x", Dmn(a, x) = Dm(a", Dn(a, x)), b"Dn(a, x) = Dn(b

2a, bx).
(iii) Dn(a,x) = E E £ W ( » - k))(n-k)(-a)kx"-2k; [n/2] denotes the largest

integer < n/2. Thus Dn(a, x) = x" - nax"'1 + ••• + («/2)2(-a)(n/2)-1x2 +
2(-a)n/2for even n and Dn(a, x) = x" - naxn~2 -\ h n(-a)("-1)/2x for
oddn.
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(iv) Ifp = char/? > 0 then Dnp(a, x) = Dn{a, x)p.

PROOF. The uniqueness is clear. For n = 1 and n = 2 the polynomials x and
x2 — 2a, respectively, have the required property and inductively we see that this
also holds for the polynomials defined by the recurrence relation, thus proving the
existence of Dn(a, x) and (i).

Obviously, Dn(0, x) = x"; the second part of (ii) holds since Dmn(a, x + (a/x)) =
xmn + (a/x)mn = Dm(a",x" + (a/x)n) and the last part follows from b"Dn(a, x +
(a/x)) = tf(x" + (a/x)n) = (bx)n + (b2a/bx)n.

From (i) it is immediately seen that Dn(a, x) is a monic polynomial of degree n
and the coefficients are integral polynomials in a. The explicit formula in (iii) is
established inductively by a simple calculation using the recurrence relation.

Part (iv) follows from xnp + (a/xf = (x" + (a/x)")p.

DEFINITION 1.2. The unique polynomial Dn(a, x) with Dn(a, x + (a/x)) = x" +
(a/x)" is called Dickson polynomial of degree n (with parameter a e R).

REMARK 1.3. The Dickson polynomials are often defined by property (iii) of 1.1
and denoted by gn(a, x) or gn(x, a) (cf. [30, p.209; 31, p.355]). (Added in proof: In
[61] the notation Dn (x, a) is used.) Our defining equation is then derived by means of
Waring's formula expressing x"+y" as a polynomial in x+y andxv. We immediately
obtain this formula by noting that x" + y" = x" + (xy/x)n = Dn(xy, x + y) (with
R = l[x, y]).

There is a close connection between the Dickson polynomials and the Chebyshev
polynomials Tn(x) (characterized by Tn(cos<p) = cosncp). The defining property
easily yields Dn(a, x) = 2(^/a)"Tn(x/2^/a) if a # 0; hence Tn(x) = Dn(\, 2JC)/2.

LEMMA 1.4. Let n be a positive integer, a e R, and P be a prime ideal of R of
finite norm NP — \R/P\. Then Dn(a,x) is a p.p. mod P if and only if a & P,
((NP)2 - 1, n) = 1 or a e P, (NP - 1, n) = 1.

For a proof we refer to [30, Ch.4,Thm.9.43] (for a $ P) or [31, pp.351, 356];
note that R/P is a finite field and the reduction of Dn(a, x) mod P is Dn(a, x) where
a =a + P G R/P.

PROPOSITION 1.5. Let f(x) = YH=oakxk be a polynomial with integral coefficients
and degree n > 3. Assume that for every r — 2,... ,n — 2 there are infinitely
many primes p with p = r mod n such that f(x) is a p.p. mod p. Then f(x) —
aDn(a, yx + 8) + ft for some a, a, f},y,8 e Q. Ifan = 1 andan-\ = 0 then we may
choose a = y = 1, ft = /(0), 8 = 0, and a e I.
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PROOF. If « = ri\n2 with nx,n2 > 1 then there are only finitely many primes p
with p = ri\ mod n. Since 2 < ri\ < n — 2, this is a contradiction. Hence n is a
prime. We call g(x) e Q[x] a p.p. mod p if, for some integer s not divisible by p,
sg(x) has integral coefficients and is a p.p. mod p; this extends our earlier definition.

The polynomial /,(JC) = (f(x - (an^/nan)) - f(-an_i/nan))/an is a p.p. mod
p if and only i f / ( x ) is a p.p. mod p provided that p does not divide nan. For suitable
a € Qthe coefficients of x", x"~l,sndx"~2 in fi(x) and Dn(a,x) =x"-nax"~2-\
coincide. Also /i(0) = Dn(a, 0) = 0. From Lemma 1.4 we conclude that Dn{a, x)
is a p.p. for all primes p with (p2 — 1, n) — 1 that do not divide the denominator
of a. Hence, by Dirichlet's theorem, for every r = 2 , . . . , n — 2 there are infinitely
many p with p = r mod n such that Dn(a, x) is a p.p. mod p . The first part of the
assertion thus follows as soon as we can prove that for fixed an_2 there is at most one
polynomial f(x) = x" + $^~f akx

k e Q[x] with the required property.

Assume that f(x) has the indicated form and choose r with 2 < r < n — 2. Let
p > n be a prime not dividing the denominator of any coefficient of f{x) such that
p = r mod n and / (x ) is a p.p. mod/?. Put/n = l + (p—r)/«. Since I < m < p — l,
the reduction of f(x)m mod /? must have reduced degree < p — 1 (cf. Thm.7.4 and
the remark following Cor.7.5 of [31]). Since f(x)m has degree nm < 2(p — 1), this
means that the numerator of the coefficient of xp~l in f{x)m is divisible by p. Since

this coefficient is the coefficient of ?"-<'-•> = f""-(P-O i n (1 + an-2t
2 H h aot")m,

it has the form mar-X + g ( a r , . . . , an_2, m) where # ( * ! , . . . , xn_r) is a polynomial
with rational coefficients which only depend on n and r. Note that only primes
smaller than n can appear in the denominator of one of the coefficients. If d is the
degree with respect to xn-r then ndg(ar,..., an-2, m) = h(ar,..., an_2, w«, n) for
some polynomial h{xx,..., xn_r+1) with rational coefficients only depending on n
and r. Thus the numerator of mndar-1 + h(ar,..., an_2, mn, n) is divisible by p
and taking into account that mn = n — r mod p we conclude that the same holds
for nd~x(n — /-)ar_i + h(ar,..., an_2, n — r, n). Since this number is independent
of p (and we have infinitely many possibilities for p) it has to be zero. Hence ar_i
is uniquely determined by ar,..., an_2 and by induction on r we conclude that all
coefficients ax,..., an-2 are uniquely determined by a«_2.

It remains to prove the last part of the assertion. By what we have just seen we
obtain f(x) - /(0) = Dn{a, x) for some a 6 Q. Hence Dn(a, x) = x" - naxn~2 +

h w(—a)(n~l)/2x has integral coefficients and this implies a eZ since n is a prime

REMARK 1.6. This result is of course contained in Schur's theorem (that is, the
special case of Theorem 2 for integral polynomials of prime degree) from [48], but the
proof is much simpler. The main idea is due to Dickson [10, pp. 89-91]. A weaker
version was proved by Wegner by a totally different argument (using non-elementary
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auxiliary results) in [53].

PROPOSITION 1.7. Let n be a positive integer and assume that there is a primitive
n-th root £ of unity in R. Put ak = £ * + £"*, fa = £* - £"*. Then for every a e R
we have

(B-O/2

Dn(a, x) - Dn(a, y) = (x - y) f ] (x2 - akxy + y2 + fta)

k=\

if n is odd and otherwise

(«-2)/2

DH(a, x) - Dn(a, y) = (x - y)(x + y) J~] (x2 - akxy + y2 + fta).
k=\

For a ^ 0 the quadratic factors are different from each other and irreducible in
R[x,yl

PROOF. Note that x" + y" = Dn(xy, x + y) (cf. 1.3). If fa ^ 0 we may replace x
and y by (£*x — y)/fa and (—£"** + y)/fa> respectively, and obtain (i;kx — y)n +
{-K'kx + v)" = P"kDn{zk,x) with zk = -{x2 - akxy + y2)/^. Note that the left
side is symmetric in x, y since (—£~kx + y)n = (—x + £ky)n. Thus by interchanging
x and v we conclude that Dn(zk, x) = Dn(zk, y). Hence zk is a zero of the polynomial
/(z) = A,(z, x) - Dn(z, y) over K(x, y).

Since £ ; - £ - ; = £ * - £~* holds if and only if f •»' = f * or !;' = -f-*, )3;
2 = fi\

holds if and only if £'' = ±f * or fj: = ±£ "*, that is, if and only if 2(y - it) or 2(; + /t)
is divisible by n. Hence the fi\ with 1 < k < n/2 are different from each other and
non-zero (since /50 = 0).

If n is odd then (by Lemma l.l(iii)) /(z) has degree (n — l)/2 and leading term
n(— lYn~l)/2(x — y); note that n is not divisible by the characteristic of K (since other-
wise-^" = 1 if char/: = p > 0). Hence /(z) = n(-iy-l)/2(x-y) Ut^'2^-^)-
Comparing the coefficient of x" on both sides implies that n(-l)("~1)/2 = nilV'72 Pi
(which can also be easily derived from n = nj=i (1 "" ̂ y))- Thus in K[x, y, z] we
obtain the identity Dn(z, x) - Dn(z, y) = (x - y) n l T / ^ V - <***? + / + ft2^)-

If n is even then f(z) has degree (« - 2)/2 and leading term («/2)2(JC2 - y2) x
(_1)(«-2)/2 H e n c e y ( z ) = (rt/2)2(-l)("-2'/2(jc2 - y2)nr=?) /2(z - z*) and- f o r t h e

same reason as above, Dn(z, x) - Dn(z, y) = (x — y)(x + y) n*"=|2)/2(x2 "" " ^ ^ +

y2 + fa).
If there exists a factorization of x2 — akxy + y2 + fifa then it clearly has the form

(x - £*y + bk)(x — l;~ky + ck) with suitable ftt, c* e /?. Comparing coefficients gives
bk + ck — 0, $~kbk + t,kck = 0, and bkck = fi\a. Hence bk = —ck, ckfa = 0, and
c2 = —fta. This is only possible if fa = 0 or a = 0.
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REMARK 1.8. This result provides us with the factorization of Dn(a, x) — Dn{a, y)
in K [x, y] if n is not divisible by char^T. The general case is obtained by observing that
Dnp(a, x) = Dn(a, x)" and hence Dnp{a, x) - Dnp(a, y) = (Dn(a, x) - Dn(a, y))"
if p = charA^ > 0. Our proof simplifies William's proof for odd integers n and finite
fields K given in [55].

Replacing y by 0 yields Dn(a, x) = x Y\^)l2{x2 + P\a) for odd n.

LEMMA 1.9. Let L be any extension field of K (such that x is transcendental over
L). Then for every positive integer n not divisible by char K we have:

(i) Ifn<3 then every monic polynomial (over K) of degree n can be written in
the form Dn(a, x + b) + c with a,b,c e K.

(ii) Ifn > 3 and a,b,c € L are such that the coefficients of f(x) = Dn(a, x +
b) + c belong to K then a,b,c belong to K and are uniquely determined by
fix).

(hi) Ifn > 3 and a, a, fi,y,8 e L,ay ^ 0, are such that the coefficients of f(x) =
aDn(a, yx + 8) + P belong to K then f(x) = ay"Dn(a/y2, x + 8/y) + /3
andayn,a/y2,8/y,p e K.

PROOF. For n = 1 we have x + a0 = D\ (0, x) + a0 and for n = 2 we have
x2 + axx + a0 = D2(0, x + b) + c with b = a^/2 and c = a0 — (ax/2)2. Since
x3 + a2x

2 + axx + ao = D3(a, x + b) + c with a = (a2/3)2 - (at/3), b = a2/3, and
c = a0 — D3(a, b), (i) is proved. (Note that D3(a, x) = x3 — 3ax.)

In the sequel we assume n > 3. If/(JC) = Dn (a, x + b) + c then by Lemma 1.1 we
have f(x) = (x + b)n - na(x + b)"-2 H = x" + nbxn~l + (Qb2 - na)x"~2 + •••
which implies that b and a belong to K (provided that f(x) € K[x]) and are uniquely
determined by f(x). Hence this also holds for c = /(0) - Dn (a, b), thus proving (ii).

Now assume that fix) = aDn(a, yx + 8) + 0 e K[x]. By Lemma 1.1, fix) =
ay"Dn(a/y2, x + 8/y) + p = ayn(x + 8/y)n -ayn~2na(x + 8/y)"~2 + ••-. Hence
ay", 8/y, a/y2(= ayn~2na/(nay")), and £ = / ( 0 ) - ay"Dn(a/y2, 8/y) belong to
K.

LEMMA 1.10. For every n > 3 there are integral polynomials pnkix0,... ,xn),
0 < k < n, such that, for arbitrary elements ao,... ,an of a field K whose charac-
teristic does not divide n, pnkia0,... ,an) + nn~kan

n~
k~xak is the coefficient of xk in

g(x) = Dn (((n — l)/2)a2_} — nanan_2, x + an_i) and the following conditions are
equivalent ifan ^ 0:

(i) Yl"k=oatxk — &Dn(a, yx + 8) + fi for some a, a, ft, y, 8 in an extension field
ofK.

(") E"=oa*** + c = ginanx)/(n"a"n-
l)for suitable ceK.

(iii) pnkiao, ...,an) — Oforallk with 1 < k < n - 3.
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PROOF. For every k with 0 < k < n let qnk(x0,..., xn) be the integral polynomial
(independent of K) such that qnk(a0, • • •, an) is the coefficient of xk in g(x) and set
Pnk(x0, ...,xn) = qnk(x0, • • •, xn) — nn~k x"~k~x xk. Note that the qnk exist by Lemma

1.1. If (i) holds then by Lemma 1.9(iii) we may assume a, a, fi,y,8 e K and by
Lemma l.l(ii) we may assume y = nan. Then from aDn(a, yx + 8) = ay"x" +
any"-l8x"-1 + any"-2(((n - l)/2)<52 - a)xn~2 H we obtain a = (n"^"1)"1,
8 = aB_i, and a = ((« — l)/2)a2_, - nanan^2. Hence (i) implies (ii). The converse
is trivial.

Note that (ii) holds if and only if n"a"~lak = (nan)
k(pnk(a0,... ,an)+nn~ka"n~

k~xak)
for 1 < k < n, that is, pnk(a0,..., an) — 0. By what we have seen above, this always
holds for n — 2 < k < n. Hence (ii) and (iii) are equivalent.

The following result is required for the proof of Theorem 4.5. It constitutes an
elementary substitute for Lemma 6 and Lemma 12 of [14].

LEMMA 1.11. Let f(x) e K[x] be a monic polynomial of degree n > 3 and assume
that for every r\ e K such that f(x) — r) has multiple roots, one of the roots is simple,
the remaining ones all have the same multiplicity r, and r is not divisible by char^f.
Then f(x) — Dn(a, x + b) + c for some a,b,c e K, a ^ 0, ifn is not divisible by
char/:.

PROOF. An element a e K is a zero of / ' (x) if and only if it is a zero of multiplicity
r > 1 of f(x) — x) for some r] e K in which case it is a zero of multiplicity r — 1
of f'(x). Hence every 17, e K such that f(x) — rj, has multiple roots accounts for
(r, — 1)(« — l)/r, roots of f'{x). Since f'(x) has just n — 1 roots and (r, - l)/r, >
1/2, we have precisely two different values rju r)2 of this kind and rt = r2 = 2.
Consequently, charK ^ 2.

Hence f(x) = (x — a,)g,(.x)2 + ?j, (/ = 1, 2) for some a,, rj, e K with r)x ^ r\2

and monic polynomials g,(jc) of degree (« - l)/2. Putting X = (a2 - «i)/4, /x =
(ax + a2)/2, and replacing x by x2 + fx + X2/x2 in the equation (x — a\)g\(x)2 —
(x - a2)g2(x)2 = 172 - m yields ( H , ^ ) / * " ) 2 - (u2(x)/xn)2 = x]2-x]x with «,(x) =
x"(x + X./x)g1(x

2 + /X + X2/x2) and u2(x) = x"(x - X/x)g2(x
2 + (i + X2/x2). Note

that Ui(x) and u2(x) are monic polynomials of degree In with constant terms k" and
-A.", respectively. Hence Ui(x) + H2OO has leading term 2J:2" and U\(x) - u2(x) has
constant term 2kn.

Since (u1(x) + u2(x))(u1(x) — u2(x)) = (r}2 — rj^x2", we conclude ux(x)+u2(x) =
2x2n, ux(x) - u2(x) = 2kn, and r\2 - r\x = Akn. Hence «I(JC) = x2" + k" and
f(x2 + fM + k2/x2) = (ux{x)/xn)2 + r)x =x2n + (k/x)2n + (rll + ri2)/2. The definition
of the Dickson polynomials now yields f(x + /x) = Dn(k

2, x) + (j]x + r)2)/2. Hence
f(x) = Dn(a,x + b) + c with a = k2,b = -fi, and c = (771 + r)2)/2. From Lemma
1.9(ii) we see that a,b,c e K. Note that a ^ O since Ak" = r\2 - r)x ̂  0.
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In order to prove Theorem 4.34 (or Theorem 3) the following results are only
required for the ring R appearing there.

LEMMA 1.12. Let R be a Dedekind domain. Assume that n is an odd integer
and vP(n) < (n — l ) /2 for every non-zero prime ideal P. If a e K is such that
Dn(a,x) e R[x]thena e R.

PROOF. We may assume that R is not a field. Then n > 1 and n ^ 0 in R.
From Dn(a, x) — x" — nax""2 -\ \- n(-a)("~l)/2x we conclude that na e R and

na("-\)i2 € R H e n c e a = hjn w i t h b e Rand bl"-l)/2 € n{"-3)/2R. The last relation
implies that vP(b) >e-(n- 3)/(n - 1) > e - 1 if Pe\n; hence Pe\b. Since this holds
for all P we deduce that n divides b and a e R.

REMARK 1.13. Let n be an odd prime and R be a Dedekind domain whose char-
acteristic does not divide n. If vP(n) > (n — l ) / 2 for some P (which is the case for
n = 5 and R = Z[(l + \/5)/2]) then, choosing b e R with vP(b) = vP(n) - 1 and
VQ(b) > vQ(n) for all prime ideals Q ^ P that divide n, we have Dn{b/n,x) e R[x]
although b/n & R. (Note that b exists by the Chinese remainder theorem.) To
see this, observe that n(b/n)k e R for all k with 1 < k < (n — l ) /2 since
vP(n(b/n)k) > vP{n) - (n - l)/2 > 0 and vQ(b/n) > 0 for all Q ^ P. Since
n is a prime, the coefficient of xn~lk (k > 1) in Dn(a, x) is an integral multiple of na*
(by Lemma l.l(iii)). Hence Dn{b/n,x) e R[x].

The next result will be generalized in Theorem 2.8.

LEMMA 1.14. Let R be a Dedekind domain. If n > 3 is an odd integer and
a,b,c e K are such that Dn(a,x + b) + c e R[x] then a,b,c e R ifvP(n) < 1 for
every non-zero prime ideal P.

PROOF. We have Dn(a, x + b) = (x + b)" - na(x + b)"'2 + (n(n - 3)/2)a2(x +
by-4 + . . . = * « + nbx"-] + ((n(n - \)/2)b2 - na)x"~2 + ((n(n - l)(n - 2)/6)b3 -
n(n - 2)ab)x"~3 + • • •. Thus b = b'/n, a = a'/n2 with a', b' e R and 2a' =
(nb)2(n — 1) = —ft'2 mod n. We assume /i 7̂  0 in R since otherwise R = K. From
(«(n - l)(w - 2)/6)ft3 - n(n - 2)ab e /? we obtain (« - l)(n - 2)ft'3 = 6(n -
2)a'b' mod 6n2. Hence 2fo'3 = -\2a'b' mod n and together with ba = -2a' mod n
we obtain 46'3 = 0 mod n. By assumption this implies that n divides b' and thus
b e R. Then we also have Dn(a,x) + c e R[x]. Since Dn(a, 0) = 0, we obtain
c e /? and Dn(a, ;t) 6 R[x]. Hence a € /? by 1.12.
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2. Composition of polynomials

R denotes any integral domain. The quotient field is denoted by K.

DEFINITION 2.1. A polynomial f(x) e R[x] is called decomposable over R if
f{x) = g{h{x)) for suitable polynomials g(x),h(x) e R[x] of degree > 1. Otherwise
it is called indecomposable.

PROPOSITION 2.2. For every extension field L of K (such that x is transcendental
over L) we have:

(i) Each pair of nonconstant polynomials g(x),h(x) e L[x] is uniquely determ-
ined by the coefficients of g(h(x)), h(0), the highest coefficient ofh(x), and
the degree ofg(x), provided that the latter is not divisible by char^f.

(ii) Let f(x) € R[x] be a non-constant polynomial such that deg(/) is not divis-
ible by char^T. If f(x) is decomposable over L then /(JC) is decomposable
over K. If f(x) = g(h(x)) with monic polynomials g(x), h(x) € L[x] and
h(0) = 0 then the coefficients of g(x) andh(x) belong to the integral closure
ofRinK.

PROOF. Let g(x) = XXoa,.x' e L[x] and h(x) = £ ;
n

= 0 V ; e LM be m o n i c

polynomials of degrees m and n, respectively, and assume that b0 — 0 and m is not
divisible by chaiK. For every k with 1 < k < n the coefficient of xm"~k in g(h(x))
has the form mbn_k + pk(bn_k+1,..., bn) for some integral polynomial pk(xu • • •, xk)
whose coefficients only depend upon m. Hence all the bj belong to the field generated
by the coefficients of g(h(x)) and are uniquely determined by them. Consequently,
this also holds for the a, as is seen by a trivial inductive argument starting with the
highest coefficient.

It is clear that (i) and the first part of (ii) follow from what we have just proved.
Now assume that f(x) = g(h(x)) with monic polynomials g(x), h(x) over L and
h(0) = 0 . If a is any root of g(x) then the monic polynomial h(x) —a divides
f(x) = g(h(x)). Hence the coefficients of h(x) — a are integral over /?, that is the
coefficients of h(x) and a are integral over R. Since a was an arbitrary root the same
conclusion holds for g(x). According to what we have seen above the coefficients
also belong to K.

COROLLARY 2.3. Assume that R is integrally closed and f(x) e R[x] is a monic
polynomial whose degree is not divisible by char^T. Then f(x) is decomposable over
R if and only if it is decomposable over some extension field L of K. In this case we
have f{x) = (/, o • • • o fr)(x) + /(0) with monic polynomials f(x) e R[x] such
that f(0) = 0 and f(x) is indecomposable over L.
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PROOF. If f(x) is decomposable over R then it is obviously decomposable over L.
Conversely, if this holds then f(x) = g(h(x)) where g(x), h(x) € L[x] have degree
> 1. We clearly may assume that h(x) (and hence g(x)) is monic and h(0) = 0. Then
by (ii) we have g(x), h(x) € R[x] and the assertion follows by induction.

PROPOSITION 2.4. Assume that R is a unique factorization domain. Then for every
f(x) € R[x] we have:

(i) //deg(/) is not divisible by charK then f{x) is decomposable over R if and
only if it is decomposable over some extension field of K.

(ii) Let h (x) € R[x] be a polynomial of unit content (that is, every common divisor
of its coefficients is a unit) and h(0) = 0. Then there exists g(x) e R[x] with
f(x) = g(h(x)) if and only ifh(x) - h{y) divides f(x) - f(y) in K[x, y].

(iii) Leth(x) e R[x] be a polynomial of unit content and h(0) = 0. Ifg(x) e K[x]
is such that g(h(x)) e R[x] then g(x) e R[x].

PROOF. Note that every polynomial over K can be written in the form ah(x) with
a e K such that h(x) e R[x] has unit content. Hence, if (iii) holds, then every
polynomial over R which is indecomposable over R also is indecomposable over K.
Thus the 'if part of (i) follows from (iii) and Proposition 2.2. The converse is trivial.

Since h(x) — h(y) divides g(h(x)) — g(h(y)) in K[x, v], (iii) follows from (ii)
(since g(x) is uniquely determined by g{h{x)) and h(x)) and the 'only if part of (ii)
is proved. The 'if part of (ii) holds trivially if deg(/) < deg(/i) and we proceed by
induction on deg(/).

The well known Gauss lemma states that a product of polynomials in one variable
with unit content has unit content. This is easily extended to polynomials in several
variables. Just note that a polynomial of degree < d in each variable x, has the same
coefficients as the polynomial in one variable obtained by substituting xd' for xt.

Since h(x) — h(y) has unit content we may thus conclude that p(x, y) € R[x, y]
if fM - f(y) = p{x, y)(h(x) - h(y)). Put /,(*) = p(x, 0). Then f(x) - /(0) =
Mx)h(x) and/K*) - h(y) divides (/,(*) - My))h(x) - (p(x, y) - fdy))(h(x) -
h(y)). Hence h(x) — h(y) divides fi(x) — fi(y) and by induction we get f\{x) =
gdh(x)) for some gt(x) e R[x]; note that deg(/i) < deg(/). Thus f(x) = g(h(x))
with g(x) = xgi(x) + /(0) e R[x] as was to be shown.

REMARK 2.5. Decomposition of polynomials over fields has been studied quite
extensively and satisfactory results (due to Ritt for K = C) concerning uniqueness
are known ([30, Ch. 4; 46, pp. 12-39]). The first part of (ii) of Proposition 2.2 is well
known (cf. [30, p. 139] or [46, p. 14]). The second part has been proved by Wegner
in a slightly weaker form for R = 2 and L = Q ([52, p. 9]); our proof is much easier.
If deg(/) is divisible by char/if then Proposition 2.2 need not hold. This is shown
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by choosing ([46, p. 15]) K = F2, g{x) = x2 + a~]x, and h(x) = x2 + ax, where
u3 + a + l = 0; then/(*) = *(*(*)) =x4 + x2+x e AT[jr] but g(x), A(*) £ £[*]
and f(x) is indecomposable over /if. Note that (i) fails since a is not unique. (Added
in proof: The author provided an infinite class of examples in his review MR91j:
11106 of [8]. See [57, §4] for more information on this topic.)

It is hard to believe that Proposition 2.4(i) has not been noticed before, but I can
give only one reference where a pertinent statement can be found. In [1], which is a
preliminary version of [2], it is claimed that an easy modification of the argument in
[12] (where (ii) is proved in the case that R is a field) would show that (i) holds for
arbitrary rings. Proposition 2.6 demonstrates that this assertion is incorrect. (In [2]
only fields are considered and the conspicuous fact that all decompositions over Q
considered there involve integral polynomials only is not commented on at all.)

Let R be the ring of algebraic integers of a number field K. Fried has observed that
every f(x) € RP[x] (where RP = {r/s : r e R, s g P}) which is decomposable over
K admits a decomposition into polynomials in RP[x] provided that deg(/) g P ([14,
Lemma 10]). Proposition 2.4(i) shows that the assertion holds without this restriction;
note that RP is a principal ideal domain.

The content C(f) of a polynomial / (in several variables) with coefficients in
an arbitrary integral domain is defined to be the ideal generated by these. As an
immediate consequence of a theorem of Hurwitz (concerning 2-modules rather than
ideals) we obtain C(gh)C(h)r = C(g)C(h)r+l for suitable r. ([25, p. 203]; for a
more precise result see [51].) Hence C(h) = R implies C(gh) = C(g) and this easily
shows that h divides a polynomial / (with coefficients in R) over R if and only if
it divides / over K. Thus (ii) and (iii) of Proposition 2.4 remain valid in general
if h is assumed to satisfy C{h) = R (instead of having unit content), whereas the
following result shows that (i) even fails if R is a ring of algebraic integers unless it
is a unique factorization domain. (It should be noted that h may have unit content
although C{h) # R.)

PROPOSITION 2.6. Let R be the ring of algebraic integers of a number field K
of class number greater than one. Then for every prime q there is a polynomial
f(x) e R[x] of degree q2 that is decomposable over K and indecomposable over R.

PROOF. We start by remarking that there are infinitely many non-principal prime
ideals in R. For if all prime ideals different from Pu ..., Praie principal then choosing
7r, € Pj — P2 we may find a, e R with a, = 7r, mod Pt and a, = 0 mod />• for all
j 7̂  / by the Chinese remainder theorem (/, j = 1 , . . . , r). Then the principal ideal
(a,-) is equal to Pt times some prime ideals different from P\,..., Pr which implies
that Pt is principal.
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Thus there exists an unramified prime p such that (p) = Pt • • • Pg for (distinct)
prime ideals P, where Pi is non-principal; hence g > 2. Choose s2,..., sg > 1 such
that Y[t>i Pi' is principal and ^ ; > 1 s, is minimal. Let a be a generator of this ideal.
Since p e Pi we have P, = (b, p) for some b e R. Then b is not divisible by P, for
i >2.

All the coefficients of f(x) = (a/p){bxq + pxq~l)q belong to R since p\ab.
Assume that f(x) is decomposable over R. Then there are polynomials g(x), h(x) e
R[x] of degree q with /(JC) = g(h(x)) and /i(0) = 0. Let c be the leading coefficient
of h{x). Then from Proposition 2.2(i) we conclude g(x) = (a/ p)(bx/c)q and ft (x) =
c{xq + pxq~l/b). Hence a^/ipc") and cp/£ belong to /?, that is d = cp/b belongs to
R mddq divides apq~x. Hence (d) = Y\j>x P-' with qs[ <Si+q-\; note that s\ > 1
since P, does not divide b for i > 1. From 5/,+q — 1 < ^s, with equality holding only
for Si = 1 we obtain £ ( > 1 s\ < Yl,i>\ s> unless s, = 1 for all i > 1. The minimality
of 52(>1 5, implies that the latter condition holds. But then from (p) = P\{a) we
conclude that P\ is principal, a contradiction. Thus f(x) is indecomposable over R
(although it obviously is decomposable over K).

REMARK 2.7. If we additionally assume that q > h and (q — 1, h) = 1, where /i
denotes the class number of K, then we may even choose f(x) to be a composition
of linear polynomials and powers. This will be needed later in 4.36.

By the remark at the beginning of the preceding proof there exists a non-principal
prime ideal Po with q $ Po. Let c ^ 0 be an element of P0

2 and choose b G Po with
(b,qc) = Po. Note that there is no prime ideal P that divides both b and q. Let
Po,. . . , Pr be the prime ideals P such that vP(c) > vP(b). According to the Chinese
remainder theorem there exists a' e R with vP.(a') = q(q — l)(vPi(c) — vPi(b)) for
all i. Let sP < h be the residue of vP{a') mod h if P ^ P o , . . . , pr and S/> = t>/>(<z')
otherwise; then Y[ PSp is a principal ideal. Let a be a generator of this ideal and set
f(x) =ab-qc-q(q-X){{bx+c)q-cq)q. Note that f(x) e R[x] since a{b / c)q(q-y) e P.

Assume that / (x) is decomposable over /?. Then f(x) = g(/i(x)) with polyno-
mials g(x), h(x) G /?[x] of degree q and /i(0) = 0. By Proposition 2.2(i) we obtain
g(x) = a(b/c)q(q~l)d-qxq and h(x) = d((x + c/b)q - (c/b)q) if J is the leading
coefficient of h(x). Hence a{b/c)q(q~l)d'q € /? and dq(c/b)q-x e R. Taking into
account that vP(q) = 0 if vP(b) > 0, this implies that a = d{c/b)q~x and a/aq

both belong to R. Hence (q — l)(vP(c) — vP(b)) < vP(a) < vP(a)/q for all P.
If P ^ P o , . . . , Pr we conclude u^(a) = 0 since vP(a) < h < <jr; if P = P, then
D/>(a) = (^ — l)(u/>(c) — vP(b)) since U/»(a) = q(q — l)(vP(c) — vP(b)). Thus we
must have (a)P^~l = (c)*"1, since vPo(b) = 1 and Po is the only common prime
divisor of b, c. Hence PQ*1 is a principal ideal. Since (q — 1, h) = 1, also Po is a
principal ideal, a contradiction. Hence /(JC) is indecomposable over R.

https://doi.org/10.1017/S1446788700038349 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038349


326 Gerhard Turnwald [15]

THEOREM 2.8. Let R be a Dedekind domain with quotient field K ^ R and let n
be a positive integer which is not divisible by any ramified prime. Assume that a,b,c
belong to some extension field of K and all coefficients ofDn(a,x + b) + c belong to
R. Then a,b,c e R unless we have one of the following exceptional cases (forn, a, b
and suitable c):

(i) n = \.
(ii) n = 2 and 2b e R.

(iii) n = 3 and 9a, 3b e R, 9a = (3b)2 mod 3.
(iv) n=Aand 8a, 2b e R, 8a = (2b)2 mod 2.
(v) n = 6 and 3a, b e R.

(vi) n = Sand 2a, b e R.

PROOF. For fixed a, b, c we set fk(x) = Dk(a, x + b) - Dk(a, b) for all k > 1.
We have to prove that /„ (x) e R[x] if and only if a, b € R or one of the exceptional
cases occurs. For n < 2 the assertion immediately follows from f\(x) = x and
f2(x) =x2 + 2bx. From f}(x) = x3 + 3bx2 + (3b2 - 3a)x we see that f3(x) e R[x]
implies that (iii) holds; conversely, from (iii) we obtain fn(x) e R[x]. Now let n = 4
and note that fA(x) = x4 + 4bx3 + (6b2 - 4a)x2 + (4b3 - %ab)x. Hence fr(x) e R[x]
implies 2b e R since 4b e R and 24b3 = 4b(6b2 - 4a) - 2(4b3 - Sab) e R; note that
2 is unramified. Moreover, 8a e R and 8a = (2b)2 mod 2 since 3(2b)2 - 8a € 2R.
Thus /t(x) e R[x~\ implies (iv); it is easy to see that the converse is also true.

The rest of the proof is based on the following three observations (where m, n mean
arbitrary positive integers):

(1) /„,„(*) e R[x] implies /„(*) e R[x].
(2) fmix) € R[x] holds if and only if /„(*) e R[x] and 2£>n(a, b) e R.
(3) If b e R and fn(x) e R[x] then Dn(a, x) - Dn(a, 0) e /?[*].

By Lemma 1.1 (ii) we have Dmn(a,x + b) = Dm(a", Dn(a,x + b)) and thus
fmn(x) = gmAfn(x)) with gm,n(x) = Dm(a", x + Dn(a,b)) - Dmn(a,b). Note
that fn(0) = 0 and fn(x), gm<n(x) are monic. Hence fmn(x) e R[x] implies
^m,n(x), /n(x) e R[x] by Proposition 2.2(ii) (since n ^ 0 in /?); the converse is
trivial. This proves (1) and (2) since gz,n(x) = x2 + 2xDn(a, b); (3) is easy to see.

From Lemma 1.14 we know that fp(x) e R[x] implies a, b e R if p > 3 is
an unramified prime. By (1) it thus remains to show that for n — 6, 8 only the
specified exceptions are possible while for n = 9, 12, 16 we must have a, b e R if
/„(*) € R[x].

Ifn = 6 and f6(x) e R[x] then, by (2), f3(x) e R[x] and2b3-6ab = 2D3(a, b) e
R; hence 9a, 3fo e R and (36)3 = -33(2Z?3 - dab) = 0 mod 3. Since 3 is unramified,
this yields b e R and then the last condition of (iii) gives 3a e R, that is, (v)
holds. Conversely, (v) implies fe(x) e R[x] by (2) and (iii). Similarly, if n = 8 and
/„(*) € /?[x]then 8a, 2b e R,Sa = (2b)2 mod 2,and2(26)4-4-8a(26)2
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25D4(a, b) = 0 mod 24. Now (8a)2 = (2b)4 mod 2 yields (2b)4 = 0 mod 2 and thus
b e R (since 2 is unramified). Consequently, (8a)2 = 25D4(a, fo) = 0 mod 24 and
hence also 2a e R. Conversely, from 2a, b € R we obtain /s(x) € /?[x] since
/4(JC) e /?[*] and 2£>4(a, b) e R.

Let n = 9 and assume /9(JC) € #[*]. From /9(;c) = (x + bf - 9a(x + b)1 -\ =
x9 + 9bx% + (36b2 - 9a)x7 + (84fc3 - 63ab)x6 + ••• w e g e t b = b'/9 a n d a = a ' / 8 1

with a',b' e R such that Aba = a' mod 9 and 84//3 = 63a'b' mod 93, that is,
4b'3 = 3a'b' mod 35. From the last congruence we get b' e 3R (since b'3 e 3R and
3 is unramified) and thus a' € 9R which implies b' e 9R. Hence b € R and, by (3),
D9(a,x) e /?[*]; this yields a e /? since the coefficient of x is 9a4.

For n = 12 from (1) and our results for n = 3 and n = 4 we immediately get
a, b e R if /„(*) e #[x]. If n = 16 then by (1) and (vi) we conclude 2a, b e R.
Hence, by (3), we have Di6(a, x) — D16(a, 0) € R[x] which implies a € R since the
coefficient of x2 is equal to —26a7 and 2 is unramified.

LEMMA 2.9. Assume that R is integrally closed and f(x) € R[x] is a monic
polynomial such that f(x) — (fx o • • • o fr)(x)for ft(x) = a,Dn,(a,, Y,X + St) + ft
with suitable positive integers «, and elements a,, a,, ft, y,, <5, m some extension field
of K. Ifn = deg(/) > 1 is not divisible by char̂ T then f(x) = (/, o • • • o fr)(x)for
fi(x) = Dn.(aj,x + bj) + Ci e R[x] with suitable a,, bh c, e X" and a, = 0 j/awa1

only i/a, = 0.

PROOF. The assertion is trivial if n = 1. For n > 1 we may assume that n,• > 1
for all J. Let /r(jc) = (/r(jc) - /r(0))/(ar/r

n0- Since /r(x) is monic and /r(0) = 0,
Proposition 2.2(ii) implies that the coefficients of (f\ o • • • o fr-i)(ary"r fr(x) + /r(0))
and fr(x) belong to R if r > 1; for r = 1 we trivially have fr(x) e R[x]. If
«,. > 3 then fr(x) = DKr(ar, x + br) + cr with ar, br, cr e K and ar = ar/yr

2 by
Lemma 1.9(iii); if nr = 2 and fr(x) — x2 + drx then for every ar e K we have
fr(x) = D2(ar,x + br) + cr with br = dr/2 € i?' and suitable cr e A". Thus in any
case we obtain fr(x) = Dnr(ar,x + 6r) + cr with ar,br,cr G A" and ar = 0 if and
only if ar = 0. The assertion then follows by induction.

3. The Galois group of f(x)-t over K(t)

We consider a polynomial f(x) of degree n > 2 with coefficients in a field K. We
assume that f(x) is not a polynomial in xp if p = charA > 0. Then / ( x ) — t is
irreducible and separable over the function field K(t); t and x are understood to be
algebraically independent over K. The splitting field is denoted by L and the Galois
group Gf = G(L\K(t)) is viewed as a permutation group of the roots fi, . . . , £„ of
fix) = t.
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LEMMA 3.1. Gf is primitive if and only if fix) is indecomposable over K.

PROOF. Gf is primitive if and only if the stabilizer Gx of £1 is a maximal subgroup
of Gf. This is the case if and only if there is no proper intermediate field between the
fixed field #(£ , ) of G, and AT ( / (&)) = K(t). From Luroth's theorem it is not hard
to see that the intermediate fields are precisely the fields AT (A(fi)) with h(x) e K[x]
such that f{x) = gihix)) for some gix) e K[x]. (Cf. [30, p. 273]; note that the
assumption char AT = 0 is not needed.) This proves our assertion since K(%x) has
degree deg(/z) over

LEMMA 3.2. Gf is doubly transitive ifandonlyif<$>ix, y) = ifix) - fiy))/ix — y)
€ K[x, y] is irreducible.

PROOF. The transitive group Gf is doubly transitive if and only if the stabilizer
Gx of fi is transitive on {f2, . . . , £ „ } , that is, if and only if £2, . . . ,£„ are conjugate
over the fixed field AT (£1) of d . Denoting the leading coefficient of fix) by a we
have 4>(*, ^ ) = aix - £2) • • • i* — £«)• Hence the last condition is equivalent to the
irreducibility of <t(jt, £1) e AT(£i)[;t]. Since x and £1 are algebraically independent
over K this means that <J>(x, j ) e AT(v)[x] is irreducible. By Gauss' lemma this
is equivalent to the irreducibility of <J>(x, y) € K[x, y], since <&ix, y) has no non-
constant factor which is independent of x for otherwise fix) = / ( a ) for a root a of
this factor over K.

LEMMA 3.3. Gf contains an n-cycle ifn is not divisible by char AT.

PROOF. If a : Fx —> F2 is an isomorphism of fields then the Galois group of a
polynomial over F\ (considered as a permutation group of the roots) is canonically
isomorphic with the Galois group of the polynomial over F2 which is obtained by
applying o to its coefficients. Thus it is sufficient to prove that the Galois group of
fix) — t" e Kit")[x] contains an n-cycle.

Let F be the field of formal Laurent series ]Ct>*0
 c*/ '* w i t n c* e %• We may regard

AT(0(andhenceAf(r"))asasubfieldof F. Choose a € A? with a" = 1 /a where a is the
leading coefficient of fix). Then we may find rjit) = at + J2k>o c*/f* e F s u c n m a t

firjit)) = t". For if r)it) has the indicated form then finiO) = V ( 1 + £*>o dk/t
k+l)

with dk = nck/a + pkic0,..., ck-X) where each pk is a polynomial with coefficients
in K independent of the c,; p0 denotes a constant. Hence the ck may be (uniquely)
determined such that all dk vanish.

Let e be a primitive «-th root of unity. We have just proved that there are r)jit) =
as't + • • • e F with firjit)) = t" for every integer j ; thus F contains n different
roots of fix) — t". Let a be the automorphism of F which maps ^k>ko ck/t

k onto
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£*>*„ Ck£~k/tk. Then ex(r?,(f)) = fy+i(O for all j since CT 07,(0) = aei+[t + • • • and
K(tn) belongs to the fixed field of a. Thus the Galois group of f(x) - t" over K{t")
contains an n -cycle.

L E M M A 3.4. Gf contains an element with cycle type (ex,... ,er) if ex- • • er is not

divisible by chaiK andex,..., er are the multiplicities of the mots of f(x) — c e K[x]

for some c e K.

PROOF. Let F be the field of formal Laurent series J^k>ko ckt
k with ck e K and let

e be the least common multiple of the et. By the remark at the start of the proof of
Lemma 3.3 it is sufficient to show that the Galois group of f(x) — c — te over the
subfield K (c + te) of F has an element of the desired cycle type.

Let <*!,..., ar be the roots with multiplicities e\,..., er of f(x) — c and denote
the coefficient of (x — a,-)" in the expansion of f(x) — c into powers of x — a, by bt.
For every j we choose # e K with /Jf = 1/6,-. Let e be a primitive e-th root of unity
in K. Then for every / and every integer j there is JJ,-7- (t) = a, + f}jeie/e'te/e' + • • • e F
such that f(r)ij(t)) = c + te. Just note that for rj(t) = a, + ^2k>l ckt

ke/ei we have
/ ( i ? ( 0 ) = c + btc

e{te + te ^ > , dkt
ke/e' w i t h d t = bieiCe{'xck+x +pk\cu ...,ck) w h e r e

p t is a polynomial with coefficients in K independent of cx, c2,...; hence for every
c, ^t 0 we may (uniquely) determine ck for k >2 such that f{t]{t)) = c + biCe

x't
e.

Thus F contains ex + • • • + eT = n different roots r]u(t) of f(x) — c — te. The
automorphism o of F which maps ^k>kockt

k onto 5^i>to
c*e*^ leaves K(c + te)

invariant and (r(r}jj(t)) = r)jj+i(t) for all i, j \ hence a induces a permutation of the
roots that has cycle type (eu ...,er).

REMARK 3.5. For K = € Lemma 3.1 is due to Ritt ([41, p. 53]; cf. [11] for an
extension to chaiK = 0 and K — K). The ( ' i f part of the) general version has been
observed by Fried ([14, Lemma 2]; cf. [13, p. 109] for K = Q). Lemma 3.2 is
implicit in the work of Fried ([14, p. 46]). Lemma 3.3 and Lemma 3.4 have long been
known for K = C; in this case they have been derived by considering the Riemann
surface of the inverse function of f(x).

For K = C, Gf is frequently called the 'monodromy group' of f{x). Wegner
states ([52, p. 8]) that according to a theorem of Ritt in [43] a polynomial with rational
coefficients with imprimitive monodromy group is decomposable over Q. He proves
that the polynomial is decomposable over Z if it is monic and decomposable over Q
(cf. Remark 2.5). Hence f(x) € Z[*] is decomposable over 2 if it is monic and has
imprimitive monodromy group. Kurbatov (who refers to Wegner several times) uses
this result but gives [43] as a reference ([28, p. 17]). One should remark, however,
that Ritt exclusively deals with the case K = C and does not mention the fact that
decomposability over C implies decomposability over Q; cf. Proposition 2.2(ii). The
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theorem concerning the connection of decomposabihty and imprimitivity is proved in
[41]; in [43, p. 403] Ritt merely restates this result.

The preceding lemmas are required for the proof of Theorem 4.5. The rest of
Section 3 is not needed in Section 4. In 3.6 and 3.11 we make use of some results on
primitive permutation groups.

THEOREM 3.6. Assume that f'(x) has a simple root in K and / (aO ^ f(a2) if
ai, CH2 G K are distinct roots of f'(x). Then Gf = Sn if charK does not divide n.

PROOF. Note that char^f ^ 2 since otherwise f"(x) — 0. Let a be a simple root
of f'{x). Then / (*) - f(ce) = {x - affo(x) where fo(x) e K[x] has no multiple
roots and fo(cc) ^ 0. Thus Lemma 3.4 implies that Gf contains a transposition.
The symmetric group Sn is the only primitive permutation group of degree n which
contains a transposition (cf. [54, p. 34]; [24, p .171]); hence in view of Lemma 3.1 it
remains to prove that f(x) is indecomposable over K.

If f(x) is decomposable then f(x) = g(h(x)) for some g(x) e K[x] with degree
r > 1 and some monic polynomial h(x) e K[x] with degree s > 1. Choose
P,y e K such that g'(fi) = 0 and h(y) = p. (Note that deg(g') = r - 1 > 1 since
r is not divisible by charA".) Since f'(y) = g'(fi)h'(y) = 0 and f(y) = g(0), our
assumptions imply that for every /3 there is precisely one choice for y. Hence for
every fi with g'iji) = 0 there is a (unique) y such that h(x) = (x — y)s + fi. Since
this equation implies that — sy is the coefficient of xs~l in h(x), y and f$ — h{y)
are uniquely determined. Thus g'(x) — b(x — f})r~l for some b e K and f'(x) =
g'(h(x))h'(x) = bs(x — y)rs~l which contradicts the assumption that f'{x) has a
simple root.

COROLLARY 3.7. Letn,k be integers with n > k > 1 and (n, k) = 1. Ifnk(n - k)
is not divisible by charK then, for arbitrary non-zero a,b e K, the polynomial
x" + axk + bt has Galois group Sn over K(t).

PROOF. Let f(x) = -(xn + axk)/b. Then f{x) is not a polynomial in xp if
p = chaiK > 0 and all non-zero roots of f'(x) = -xk~x{nxn~k + ak)/b are simple.
If a ^ 0 is a root of f'(x) then a"~k = —ak/n and f(a) = -(n - k)aak/bn; hence
/ ( a ) ^ 0 = /(0) and a is uniquely determined by / ( a ) since (n — k, k) = 1. Thus
x" + axk +bt = —b(f(x) - t) has Galois group Sn over K{t) by Theorem 3.6; note
that chartf ^ 2.

COROLLARY 3.8. Let n > 2 and assume that n(n - 1) is not divisible by chartf.
Then, for arbitrary non-zero a,b e K, x" + atx + bt has Galois group Sn over K(t).
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PROOF. Choose u with un'xt — 1; then K(u) is an extension field of K(t) and the
Galois group of <p{x) = x" + atx + bt over K (u) is a subgroup of the Galois group of
<p(x) over K{t) (if this exists at all). Hence it is sufficient to prove that the former is
Sn and this follows from Corollary 3.7 since cp(x) = u~"((ux)n + a(ux) + bu). (And
from this it also follows that <p(x) is irreducible and separable over K(u) and hence
over K(t).)

REMARK 3.9. Theorem 3.6 has been stated by Hilbert for K = C(and/(x) € Z[JC])

under the additional assumption that all roots of f'{x) are simple ([23, p. 124]); for
finite fields this has been proved by Birch and Swinnerton-Dyer together with a related
result if « is a prime ([3, Lemma 3]). Corollary 3.7 is due to Hering in the case K = Q
([22, p. 134]). Corollary 3.8 is related to a result of Matzat for K = Q ([33, p. 84]).
In all cases the proof depends upon the theory of Riemann surfaces (over C). Hayes
[58] has used the Hurwitz genus formula for proving a special case of Corollary 3.7 if
K = Fp. Corollary 3.7 fails for (n, k) > 1 since then the Galois group is imprimitive
by Lemma 3.1.

LEMMA 3.10. Let g(x), h(x) e K[x] have degrees > 2 and assume that neither
g(x) nor h(x) is a polynomial in xp if p = char^f > 0. Then this also holds for
g(h(x)) and Ggoh is solvable if and only ifGg and Gh are solvable.

PROOF. By assumption, g'(x) and h'(x) have positive degree; hence g(h(x)) is not
a polynomial in xp if p = charK > 0 since the derivative g'(h(x))h'(x) has positive
degree.

Assume that Ggoh is solvable and let % be an element of the splitting field such that
g(h(%)) = t. Then Gg is solvable since h(%) is a root of g(x) = t. Observe that Gh

is canonically isomorphic with the Galois group of h(x) — h(£) over K(h(%)). Hence
Gh is solvable since this polynomial has the root § in a solvable extension of K(h (£)).

Conversely, let Gg and Gh be solvable. Let | i , . . . , §r be the roots of g(x) = t and
fn , . . . , £(i be the roots of h{x) = f, (/ = 1 , . . . , r) in some fixed algebraic closure
of K(t). By assumption, L = K(%i,..., £r) is a solvable extension of K(t). Since
Gh is isomorphic with the Galois group of h(x) = & over Kfo), Kfoy,..., £,s) is a
solvable extension of K (f,) for every i = 1 , . . . , r. Hence L (£,-1 ,...,§,-*) is a solvable
extension of L = L(|,) for every i — 1,... ,r and the same holds for the splitting
field of g(h(x)) = t since it is the compositum of the fields L(£ n , . . . , %is). Thus the
splitting field is solvable over K(t) because it is a solvable extension of a solvable
extension of K(t).

THEOREM 3.11. Assume that char AT = 0 or chaiK > n = deg(/). Then the
following properties are equivalent:

https://doi.org/10.1017/S1446788700038349 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038349


332 Gerhard Turnwald [21]

(i) Gf is solvable.
(ii) f(x) is a composition of polynomials fi(x) e K[x] each of which has degree

4 or is of the form 0CiDni (a,, x + bt) + c, with a,, a,-, bit c, e K and prime «,.
(iii) f(x) is a composition of polynomials f(x) over some extension field of K

such that each of these has degree 4 or is linearly related to a Dickson
polynomial.

PROOF. Assume that Gf is solvable and write f(x) = (f o • • • o fr)(x) with
indecomposable polynomials f,{x) e K[x] of degree > 1. By Lemma 3.1 and
Lemma 3.10 the Galois group Gfi of f(x) — t over K(t) is primitive and solvable
for every i = 1 , . . . , r; hence n, = deg(/) is a prime power (cf. [24, p. 159; 39,
p. 25]). Moreover, Gfi contains an «,-cycle by Lemma 3.3; thus by a theorem of Ritt
we conclude that n, = 4 or «, is a prime ([42, p. 27]; cf. [24, pp. 169, 250]). If «,
is a prime then the identity is the only element of Gfi with more than one fixed point
(cf. [24, p. 163]) and this easily implies that each element is an «,-cycle or has cycle
type (1, r, . . . , r) for some r > 1. Thus by Lemma 3.4 we see that, for every c e K,
f(x) — c is an /i,-th power or has one simple root and («, — \)/r roots of multiplicity
r. If the first case occurs for some c = ct then f(x) = a, (x + bj)"' + c, for some
at e K and 6, e K; this implies bt, c, e K and f(x) = atDni (0, x + bt) + c,. If
always the second case holds then «,• > 3 and f(x) = or,-DB. (a,-, x + b,) + c, for
suitable a,, a,, bt, c, € A" by Lemma 1.11. Hence (ii) follows from (i).

In view of Lemma 3.10, in order to prove the converse it is sufficient to show that
Gf is solvable if n — 4 or /(JC) = Dn(a, x). This is clear for n = 4 since 54 is
solvable. If f(x) = Dn(a, x) then Gf is solvable since f(x) = t has the root v+a/v
where v" = u for some u with t = u + a"/u, that is, one can get a root by adjoining
radicals to the ground field ^ ( 0 -

We complete the proof by showing that (iii) implies (ii); the converse is trivial. If
(iii) holds then f(x) = (/ | o • • • o fr)(x) where all /•(*) n a v e t n e specified properties;
for r > 1 we also may assume that fr(x) is monic and /r(0) = 0. Hence for r > 1
by Proposition 2.2(ii) (with K instead of R) we have (/i o • • • o fr_x){x) e K[x] and
fr(x) € K[x]; if r — 1 then the latter holds trivially. If fr(x) is linearly related to
a Dickson polynomial, then Lemma 1.9 yields fr(x) = arDnr(ar,x + br) + cr with
suitable ar, ar, br,cr e K. Thus inductively we see that f(x) satisfies (ii), taking into
account that (for nr > 1) Dnr{ar, x) can be written as a composition of polynomials
of the same kind with prime degree by Lemma 1.1 (ii).

REMARK 3.12. It is sufficient to assume that f{x) is tame (see Definition 4.1 and
Remark 4.2). The implication '(0 implies (ii)' for K = C is due to Ritt ([42,
p. 27]) who also investigated under which circumstances a polynomial over C(t)
has solvable Galois group. If K = Q and Gf is abelian then, according to Fried,
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f{x) = aix -b)n +c for suitable a, b, c ([13, p. 102]).

4. The main results

R denotes an integral domain with quotient field K (with algebraic closure K).

DEFINITION 4.1. A polynomial fix) e K[x] of degree n > 1 is called tame
(over K) if and only if char AT neither divides n nor the multiplicity of a zero of
fix) - c e K[x] for any c € K.

REMARK 4.2. Clearly, fix) is tame if char^f = 0 or chaxK > n. It is very easy
to see that gihix)) is tame if and only if gix), hix) are tame; we omit the proof
here. If L is some extension field of K (such that x is transcendental over L) then
fix) is tame over K if and only if it is tame over L\ for, if a.\,..., ar e L are the
distinct zeros of fix) — c (with c € L), there exists a ring-homomorphism over K
from AT [<*!,..., ar, c] into K such that c*i,..., ar have distinct images ([29, p. 256]).
(This fact will only be used in 4.11.)

The term 'tame' has been used by Fried in [14] with a slightly different meaning.
For p = char/f > 0 he demands [14, p. 42] that ip, n) — 1 and (p, m + 1) = 1
for every m which is a multiplicity of a zero of fix). If a e K is a zero of fix)
with multiplicity w then a is a zero of fix) — / ( a ) with multiplicity e > 2 and if
(p, e) = 1 then m = e — 1. Hence a polynomial that is tame in our sense is also tame
in the sense of Fried. Taking fix) = xpix + 1) shows that the converse fails; here
we have m = e = p for the unique root a = 0 of fix). Fried's proof of Lemma 5
([14, p. 44]) requires our definition of 'tame'.

In order to prove Theorem 4.5 (=Theorem 1) we need two theorems on permutation
groups.

LEMMA 4.3. If a transitive permutation group of prime degree n is not doubly
transitive then it may be identified with a group of permutations ofZ/nZ which are
induced by linear polynomials.

This result of Burnside is proved in [24, pp. 609, 163], [39, p. 53] and [61, p. 127].

LEMMA 4.4. Let G be a primitive permutation group of degree n.IfG contains an
n-cycle then G is doubly transitive or n is a prime.

A proof of this theorem of Schur can be found in [49], [54, Theorem 25.3], and [61,
p. 126]. (Wielandt proves that Z/nZ is a B-group (defined in 25.1) if n is composite
and it is easy to see that then G has to be doubly transitive. Instead of appealing to
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23.7 (which, as W. Knapp has kindly pointed out to me, is apparently not applicable)
in line 17 of p.66, one should observe that the subgroup has 1 +a elements; this yields
the desired contradiction, since I < I + a < p = \U\.)

THEOREM 4.5. Let f(x) e K[x] be a tame polynomial of degree n > 1 and set
<t>/(x, y) = (/(x) — f(y))/(x — y) e K[x, y]. Then the following assertions are
equivalent:

(i) <J>/(JC, y) is irreducible over K.
(ii) <J>/(x, y) is irreducible over K(^) where £ is a primitive n-th root of unity.

(iii) f(x) is indecomposable over K and ifn is an odd prime then we do not have
f(x) = aDn(a, x + b) + cfor a,a,b,c e K with a = 0ifn = 3.

PROOF. We may assume n > 3 since the assertion is trivial for n = 2. If (i) holds
then clearly (ii) also holds; note that £ exists since char AT does not divide n. If (ii)
holds then / (x) obviously is indecomposable over K and for n > 3 from Proposition
1.7 we see that f(x) is not linearly related to a Dickson polynomial; if n = 3 then we
clearly cannot have / (x) = aDn(0, x + b) + c = a(x + b)3 + c.

It remains to prove that (iii) implies (i). If f{x) = aD^{a, x + b) + c with a ^ O
then 3>/(x, y) is absolutely irreducible (by Proposition 1.7); hence (by Lemma 1.9(0)
in the sequel we may assume that f(x) satisfies (iii) and n > 3. Then f(x) is
indecomposable over K by Proposition 2.2(ii) and the Galois group Gf of f(x) — t
over K(t) is primitive by Lemma 3.1. Assume that (i) fails; then Gf is not doubly
transitive by Lemma 3.2. Since Gf contains an n-cycle by Lemma 3.3, from Lemma
4.4 we conclude that n is a prime. Hence Lemma 4.3 yields that Gf can be identified
with a group of permutations of Z/nZ induced by linear polynomials. Thus the
identity is the only element of Gf with more than one fixed point and this easily
implies that each element is an /i-cycle or has cycle type (1, r,..., r) for some r > 1.
Hence by Lemma 3.4 we see that, for every c e K, f(x) — c is an «-th power or
has one simple root and (n — \)/r roots of multiplicity r. If the first case occurs
for c then f{x) = a(x + b)n + c for some a,b € K\ this implies a,b,c e K and
f(x) = aDn(0, x + b) + c, contrary to hypothesis. If the second case always holds
then Lemma 1.11 yields the desired contradiction. (These arguments have already
been used in the proof of 3.11.)

REMARK 4.6. The implication '(iii) implies (i)' is due to Fried for K = K and
n > 3 ([14, p. 45]); he also makes use of the theorems of Burnside and Schur. Fried
essentially requires that f(x) is not linearly related to xn or Dn{\,x). (Note that
we have Dn(a, x) = (*/a)nDn(l,x/*/a) by Lemma l.l(ii).) This assumption forces
n > 3. Fried's theorem is restated in [46, p. 57] for char^f — 0 in the form of an
equivalence (although Fried did not claim the converse); the exceptional case n = 3
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has been overlooked there. The equivalence of (i) and (ii) is a special case of [30,
p. 195, Lemma 8.5]. A version of Theorem 4.5 for finite fields is a crucial ingredient
in Cohen's recent proof of the Chowla - Zassenhaus conjecture [6].

If f{x) is not tame then (iii) may hold although (i) fails. Set f{x) = xp — x with
p = chaiK > 0. Then f(x) is indecomposable since the degree is a prime and not of
the form aDp(a, x + b) + c since this is a polynomial in xp; recall that Dp(a, x) = xp.
Nevertheless, 0>f(x, y) = (x — y)p~l — 1 splits into linear factors over the prime
field of K and thus is reducible if p > 2. For K = Fp, less trivial examples (due to
Cohen) are given by f{x) = x(x{p-l)/d - c)d where 1 < d \ (p - 1) and c ^ 0; all
irreducible factors of 4>/(x, y) have degree d ([8, Theorem 2.1]). Cohen's results in
[7, 8] (concerning the question when <$>f(x, y) has linear or quadratic factors) perhaps
indicate that n must be a power of p if (iii) holds while (i) fails. (There is a gap in
the argument of [8] but the main result holds if f(x) is indecomposable over JFP.)
(Added in proof: Counterexamples are provided by a recently discovered class of
indecomposable polynomials over F2, see [56].)

In order to prove Theorem 2 we have to know that f(x) is not a p.p. mod P if the
reduction of ^/(JC, V) mod P is absolutely irreducible and \R/P\ is sufficiently large.
This is a simple consequence of the following (weak) version of Weil's estimate of
the number of points on an absolutely irreducible curve over a finite field.

LEMMA 4.7. Let N be the number of zeros of an absolutely irreducible polynomial
, v) e fq[x, v] of total degree d>l. Ifq > 250d5 then \N - q\

An elementary (but still difficult) proof may be found in [47, p. 92]. Much nicer
and better bounds are known; for example \N — q — l\ < (d — l)(d — 2)^/q + d
holds for all q ([19, Theorem 4.9]) and this will be used in the proof of Theorem 4.17
for n = 5, 7. (Added in proof: See [60] for the correction of a mistake in [19].)

LEMMA 4.8. Assume that f\(x),..., /r(x) 6 K[x] are polynomials such that
f{x) = (/i o • • • o fr)(x) has coefficients in R. Let I be an ideal of finite norm
and assume that a\f\ (x),..., arfr(x) € R[x] for some a, e R which are invertible
mod/. Then f(x) isap.p. mod/ ifand only ifall the a, fi(x) arep.p. mod/.

PROOF. Set a = ax • • • ar and choose b e R with ab = 1 mod / . Note that a, / (x)
is a p.p. mod / if and only if gj(x) = abf(x) is a p.p. mod / . A composition
of functions on the finite set R/I is bijective if and only if all these functions are
bijective. Hence g(x) = (g\ o • • • o gr)(x) is a p.p. mod / if and only if all the g,(x)
are p.p. mod /. It is therefore sufficient to prove that f(x) = g(x) mod / and this is
easily seen by multiplying both sides with a sufficiently large power of ab.
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THEOREM 4.9. Assume that, for every non-zero a e R, the prime ideals of finite
norm which contain a have bounded norm. Let f(x) e R[x] be a tame polynomial
which is a p.p. for prime ideals of arbitrarily large finite norm.

Then f(x) is a composition of linear polynomials atx + /J, e K[x] and Dickson
polynomials Dn (ay, x) with a^ e R where every nj is an odd prime and aj = 0 if
nJ=3.

PROOF. We may assume that n = deg(/) > 1. If f(x) is a p.p. mod P then
(fyd, t}) = ( / ( | ) - f(r\))/(M - n) # 0 mod P if £ ^ r\ mod P; hence the number
of zeros of <&/(x, y) = f'(x) + (x — y)(...) mod P is at most deg(/') = n — 1 if
nan g P where an denotes the leading coefficient of f{x). Thus Lemma 4.7 implies
that the reduction of <t>/(x, y) mod P is not absolutely irreducible if \R/P\ is finite
and sufficiently large. Hence there are prime ideals P of arbitrarily large finite norm
such that the reduction of 4>/(JC, y) mod P is not absolutely irreducible.

A polynomial <&(x, y) = ^i+j<d
aijXlyi of degree d > 1 with coefficients in a

field F is absolutely irreducible if and only if there is no common zero over F of the
polynomials p,-y- = c,; — atj (0 < i, j < d) where c,; is the coefficient of x'y' in

E
i\+j\<d

y

(and the uiih, vilh are independent variables). By Hilbert's Nullstellensatz this holds
if and only if there are polynomials qtj with coefficients in F such that 1 = £ PijQij-

Assume that <$>f(x, y) is absolutely irreducible and let p,y, qtj be defined as above.
Choose a € R such that a is divisible by the leading coefficient of f(x) and the
polynomials aqti have coefficients in R. Then, for every prime ideal P with a g P,
the reduction of 4>/(x, y) mod P has the same degree as O/Cx, y) and is absolutely
irreducible since (by the above remark applied to F = R/P) otherwise the polyno-
mials pu must have a common zero mod P which is obviously not the case. Thus the
reduction of 4>/(JK, y) mod P is absolutely irreducible for every P with sufficiently
large finite norm, a contradiction to what we have proved before.

Hence <$>f(x,y) is not absolutely irreducible. If f(x) is indecomposable over
K then Theorem 4.5 implies that n is an odd prime and f(x) is linearly related to
Dn(a, x) for some a e K with a = 0 if n = 3. By Lemma 1.1 (ii) we even may
assume a e R, thus finishing the proof in the case that f(x) is indecomposable.

In the general case we write / (*) = (/i ° • • ° fr)(x) with indecomposable non-
linear polynomials f(x) € K[x]. Note that all f(x) are tame (cf. Remark 4.2).
Choose a € R, a ^ 0, such that afj(x) e R[x] for all /. Our assumptions imply that
there are prime ideals P of arbitrarily large finite norm such that a g P and f(x) is a
p.p. mod P. Hence, by Lemma 4.8, each of the polynomials af(x) satisfies the same
requirements as f(x). Thus, by what we have seen above, f(x) is a composition of
polynomials of the required kind.
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Theorem 2 is an immediate consequence of Theorem 4.9 and the following fact.

LEMMA 4.10. Let R be an integral domain such that R/I is finite for every ideal
/ / {0}. Then for every non-zero a G R the number of ideals containing a is finite
and for every positive integer m the number of ideals of norm m is finite.

PROOF. Let a be a non-zero element of R. There is a one-to-one correspondence
between the ideals I of R with a € I and the ideals of R/aR. Since \R/aR\ is
finite, a is contained in only finitely many ideals. If / is an ideal of norm m then (by
elementary group theory) m{\ + /) is the zero element of R/I, that is, m e / . Thus
for char̂ T = 0 it follows that there are only finitely many possibilities for / if m is
fixed.

Now assume that p = char AT > 0. If every element of R is algebraic over the
prime field Fp then R is a field and the assertion is trivial. Hence we may suppose that
R contains the polynomial ring Ro — Fp[?]. Let / be an ideal of R with \R/I\ = m
and put /0 = So H /. Since Ro/Io can be canonically embedded into R/I, we have
\Ro/Io\ 5 m. Hence /0 # {0} and there are only finitely many possibilities for /0; note
that | Ro/h\ < tn holds if and only if 70 is generated by a polynomial of degree r with
pr < m. Since / contains /0, from the first part of the proof we conclude that only
finitely many ideals / yield the same /0. Thus the number of ideals / with \R/I\ = m
is finite. (Cf. Remark 4.13).

COROLLARY 4.11. Let q be a power of a prime p and let f(x) e F,[x] be tame. If
f(x) is a p.p. for infinitely many finite extension fields o/F, then it is a composition of
linear polynomials ctjX + fit e ¥q[x] andDicksonpolynomials Dnj(aj,x) withOj e ¥q

where every nj is an odd prime andaj =0ifnj = 3.

PROOF. For every r > 1 there exists an irreducible polynomial over F, of degree
r and thus a prime ideal P of R = $q[t] with R/P = fqr. We interprete f(x) as a
polynomial over R. Then the reduction of f(x) mod P is f{x) again and thus f(x)
is a p.p. mod P if and only if f(x) is a p.p. of F,r. Hence /(JC) is a p.p. mod P for
infinitely many P and the assertion is seen to follow from Theorem 2 and Lemma 2.9
(applied to F?); note that f(x) is tame over the quotient field of R (by Remark 4.2).

REMARK 4.12. It is not always true that, under the hypotheses of Theorem 4.9
(or Theorem 2), f(x) is a composition of linear polynomials QT,JC + /},- e R[x] and
Dickson polynomials Dn.(aj, x) e R[x]\ even for R = Z and prime degree one can
find counterexamples ([50, Section 3]).

Theorem 4.9 is essentially due to Fried in the case where R is the ring of algebraic
integers of some number field ([14, Theorem 2]); cf. Section 5. We have derived
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Theorem 4.9 in almost the same way from the implication '(iii) implies (i)' of Theorem
4.5 as he did.

Fried also stated that a polynomial which is tame and exceptional over a finite field
K is a composition of polynomials a,*"' + /J, e K[x] and Chebyshev polynomials
Tn(x) ([16, Theorem 1]); f(x) is called exceptional if <&f(x, y) e K[x, y] has no
absolutely irreducible factor. By means of Lemma 4.7 it is easy to see that f(x)
is exceptional if f(x) is a p.p. for infinitely many finite extension fields of K and
deg(/) is not divisible by p = chaiK (cf. the first lines in the proof of [30, p. 200,
Theorem 4.9]). Conversely, every exceptional polynomial over a finite field is a p.p.
for infinitely many finite extensions of this field; this is an easy consequence of a
theorem of Cohen that states that every exceptional polynomial over a finite field is a
p.p of this field ([5, Theorem 5]; cf. also [30, p.192; 31, p.363]). (Added in proof:
See [62, p. 68] for a simple proof of a result of Wan from which, as Wan has pointed
out, Cohen's theorem can be derived.) Hence Fried's result is more or less the same
as Corollary 4.11; his argument is somewhat different.

REMARK 4.13. If all elements of R are algebraic integers in some number field then
\R/I\ is finite for every ideal / ^ {0}. This is seen by observing that the constant
term a e Z of the minimal polynomial of any non-zero element of / belongs to / and
thus \R/I\ < \R/aR\ is finite since R is a finitely generated Z-module. (Note that R
is a Z-submodule of the ring of algebraic integers in K which is a free Z-module with
[K : Q] < oo generators.)

The rings R such that | R/I | is finite for every non-zero ideal / are called residually
finite (abbreviated as r.f.) and studied in [4]. An integral domain R is r.f. if and only
if every non-zero prime ideal is finitely generated and has finite norm [4, p. 93]. It is
clear that every r.f. domain is Noetherian and every non-zero prime ideal is maximal.
If R is a Noetherian integral domain then R is r.f. if and only if the integral closure of
R is r.f. [4, p. 96]; this generalizes our example given above.

If R is only required to be Noetherian then the first part of Lemma 4.10 may fail;
consider the end of the following remark. The second part, however, remains true by
[45, Proposition 13]; I am indebted to Peter Schmid for this information.

REMARK 4.14. Theorem 4.9 applies to every Dedekind domain R since every non-
zero a e R belongs to only finitely many ideals. The following example shows that
the conclusion fails if we merely assume that f(x) is a p.p. for infinitely many prime
ideals.

Let n > 3 be a prime and set f{x) = x" + x. Then f(x) is a p.p. of K and is not a
composition of Dickson polynomials and linear polynomials with coefficients in some
extension field of K (since f(x) is indecomposable and clearly not linearly related to
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a Dickson polynomial). We may view f{x) as a polynomial over R = R[t]; x, t are
understood to be independent variables. For every a e U. the ideal P = (t — a) of R
is a maximal ideal and R/P is isomorphic to K. Since the reduction of /(JC) mod P
is /(x) again, we see that f(x) is a p.p. mod P. Hence / (x) is a p.p. for infinitely
many prime ideals although it is not a composition of Dickson polynomials and linear
polynomials.

Not even for Noetherian domains may one omit the first hypothesis in Th. 4.9.
For, if the reduction mod 2 of g(t) e l\t\ is irreducible and has degree d, then
p = (2, g(t)) is a prime ideal of R = l\t] with norm 2d. Clearly, /(JC) = x2 is a p.p.
mod P although the conclusion of 4.9 fails.

REMARK 4.15. Theorem 4.9 (Theorem 2) need not hold for non-tame polynomials.
As an example, let R = $p[t] and /(x) = xp + x where p is an odd prime. If r is an
odd integer then (/?r — l)/(p — 1) is odd and hence there is no a e Fpr with ap~' = — 1
since ap'~l = 1 for a ^ 0. Thus from f(x) - f{y) = (x - y)((x - y)"'1 + 1) we
see that f(x) is a p.p. of Fpr for odd r. Hence, as we have seen in the proof of
Corollary 4.11, f(x) is a p.p. mod P for suitable P with arbitrarily large norm. Also,
every non-zero ideal of R has finite norm. Nevertheless, f{x) is not a composition
of linear polynomials and Dickson polynomials, since the degree p is a prime and
Dp(a,x) = xp.

REMARK 4.16. It is worth while pointing out that for the proof of Theorem 4.9
(and Theorem 2) not too much of what we have done so far is actually needed. We
have seen in 4.9 (and 4.10) that the desired result follows from Theorem 4.5, Weil's
estimate quoted in 4.7, the elementary Lemma 4.8, and some simple considerations
employing Hilbert's Nullstellensatz. From 4.5 we only make use of the implication
'(iii) implies (i)' which depends on 1.11, the first part of 2.2(ii), 3.1 - 3.4, and the
theorems of Burnside and Schur quoted in 4.3 and 4.4. All the information we need
about Dickson polynomials is contained in the basic results 1.1 and 1.9 which are
sufficient for the proof of 1.11; we do not even need Lemma 1.4. Theorem 4.5 is only
required for the same K as appearing in Theorem 2 (or 4.9). In the proof of Theorem
5 (or 4.17), however, 4.5 is applied to finite fields.

The rest of Section 4 is devoted to 'quantitative' versions and the converse of
Theorem 4.9 in the number field case.

THEOREM 4.17. Let R be the ring of algebraic integers in a number field K of
degree d. Let f(x) = YH=oa^xk e ^ M have prime degree n and let C be a real
number such that the image of every coefficient under every embedding of K into C
has modulus at most C. Then we have:
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(i) tf f{x) is a p.p. for some prime ideal P of norm at least {nC)nd then n > 2 and
f{x) = (Dn(.a,anx + b) + c)/an

n-
1 with a = (((« - l)/2n)a2

n_{ -anan.2)/n,
b = an-\/n, and suitable c e K; a = 0 if n = 3. Moreover, nan & P and
n2a e(R\P)U {0}. Ifn is unramified then a,b,c e R.

(ii) Assume that an — 1 and an-\ — 0. If f(x) is a p.p. for some prime
ideal of norm at least (n*/C)nd then n > 2 and f(x) = Dn{a, x) + a0 with
a = -an-2/n.

PROOF. For a e K we define ||a|| = max{|or(1)|,..., \aid)\) where a(1 ) , . . . , aw

are the images of a under the embeddings of K into C; ||. || is a norm on the vector space
K over Q and ||a/? || < ||a || W\\. We extend the definition by putting || £;

m
=0 a,-x'11| =

max{||ao||, • • •, ll«m ||}; this yields a norm on the vector space K\x\ over Q. If a e R
and a ^ 0 then ||a || > 1 since a(1) • • • a(d) el. If a ^ 0 belongs to an ideal / of R
then \\a\\" > NI; this follows from NI < NA = \am • • • aw\ < \\a\\d for A = aR.

Let P be a prime ideal with NP > (nVC)"d. Note that C > 1 and NP — pf

with / < d (where p = chaiR/P); hence p > n and n $ P. From an ^ 0 and
ll<2« \\d <Cd<NP we also get an $ P.

Suppose that f{x) is a p.p. mod P. Taking into account that a polynomial of degree
2 can only be a p.p. over a field of characteristic 2, we obtain n > 2. Obviously,
n2a e R and ||n2a|| < ((« - l)/2 + n)C2 < (nC)n; hence NP > (nC)nd implies
n2a g P or a = 0. If n = 3 then f{x) trivially has the indicated form and in order
to prove the remaining part of (i) we may suppose NP > (3C)3d. From 3a3 ^ P,
Lemma l.l(ii), and Lemma 4.8 we see that f(x) is a p.p. mod P if and only if this
holds for D3(9a, x). Thus from Lemma 1.4 we conclude that 9a e P. Hence a — 0
and from (x + bf + c = a\f{x/ai) e R[x] we get 3b, 3b2 e R; hence b e R (and
c e /?) if 3 is unramified. This proves the assertion for n = 3; in the sequel we thus
assume n > 5.

Now let P be any non-zero prime ideal such that nan g P and f(x) is a p.p.
mod P. We have already observed at the beginning of the proof of Theorem 4.9
that the number N of zeros of $f(x, v) = (f(x) — f(y))/(x — y) mod P is at most
n — 1. Hence the reduction of $>/(x, v) mod P is not absolutely irreducible provided
that q + 1 — (n — 2){n — 3)^/q — (n — 1) > n — 1, where q = NP, according
to the estimate quoted after Lemma 4.7; this inequality holds if q > n2(n — I)2.
The weaker estimate quoted in Lemma 4.7 gives q > 250(« — I)5; note that then
q - y/2(n - l)5q > q{\ - 1/V^125) > n - 1. The smaller bound n2(n - I)2 will
in fact only be needed for n = 5, 7; otherwise we would have to replace (nC)nd by a
larger number.

Let P be a prime ideal of norm at least («VC)nd such that f(x) is a p.p. mod P;
recall that nan g P. Since NP > n4, the above argument shows that the reduction
of <t>/(x, y) mod P is not absolutely irreducible and thus the reduction of f(x) mod
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P (which is indecomposable as it has prime degree) is linearly related to a Dickson
polynomial by Theorem 4.5. Lemma 1.10 shows that pnk(a0,... ,an) = 0mod P
for 1 < k < n — 3 where pnk(a0,... ,an) + n"~k an

n~~k~x ak is the coefficient of xk in
D n { a ' , x + V ) w i t h a ' = ( ( « - l ) / 2 ) a n

2 _ , - n a n a n - 2 a n d f t ' = * „ _ , . I f p n k ( a 0 , . . . , a n ) =
0 for all k then Lemma 1.10 gives f(x) + d - Dn(a',nanx + b')/{nnan

n~
x) =

Dn(a, anx+b) /a""1 witha = a'/n2,b = b'/n, and suitable c'. (We have used Lemma
l.l(ii) here.) Putting c = -an

n~
xc' we then have Dn(a, x + b) + c = a"~lf(x/an) e

R[x]; if n is unramified then Lemma 1.14 yields a,b,c e R. Hence it is sufficient to
prove that pnk(a0,..., an) = 0 for 1 < k < n — 3.

By assumption we have | |/(x)| | < Candthus ||a'|| < ( 3 H - 1 ) C 2 / 2 , \\b'\\ < C. Put
Cj = || Dj (a\ x + b') || for every; > 1. Note that \\pnk(a0,... ,aH) + n"-kan

n-
k-lak\\ <

Cn and hence \\pnk(.a0, ...,an)\\ < (nC)n~l + Cn for all k > 1. Thus (i) is proved as
soon as we know that ((nC)"-1 + Cn)

d < NP.
From the recurrence relation in Lemma l.l(i) we obtain Cj+2 < (1 + ||6'|l)C7+i +

|| a'|| C; for ally > 1 and C, = ||JC + 6'|| <C,CI = \\{x + b')2 - 2a'\\ < 3nC2. Let p
be the positive solution of x2 - (1 + C)x - (3nC2/2) = 0. Then C, < 2p, C2 < 2p2

and inductively from CJ+2 < (1 + C)Cj+1 + (3nC2/2)Cj we conclude that Cj < 2p'
for all j'• > 1. From C > 1 we obtain p < C(l + s/l + 3n/2) and thus it remains
to prove that (nC)""1 + 2(1 + VI + 3«/2)"C" < («C)n. This is easily seen to hold
since «""' < n"/2 and (1 + VI + 3n/2)" < (V2 + V2 + 3n)"/4 < «"/4 for n > 5
and 54 + 2 • 45 < 55.

Finally, let an = 1 and «„_! = 0. Then a' = —nan_2 and 6' = 0. This gives the
sharper estimates ||pnyt(a0, •••,a«)ll < n"~xC + Cn and Cj+2 < Cj+x + nCCj,C\ = 1,
C2 < 2nC. Similarly as above let now p be the positive root of x2 — x — nC = 0;
note that -JnC < p < (1 + *Jn)\fC. Again, we have C, < 2pj for all j > 1 and

</Jn-'C + 2(l + V«rC"/ 2 < (/zVC)" since «"-' < n"/5 and 1 + V« <
for « > 5. Thus for NP > (n</C)"d we have ||pBA(a0. • • •. an)||d < NP for

all it and (ii) follows as above.

REMARK 4.18. A similar result holds for arbitrary n if the bound (nC)nd is replaced
by qo(n, C)d for some suitable effectively computable qo(n, C). Let n = nx • ... • nr

for some integers n, > 1. Then inductively one may construct integral polynomials
pk(x0,..., xn), 1 < k < k(nu ..., nr), such that a polynomial of degree n with
coefficients a0,..., an can be written in the form anfxo- • -ofr with ft(x) = Dni(at,x+
Pi) + Yii (for suitable a,-, fr, y,) if and only if pk(a0,... ,an) = 0forall*;. (Cf. Lemma
1.10 and the proof of Proposition 2.2.) Choose qo(n, C) so large that for all possible
factorizations n = nx • ... • nr with (not necessarily distinct) primes n, and for all the
corresponding polynomials pk we have ||p*(an. • • •. a«)ll < <7o(«. C) provided that
||oo||,..., ||afl|| < C; we also assume that qo(n, C) is greater than C and n2{n — I)2.
Then a simple modification of the preceding proof shows that f{x) is a composition
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of linear polynomials and Dickson polynomials if it is a p.p. for some prime ideal of
norm at least qQ(n, C)d. Apparently the actual determination of qo(n, C) amounts to
troublesome computations and yields very large bounds; hence we do not carry this
out in detail.

For R = Z we can obtain a result for arbitrary n by a different approach using
Theorem 4.5 for K = Q rather than for finite fields. By Proposition 2.4(i) every
f(x) G Z[x] is a composition of ft{x) e Z[x] which are indecomposable over Q.
In order to avoid difficulties (similar to those indicated above) we assume that we
have a bound for the coefficients of the f(x) rather than for f(x). This yields a
generalization of Theorem 4.17 if f(x) is indecomposable; if f(x) has prime degree
then Theorem 4.17 gives a much better bound, however.

We need an effective result relating the absolute irreducibility of a polynomial in
two variables with the absolute irreducibility of its reduction mod p for suitable p. A
result of this type which is rather simple to prove may be found in [47, p. 193]. hi
order to get a reasonable bound we prefer to use the following immediate consequence
of a theorem of Ruppert [44, Satz B].

LEMMA 4.19. Let <P(x, y) 6 Z[x, y] be a polynomial of degree d > 1 and let C
be an upper bound for the absolute values of the coefficients. If<&(x, y) is absolutely
irreducible then the reduction of <t>(x, y) mod p is absolutely irreducible provided
thatp > (d3C)"2~l.

THEOREM 4.20. Let fi(x),..., fr(x) e l[x] be non-linear polynomials which are
indecomposable over Q and let C be an upper bound for the absolute values of
all the coefficients. If f{x) = (/] o • • • o fr)(x) is a p.p. mod p for some prime
p > (n — lyn^-Dc^"'^ then each f(x) has prime degree and is linearly related to
a Dickson polynomial.

PROOF. By Lemma 1.9(i) we may assume n > 3. If f(x) is a p.p. mod p then
each of the /,0c) is a p.p. mod p. We may thus suppose that f(x) is indecomposable
and we have to prove that n is a prime and f{x) is linearly related to a Dickson
polynomial. By Theorem 4.5 this holds if <$>f (x, y) is not absolutely irreducible. Note
that Q>f(x, y) has degree d = n - 1 and all coefficients are also coefficients of f(x).
Thus by Lemma 4.19 it remains to prove that the reduction of <$f(x, y) mod p is not
absolutely irreducible. If this is not the case then by Lemma 4.7 the number of zeros
of <t>/(x, y) mod P is larger than d since p > d24 > 250d5, p — y/2d5p > d, and
the reduction of 4>/(x, y) mod p has degree at most d. We have already observed at
the beginning of the proof of Theorem 4.9 (and used in 4.17) that this is impossible if
f(x) is a p.p. mod p and (nan, p) = 1, where an denotes the leading coefficient of
f(x); the last condition holds since p > n and p > C, thus completing the proof.
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REMARK 4.21. For the rest of Section 4, R is assumed to be the ring of algebraic
integers of a number field K; P always denotes some non-zero prime ideal of R. Put
P(m, n; K) = {P : (NP - 1, m) = (NP2 -\,n) = 1} for positive integers m, n; if
it is clear which field is meant we may only write P(m,n). (We prefer to write NP2

instead of (NP)2; this causes no problem since N(IJ) = N(I)N(J).) By Lemma
1.4, P e P(m,n) if and only if Dn(\,x)m isap.p. mod P.

Let f(x) e R[x] be a composition of linear polynomials atx + /J,- e K[x] and
Dickson polynomials Dnj (a,, x) with Oj e R; we have seen that this applies whenever
f(x) is a p.p. for infinitely many P. Choose c e R, c ^ 0, such that cat, cyS, e R
for all i and let P be a prime ideal with c\\ ca, Y[a ^0

 ai & ?'• Lemma 4.8 implies
that f(x) is a p.p. mod P if and only if all the Dnj(aj,x) are p.p. mod P. Let
m = Y\a =o nJ anc^n = Y\a M nj' a n emPty product is understood to be 1. Lemma 1.4
shows that all the Dnj(aj, x) are p.p. mod P if and only if P e P(m, n). Hence f(x)
is a p.p. mod P if and only if P e P(m,n).

In particular, {P : f(x) is a p.p. mod F} differs from P(m, n) by finitely many
elements only. A precise description of the possible exceptions is contained in [50].
Clearly, every P(m, n) is equal to some P(m', ri) where m'ri is square-free; moreover,
P(m, n) is finite if mn is even. If K = Q then the sets P(m, n) with odd square-free
mn differ from each other by infinitely many elements unless they belong to the same
parameters; this is not true in the general case ([50, Section 5])

In the sequel (up to 4.33) we investigate under which circumstances P(m, n\ K)
is infinite for positive integers m, n. Corollary 4.28 is required for the proof of 4.34
which includes Theorem 4. From 4.21 and the main result 4.32 one can easily deduce
Theorem 3.

It is clear that (m, 2) = («, 6) = 1 is a necessary condition; for K = Q it is also
sufficient since then p e P(m, n) if p = 2 mod mn and by Dirichlet's theorem there
are infinitely many p of this kind. We note that P(m, n; K) is infinite if P(m, n\ K')
is infinite for some extension field K' of K; more precisely, if P' e P(m, n; K') then
P e P(m, n; K) for P = /" n K since NP' is a power of NP. The converse holds
if K' D Q(£mn) is contained in K; this is not so easy to see, however. (Cf. 4.30 for a
proof of this observation of Matthews.)

PROPOSITION 4.22. Let d be a positive integer and K = Q(&) (where & denotes
a primitive d-th root of unity). Then for arbitrary positive integers m, n the following
conditions are equivalent:

(i) P(m,n) is infinite.
(ii) P(m,n) contains some P with 6d $ P.

(iii) (m,2d) = (n,6d) = 1.
(iv) P(m, n) contains infinitely many prime ideals of degree one.
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PROOF. If (i) holds then (ii) is trivial. If 6d & P then NP ~ 1 mod 2, NP2 =
1 mod 3, and NP = 1 mod d; recall that only divisors of d ramify and the degree
of an unramified odd prime p is the smallest positive integer / with pf = \ mod d.
Hence P e P(m,n) implies (iii).

Assume that (iii) holds. Then by Dirichlet's theorem there are infinitely many
odd primes p with p = 1 mod d and p = 2 mod mn. HP divides p then we have
NP = p and NP = 2 mod mn. Hence there are infinitely many P with NP = p and
P e P{m,n). This finishes the proof since (i) is a trivial consequence of (iv).

PROPOSITION 4.23. Let K = Q(Vd) where d is a square-free integer. Then the
following conditions are equivalent:

(i) P(m,n) is infinite.
(ii) P(m,n) contains some P with 6 $ P and, ifd — 5,5 ^ P.

(iii) (m, 2) = (n, 6) = 1 and {m, 3) = \ifd = - 3 , and (n, 5) = \ifd = 5.
(iv) P(m,n) contains infinitely many prime ideals of degree one.

PROOF. We recall that every ramified prime divides Ad and an unramified odd prime
p has degree one if and only if (-) = 1 where (-) denotes the Legendre symbol.
Without further notice we make frequent use of the law of quadratic reciprocity. If P
is a prime ideal then in the sequel p always denotes the corresponding rational prime.

Trivially, (i) implies (ii). If 6 £ P then NP = 1 mod 2 and NP2 = 1 mod 3;
hence P e P{m, n) is only possible if (m, 2) = (n, 6) = 1, NP = 2 mod 3 if 3\m,
and NP ^ ±1 mod 5 if 5|n. For d = — 3 we cannot have NP = 2 mod 3 since this
clearly implies p = 2 mod 3 and then NP = p2 = 1 mod 3 since (-) = ( | ) = — 1;
hence (m, 3) = 1. For d = 5 and 5 & P we cannot have NP ^ ±1 mod 5 since
this implies that NP = p and for p = ±2 mod 5 we have (-) = (£) = —1; hence
(n, 5) = 1. Thus (ii) implies (iii).

Assume that (iii) holds. We have to show that there are infinitely many primes p
such that (^) = 1 and (p - 1, m) - {p2 - 1, n) = 1. For d = - 3 this holds if
p = 1 mod 3 and p = 2 mod mn; by Dirichlet's theorem there are infinitely many p
with this property. For d = 5 we may choose p = A mod 5 and p = 2 mod /n'« where
/n' is the product of the prime divisors > 5 of m. For d = 0 mod 2 we set d! = \d\/2
and take p = 1 mod 8 if (^) = 1, p = 5 mod 8 if (^) = — 1, and p = 2 mod w«rf'.
(The Jacobi symbol (j) means J~[(—) if rf' = f] /?,.)

Now assume that d is odd and is divisible by some prime q > 7. Let d' = \d\/q
and choose a ^ ±1 mod<7 such that (-) = (j); this is possible since there are
(q — l)/2 > 3 quadratic (non-)residues mod q. Then we may take p = 1 mod 8,
p = a mod <?, and p = 2 mod mnd'/qr where r > 0 is the largest integer such that
qr\mn. It remains to consider the case that d ^ —3, 5 is odd and has no prime factor
> 7, that is, d = ±1 , 3, —5, or ±15. Here the requirements are satisfied if we choose
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p = 1 mod 4 if d = ±1 , ±15, p = 3 mod 4 if d = 3, —5, and /? = 2 mod 15mn.
Hence in all cases (iv) holds. Obviously, (iv) implies (i).

REMARK 4.24. The equivalence of (i) and (iii) in Proposition 4.22 and in Proposi-
tion 4.23 is due to Matthews ([32, p. 258]); his proof is different. The special cases
m = 1 or n = 1 were treated earlier in [35, §4].

In the sequel we employ some elementary properties of the Frobenius automorphism
a associated with an unramified prime ideal P of R if K is a Galois extension of Q.
Then a is the unique element of the Galois group G (K \ Q) such that a (a) = ap mod P
for all a e R; o generates the decomposition group of P. All the (conjugate) prime
ideals belonging to p have conjugate Frobenius automorphisms. We also use the fact
that for every a G G(^|Q) there are infinitely many prime ideals P with Frobenius
automorphism a; this is a special case of the famous Chebotarev density theorem (cf.
[26, p. 182]). (Except for the latter, the necessary background can be found either
explicitly or implicitly in many basic texts on algebraic number theory, for example
in [40].)

LEMMA 4.25. Let L be a Galois extension o /Q containing K and assume that p
is unramified in L. Then the degree of every prime ideal P in K belonging to p is
the smallest positive integer f such that af e G(L\K) where a is the Frobenius
automorphism of any prime ideal in L lying above P.

PROOF. Let a be the Frobenius automorphism of Q where Q lies above P. We use
the relation/ (Q \ p) = f(Q\P)f(P\p) for the residue class degrees and note that the
residue class degrees involving Q are the orders of the corresponding decomposition
groups, that is, f{Q\p) = \GQ\ and f(Q\P) = \GQ n G(L\K)\ where GQ = {o). If
/ is the smallest positive integer with of e G{L\K) then (a) n G(L\K) = {af) and
thus f(P\p) = f.

COROLLARY 4.26. Let K be a subfield of L — Q(&) and, for every integer a with
(a,d) = 1, let aa denote the automorphism of L determined by oa(Kd) = Kd • Then
the degree of a prime ideal P in K with d g P is the smallest f such that K belongs
to the fixed field of apf; K belongs to the fixed field ofoNP.

PROOF. It is well known (and easy to see from the definition taking into account
that Z[£d] is the ring of algebraic integers of L) that every prime ideal in L belonging
to p has Frobenius automorphism ap. Hence the degree / is the smallest positive
integer such that opi — a? e G(L\K). This proves the first part; the second part
follows since NP = ps.
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LEMMA 4.27. Let K be any number field and F be a Galois extension o/Q. Then
for every a € G(F|Q) the following properties are equivalent:

(i) There are infinitely many primes p such that a is the Frobenius automorphism
of some prime ideal in F belonging to p and p is divisible by some prime
ideal in K with degree one.

(ii) a is conjugate to some element ofG(F\Ff)K).

PROOF. Let L be a Galois extension of Q which contains F and K. If (i) holds then
there is a prime p which is unramified in L, is divisible by a prime ideal P in K with
degree one, and the Frobenius automorphism of every prime ideal in F belonging to p
is conjugate to a. By Lemma 4.25, the Frobenius automorphism r of any prime ideal
in L lying above P belongs to G(L\K) and thus the corresponding prime ideal in F
has Frobenius automorphism r | f € G{F\F D K)\ thus (ii) holds since a is conjugate
tOT|f.

Since (i) remains unchanged if a is replaced by some conjugate, we may assume
a € G(F|FDA')forthe proof that (ii) implies (i). Then we may find r € G(L|/sT)with
T | F = a since every element ofG(F|Fn/C)is the restriction to F of some element of
G(FK\K). By the Chebotarev density theorem there are infinitely many prime ideals
in L with Frobenius automorphism r. For each of these the corresponding prime ideal
in F has Frobenius automorphism a = x\F and, by Lemma 4.25, the corresponding
prime ideal in K has degree one. Hence (i) holds.

COROLLARY 4.28. Let a, n be positive integers with («, a) = 1. Ifn is not divisible
by any ramified prime of K then there are infinitely many prime ideals P of degree
one with NP = a mod n.

PROOF. We have F n K = Q for F — Q(fn) since Q is the only number field
without ramified primes and every prime that ramifies in F divides n. Recall that
every prime ideal in F belonging to p has Frobenius automorphism ap. Hence by
Lemma 4.27 there are infinitely many prime ideals P in K with NP = p and ap = aa,
that is, p = a mod n.

PROPOSITION 4.29. Let m,n,d be positive integers and, for every integer a with
(a,d) = 1, let aa denote the automorphism of Q(£</) determined by oa{i;d) = £%.
Then for every subfield K o /Q(^) the following conditions are equivalent:

(i) P(m,n; K) is infinite.
(ii) There exists an integer a with (a — 1, m) = (a2 — 1, n) = {a, mnd) = 1 such

that K belongs to the fixed field ofoa.
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PROOF. Assume that (i) holds and let a be the norm of some prime ideal in
P(m,n; K) that does not divide mnd. T h e n (a — 1, m) = (a2 — l,n) = (a,mnd) = 1
and, by Corollary 4.26, K belongs to the fixed field of oa, thus proving (ii).

Conversely, assume that a has the properties specified in (ii). By Dirichlet's
theorem there are infinitely many primes p with p = a mod mnd. By Corollary 4.26,
each of the corresponding prime ideals P has degree one; note that ap = aa. Hence
NP = a mod mnd and thus P € P(m, n; K).

THEOREM 4.30. For every number field K and arbitrary positive integers m,n the
following conditions are equivalent:

(i) P(m, n; K) is infinite.
(ii) P(m,n\ K) contains some P with mn $ P.
(iii) P(m,n; Kab) is infinite where Kab is the maximal abelian subfield of K.
(iv) P(m,n;KD Q(fmn)) is infinite.
(v) P(m,n; K) contains infinitely many prime ideals of degree one.
(vi) G(F\F n K) % UP,m G(F|Q(?P)) U \JPm G(F|Q(£P + ?p"')) where F =

PROOF. It is clear that (i) implies (ii), (iii), and (iv). It is also clear that each of
these implies that P(m,n; K nQ(£mn)) contains some prime ideal that does not divide
mn and we proceed to show that this condition implies (v). If a denotes the norm
of a prime ideal with this property then we have (a — \,m) — (a2 — \,n) = 1 and
{a, mn) = 1. Moreover, Corollary 4.26 yields that K n Q(^mn) belongs to the fixed
field of the automorphism aa of Q(fmn) determined by aa(J;mn) = £^n. Hence Lemma
4.27 (with F = Q(£mn)) implies the existence of infinitely many p such that op = oa

and p is divisible by some prime ideal P in K with degree one. (Here we have again
used the fact that op is the Frobenius automorphism of every prime ideal in Q(£mn)
belonging to p.) Note that ap = aa implies p = a mod mn; hence NP = p and
P € P(m,n; K), thus proving (v). Since (i) follows trivially from (v), this establishes
the equivalence of (i),.. .,(v).

We finish the proof by showing that (vi) holds if and only if aa e G (F | F n K) for
some integer a with (a — 1, m) = (a2 - 1, «) = (a, mn) = 1; by Proposition 4.29
this condition is equivalent to (iv). It is sufficient to prove that, for every prime p
with p\mn and every integer a with (a, mn) = 1, (a - 1, p) = 1 holds if and only if
aa £G(F|Q(£p))and(a2-l,/>) = 1 holds if and only if <ra £ G(F|Q(£P+£P~1))- We
may assume that £p = C"/p- T ^ first P811 follows by noting that oa e G(F|Q(£P))
holds if and only if £° = aa(Z;p) = fp, that is, a = 1 mod p. Similarly, aa 6
G(F|Q(£P + £-')) holds if and only if £ + i;p~

a = oai&p + Sp
l) = SP + Zp

l which is
equivalent to fp = fp", that is, a = ±1 mod p.
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LEMMA 4.31. Let K be a number field and letm,n be coprime positive integers. If
every prime dividing n is unramified in K then K n Q(£m) = K C\ Q(£mn).

PROOF. Let K' be any subfield of Q(£mB) such that all primes dividing n are
unramified in K'. Let p be any prime that ramifies in Q(fn). Then p\n and p is
unramified in AT'(£m) since it is unramified in K' and in Q(£m). Hence there is no
prime that ramifies in *'(&,) n Qfo). Thus A"(fm) n Q(&)=Q and [K'i£m) : Q] =
[Q(fmn) : Q(f«)]- Since we may choose K' = Q this implies that in the general case
we have AT'(fm) = Q(fm) and thus AT' c Q(fm). Taking AT' = ATnQ(£mn) then yields
the assertion.

THEOREM 4.32. Let m, n, rri, ri be positive integers such that (m1, 2) = (ri, 6) = 1
and no prime dividing m'ri is ramified in K. Then P(m,n; K) is infinite if and only
if P(mm', nn'; K) is infinite; P(m', n'\ K) is infinite.

PROOF. If P(mm', nn'; K) is infinite then trivially P(m, n; K) is infinite. In order
to prove the converse, by induction it is clear that one may suppose that m' is a prime
and«' = 1 or the other way round. We obviously have P(mm', nn'; K) = P(m, n; K)
if m'\mn, ri = 1 or m! = 1, n'\n; if rri = 1 and ri occurs with multiplicity r > 1
in m then P(mm', nri; K) = P(m/rir, nri; K) and P(m/rir, n; K) 2 P(m, n; K).
Hence it is sufficient to prove the assertion under the restriction (d, d') = 1 where
d — mn and d' = m'ri.

Since P(m, n; K n Qfo)) is infinite, by Proposition 4.29 there exists an integer
a with {a - 1, m) = {a2 - 1, ri) — {a, mn) = 1 such that K D Q(&) belongs to
the fixed field of aa. By Dirichlet's theorem there are infinitely many primes p with
p = a mod d and p = 2 mod d'\ for each of these we have (p — 1, mm') = (p2 -
1, n«') = 1. By Corollary 4.26, every prime ideal in K n Q(&) belonging to some p
with p = a mod d has norm equal to p since op — aa. Hence P(mm', nri; KC\Q(^d))
is infinite. Taking into account that K n Q(&) = AT n Q(^rf) by Lemma 4.31, the
first part of the assertion follows from Theorem 4.30. The second part follows by
noting that P{\, 1; K) is infinite.

REMARK 4.33. Recall that P(m, n; K) is the set of non-zero prime ideals P in K
such that Dm{\, x)n is a p.p. mod P. As an immediate corollary of the equivalence of
(i) and (vi) in Theorem 4.30 we obtain that xp is a p.p. for infinitely many prime ideals
if and only if Q(£p) 2 K»^d Dp (1, x) is a p.p. for infinitely many prime ideals if and
only if Q(£p + f^1) <2 K; here /? denotes a prime. This result is due to Matthews ([32,
p. 254]). Theorem 4.32 is equivalent to [32, Proposition 6.3] (the proof of which is
not convincing since it depends on Section 3; see below). Proposition 4.29 is closely
related to [32, Theorem 5.3] and it is easy to deduce the latter from the former([61,
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p. 142]). (Note that the last = in (iii) of [32, Theorem 5.3] has to be replaced by #.
Moreover, a part of (iii) is already included in (ii).) Lemma 4.27 is a special case of
a theorem of Hasse (cf. [21, §25.7]); an obvious modification of our proof yields the
full result.

Matthews claims that Dn{\, x)m is a p.p. for infinitely many prime ideals in K if
and only if this holds for the maximal abelian subfield of K ([32, §3]). This is in fact
true by Theorem 4.30. Matthews relies upon a result of Fried to which he reduces the
problem by rather sketchy arguments, to say the least. (It should be stressed that [32] is
quite detailed and readable except for Section 3.) Fried states that a polynomial f(x)
over K is a p.p. for infinitely many prime ideals in K if and only if a certain property
involving some subgroups of the Galois group of / (*) — t over K(t) holds ([17,
Prop. 2.1]). The main ingredients of the proof are the Chebotarev density theorem
and a result of his own which is quoted as Proposition 1 of [16]. But this proposition
apparently only has little relevance for the problem and the proof of Theorem 1 of
[16] indicates that Fried really means Proposition 1 stated without proof at the end of
[15], a paper that is not cited in [17].

Matthews points out that an easy extension of a result of Niederreiter and Lo ([35,
Theorem 3.7]), together with the reduction to the abelian case, implies that P{m,n\ K)
is infinite unless (p — l)\d for some p\m, or (p — l)\2d for some p\n where d denotes
the degree of K ([32, Proposition 6.9]).

THEOREM 4.34. Let R be the ring of algebraic integers of some number field K and
let f(x) e R[x] be a polynomial with leading coefficient a and degree n>\.Ifnis
not divisible by any ramified prime then the following conditions are equivalent:

(i) f(x) is a p.p. mod P for infinitely many prime ideals P of R.
(ii) f{x) — (/i o • • • o fr)(x) where each of the f(x) has coefficients in an

extension field L of K and is linearly related to Dni (a,, x) for some odd
integer «, andat e L such that a, = 0 i/3|n,.

(iii) a"-lf(x) = (fio- • -ofr)(ax) where Mx) = Dn.(a,,x+6,)+c, with suitable
a,, bj, c, € R and odd primes «, such that a, = 0 ifnt = 3.

(iv) n is odd and f(x) is a p.p. for every P e P(3r, n'\ K) with a & P where
n = Vri and (3, «') = 1 (r > 0).

(v) n is odd and f(x) is a p.p. for every prime ideal P of degree one with
NP = 2 mod n and a & P.

PROOF. If (i) holds then (ii) follows from Theorem 4.9. If (ii) holds then by Lemma
1.1 (ii) we may assume that all the n, are primes. Since g(x) = a"~lf(x/a) is a
monk polynomial with coefficients in R, by Lemma 2.9 we conclude that g(x) =
(gi o . . . o gr)(x) with gj(x) = £>„.(a,-, x + bt) + c, e R[x] where a,, bt, c, € K and
a, = 0 if «, = 3. If nt > 3 then a,, bt, c, € R by Lemma 1.14. If «, = 3 then a, = 0,
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3 is unramified, and from g,(x) = (x + fr,)3 + c, we easily get b{ e R and c, e R.
Hence (iii) holds. Now assume that f{x) has a representation as in (iii). Then n is
odd and, by Lemma 1.4 and Lemma 4.8, f(x) is a p.p. mod P if P e P(3r, n'\ K)
and a g P; hence (iii) implies (iv). Every prime ideal P with NP = 2 mod n belongs
to P(3r, ri\ K)\ hence (iv) implies (v). By Corollary 4.28 there are infinitely many
prime ideals P of degree one such that NP = 2 mod n if (n, 2) = 1; hence (v) implies
(i).

COROLLARY 4.35. Let / (JC) e R[x] be a polynomial of degree «, > 1, 1 < i < r,
and assume that«i • • -nr is not divisible by any ramified prime. Then ( / o • • • o /.)(JC)
is a p.p. for infinitely many prime ideals if and only if this holds for f\ (JC), . . . , fr(x).

PROOF. The 'if'-part follows from 4.34 if nx • • • nr > 1. The rest is trivial.

REMARK 4.36. From Remark 4.21, Proposition 4.22, and Proposition 4.23 it is
clear that the conclusion of Corollary 4.35 holds without restriction in the case that
A" is a quadratic or a cyclotomic field (or Q). Assume that n is the product of three
distinct odd primes; Matthews has proved that, for a suitable subfield K of Q(fn), x

d

is a p.p. for infinitely many prime ideals for every proper divisor d of n while this
fails for d = n ([32, Proposition 6.5]). (This can, of course, be deduced from 4.29.)
Hence in general one cannot drop the restriction on the degrees. Moreover, Matthew's
observation shows that the example given by the reviewer of [35] in MR 80k: 12002
for illustrating a result of Fried is wrong.

If n is divisible by a ramified prime then (v) no longer implies (i) in Theorem 4.34.
As an example, choose K — Q(£n) and f(x) = x" for some odd prime «; note that
NP = 0, 1 mod n for every P. On the other hand, /(JC) = x" may satisfy (i) even if
NP ^ 2 mod n for all P. This is shown by taking K = Q.(y/n) where n is a prime
with n = 5 mod 8. Note that NP — 2 mod n implies NP — p since 2 is a quadratic
non-residue mod n and p = 2 mod n implies that p is unramified and NP = p2 since
{-p) = - 1 . But (i) holds since P(n, 1; K) is infinite by Proposition 4.23.

Assume that f(x) satisfies condition (i) of Theorem 4.34 and deg(/) is not a
prime; then f{x) is decomposable over K by (iii). Nevertheless, f(x) may be
indecomposable over R. Consider a field K with odd class number h > 1 (for an
example see [40, p. 285]). If p is a prime such that p — 1 exceeds the degree d of K then
Q(£p) is not contained in K and thus xp is a p.p. for infinitely many prime ideals of K
(see Remark 4.33). Choose p such that also p = 2 mod h. Then Remark 2.7 shows
the existence of a polynomial /(JC) e R[x] of degree p2 which is indecomposable
over R and a composition of xp and linear polynomials with coefficients in K. This
gives an example of the desired kind (cf. Lemma 4.8). By 2.4(i), the situation is
different if h = 1.
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If we do not assume that every prime dividing n is unramified then we cannot
conclude that the a, in (iii) of Theorem 4.34 can be chosen in R even if n is a prime.
For every prime p > 3 there is a number field K whose degree is not divisible by
the degree (p — l)/2 of Q(£p + f^1), such that p has ramification index at least
(p — l)/2. This follows immediately from a well-known theorem of Hasse which
states that (under obvious restrictions) there are infinitely many number fields where a
finite number of primes have prescribed decompositions [20]; we only need the special
case where a single prime is given (proved earlier by Ore in [38, §4]). In Remark
1.13 it was shown that there exists a e K with f(x) = Dp(a,x) e R[x] although
a g R. According to Remark 4.33 and Lemma 4.8, f(x) is a p.p. mod P for infinitely
many prime ideals. It is easy to see that f(x) is not of the form aDp(a', yx + 8) + fi
with a', a, /3,y,8 e R. (Otherwise from Lemma 1.9 we obtain ay" = 1, a'/y2 = a,
5 = 0, and p — 0; hence y is a unit and a e R, a contradiction.)

THEOREM 4.37. Let R be the ring of algebraic integers of a number field K of
degree d, let f(x) € R[x] be a polynomial of prime degree n, and let C be a real
number such that the image of every coefficient under every embedding of K into C
has modulus at most C. Then f(x) is a p.p. for infinitely many prime ideals in K if
and only if f(x) is a p.p. for some prime ideal of norm at least (nC)"d.

PROOF. Assume that f(x) — Yll=oai<xk *s a P-P- f°r some prime ideal of norm
> (nC)nd. By Theorem 4.17 we infer that f(x) = (Dn(a, anx + b) + c)/a"n~

l with
n2a, nb e R and c € K; clearly, nkc e R for large k. Moreover, by 4.17, f(x) is a
p.p. for some P such that (*) nan g P and n2a & P \ {0}. Now let P be any prime
ideal with property (*). Taking into account that Dn{a, x) = Dn(n

2a,nx)/n" (by
Lemma l.l(ii)), Lemma 4.8 shows that/ (x) is a p.p. mod P if and only if Dn(n

2a, x)
is a p.p. mod P. By Lemma 1.4 the last condition is equivalent to P 6 P(m,n/m)
where m = 1 if a ^ 0 and m = n if a = 0. In particular, P(m,n/m) contains some
P with m • n/m g P and is thus infinite according to Theorem 4.30. Hence f(x) is a
p.p. for infinitely many prime ideals; the converse is obvious.

REMARK 4.38. It is clear from the proof of 4.17 that the bound (nC)nd is not best
possible; it is not clear how far away it is from the optimal bound.

5. Historical remarks

Dickson showed that Dn(a, x) is a p.p. for all primes p such that {p2 — 1, n) = 1.
Conversely, by very elementary means he proved that a polynomial with integral
coefficients and prime degree n > 3 is linearly related to Dn{a,x) (for a suitable
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integera)if it is ap.p. for all (sufficiently large) p with (p2 — l,/i) = 1 ([10, p. 89];
cf. Proposition 1.5).

In 1923 Schur [48] proved that the same conclusion holds if it is only assumed
that f(x) = YH=oakxk is a PP- f°r infinitely many primes. He first notes that
f(x) = n"an

n-\f{(x - an-\)/nan) - / ( -an_, /nan)) has integral coefficients, is
monic, and the coefficient of x"~' and the constant term both vanish; hence without
loss of generality f(x) can be assumed to have these properties. Then by rather
tricky arguments (involving the Lagrange inversion formula) he proves that at most
n — 2 of the branches of the inverse function of f(x) can be linearly independent.
Schur proceeds by showing that if n is a prime then every element of the monodromy
group can be represented by a linear polynomial; he also remarks that an application of
Burnside's theorem quoted in 4.3 would shorten the argument. From this he concludes
that f(x) — x" or, for every ramification point x0, f{x) — f(x0) has one simple root
and n — 1 roots of multiplicity r > 1 (cf. Lemma 1.11). In the latter case f(x) is
shown to satisfy the same second order linear differential equation as the Chebyshev
polynomial of degree n and this finally yields f(x) = Dn(a, x) for a suitable integer
a. (Dn(a, x) in [48] means Dn(—a, x) in our notation.) Thus if f(x) is not assumed
to be 'normed' as above then one gets f(x) = aDn(a, yx + 8) + /J. Schur did
not explicitly mention that one cannot suppose that a, a, /?, y, 8 are integers; this has
given rise to many misunderstandings (cf. [50, §3]).

Schur calls n a Dickson number if every polynomial of degree n which is a p.p.
for infinitely many primes can be written as a composition of linear polynomials and
Dickson polynomials of odd degree. In the introduction of [48] he states that in a later
publication he would prove that n is a Dickson number provided that every composite
divisor d of n has the following property:

(Pd) Every primitive permutation group of degree d which contains a rf-cycle is
doubly transitive.

He notes that, by making use of a theorem of Burnside, this immediately implies
that every prime power is a Dickson number and announces a proof that the same
conclusion holds for every product of two prime powers. It should be stressed that no
conjecture is made to the effect that every integer n is a Dickson number, that is that
'Schur's Conjecture' holds.

Years later, Schur [49] proved that (Pd) holds for every integer d which is not a
prime; this result has been used in Section 4. So one wonders whether Schur knew
how to prove 'Schur's Conjecture'; apparently the promised proof mentioned above
was never published.

In 1928 Wegner extended Schur's proof for prime n to odd prime powers and
products of two distinct odd primes in his thesis [52], written under the supervision
of Schur. Since on the very first page of the text Schur's result is reported to yield
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f(x) = aDn(a, yx+8)+fi with integers a, a, fi, y, 8, it is tempting to believe that not
even Schur was fully aware of the fact that this is not true. Wegner mentioned that no
proof had been published for the claim made in [48] to the effect that every product of
two (odd) prime powers is a Dickson number and he planned to deal with this case in a
later publication, but this project apparently was never realized. Wegner makes use of
the result of Ritt according to which a polynomial with imprimitive monodromy group
is decomposable (cf. Remark 3.5). The proof then proceeds inductively by showing
(by means of elementary but quite involved computations) that the monodromy group
of f(x) is imprimitive; double transitivity plays no part.

Twenty years later Kurbatov extended the method of Schur and Wegner to apply
to some more general classes of integers including products of two odd prime powers
([27, 28]). His proof proceeds inductively by showing that the monodromy group
is solvable. It should be remarked that from [27] and [28] it is not clear at all why
this implies the assertion. In order to complete the argument one needs Ritt's results
from [42] concerning polynomials with solvable monodromy group (cf. Theorem
3.11); these are not mentioned by Kurbatov. Though in principle quite elementary,
Kurbatov's proof consists of very long and complicated computations. (It seems that
in fact the solvability of the considered monodromy groups is established inductively
by proving that they are imprimitive and thus belong to decomposable polynomials;
this would of course imply the assertion concerning Dickson numbers.) Although
meanwhile the validity of (Pd) was established for all composite d, Kurbatov does
not mention this fact and the connection with Dickson numbers claimed by Schur.

In 1963 Davenport and Lewis showed that the degree of an exceptional polynomial
over Fp must be odd or divisible by p; they also showed that the reduction of a
p.p. mod p is exceptional if the degree is small compared with p. ([9, pp. 59-60];
cf. Remark 4.12). Hence it follows that every even n is a Dickson number; this
observation is due to the referee of [37] (see p.438).

The breakthrough came in 1970 with the work of Fried [14], who essentially proved
Schur's Conjecture for arbitrary number fields. Unfortunately, his formulation of the
result caused serious misunderstandings; it took a long time until this became clear,
since in most applications (such as in [34, pp. 21-23]) finite exceptional sets of prime
ideals do not matter (cf. [50, §3]). Also the style of proof may be a reason why nearly
all published versions of Fried's theorem are wrong (the latest example I am aware of is
[36]). Fried employs the theory of Riemann surfaces to prove some results for K = C
and recommends a careful reading of the (apparently unpublished) thesis of Fulton
in order to see that these results hold for arbitrary fields; he also adds that Fulton's
thesis relies heavily on Grothendieck's theory of formal schemes. (Fried remarks that
for the proof of Schur's Conjecture only C needs to be considered ([14, p. 43]). This
is true, but requires a modification of some arguments. In particular, his Lemma 1
is not sufficient for this purpose.) It is interesting to note that in [14] no mention is
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made of the previous results of Wegner and Kurbatov; it is also not mentioned that
Schur was aware of a connection of Schur's Conjecture with his theorem on primitive
permutation groups which is an essential ingredient of Fried's proof (and the proof
presented here).

Fried also studied rational functions which are permutational functions for infinitely
many primes ([17, 18]). Here the results are not as satisfactory as for polynomials.
In [17] the problem is solved for rational functions of prime degree as far as their
ramification behaviour is concerned. One should note, however, that this does not
give a complete answer for rational functions over Q. Let fn(x) be the R6dei-
function of degree n > 1 associated with a monic integral polynomial with roots
a, ft and discriminant D; then /„(*) induces a permutation mod p if (-) = —1 and
(p + 1, n) = 1 (cf. [36]). Since /„(*) = /"' o x" o I where /(*) = (x + a)/(x + /?)
(as can be seen from an equation on p.62 of [36]), /„ (x) is the same as x" from Fried's
point of view. (Incidentally, this remark shows that according to [17] there must be
further classes of rational functions which induce permutations for infinitely many
primes, thus answering a question posed in [36].) Nevertheless, fn(x) can induce
permutations for infinitely many p with p = 1 mod n while x" never is a p.p. in this
situation.

Note added in proof

(March 1995.) After the completion of the manuscript I became aware of a paper
of Kljacko [59] which has only recently appeared in Russian and which I could not
find in Mathematical Reviews. I am indebted to Rex Matthews for sending me a
copy of a hand-written translation which he had produced in 1981. Let / (x) be an
indecomposable polynomial over an algebraically closed field K and assume that
chaiK does not divide the degree of f(x). Let G be a Galois group of f(x) — t over
K{t). Theorem 1 of [59] states that either G is doubly transitive or f(x) has prime
degree and is linearly related to a pure power or a Chebyshev polynomial. If this is
true then in Theorem 4.5 (and hence in Theorem 4.9, Corollary 4.11, Theorem 1, and
Theorem 2) it is sufficient to assume that the degree of the polynomial is not divisible
by the characteristic. Unfortunately, there seems to be an irreparable flaw in [59].
The difference of a Galois extension can be expressed in terms of higher ramification
groups. In formula (12) of [59] this result is applied to the extension obtained by
adjoining a zero of f{x) — t to K{t), although this is not a Galois extension.

The 'Characteristic p > 3 Theorem' of Fried, Guralnick, and Saxl [57] implies
that every exceptional polynomial f(x) of prime degree n over a finite field is linearly
related to a Dickson polynomial if the characteristic p does not divide n (and if p > 3).
Unfortunately, an exchange of email with Mike Fried has revealed that the proof is
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based on an error and it is not clear whether the result is true.
By a concatenation of unfortunate circumstances, the publication of this paper has

been delayed for many years. The final version differs only little from the first version
written in 1989. Meanwhile a considerable portion of it has been incorporated into
[61].
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