DENSITIES AND MEASURES OF LINEAR SETS

BY B. G. A. KELLY

1. Introduction. If I_n , I_{∞} denote the intervals [0, n), $[0, \infty)$ respectively, we propose to examine the properties of an upper and lower density

(1)
$$D^*[\mathscr{P}(I_{\infty}); S] \stackrel{\text{def}}{=} \limsup \frac{m^*(S \cap I_n)}{|I_n|} \quad (n \to \infty)$$

(2)
$$D_*[\mathscr{P}(I_\infty); S] \stackrel{\text{def}}{=} \liminf \frac{m_*(S \cap I_n)}{|I_n|} \quad (n \to \infty)$$

of a set S belonging to the power set $\mathscr{P}(I_{\infty})$ of I_{∞} where m^* , m_* denote the outer and inner (linear) Lebesgue measures. (The left sides of (1) and (2) will usually be abbreviated to $D^*(S)$ and $D_*(S)$.) With this rather specialized definition of upper and lower density, we shall nevertheless find it possible to reconcile the earlier work of Knopp [3] on densities of arbitrary subsets of a fixed interval $I = [\alpha, \beta)$ with the more recent work of Buck [1], Hintzman [2], and Niven [4] on densities of (infinite) subsets of the set of positive integers Z⁺. In the space $\mathscr{P}(I_{\infty})$ we can introduce the notion of a homogeneous set, which possesses properties corresponding not only to those of Knopp's homogeneous sets on $\mathscr{P}([\alpha, \beta))$ but also to those of Niven's "uniformly distributed" sequences of nonnegative integers; and which, moreover, can be used to obtain their results. First, we state some of the more obvious general properties of D^* and D_* :

Property (i). $D^*(S)$ is a finitely subadditive outer measure on $\mathscr{P}(I_{\infty})$.

Property (ii). $D_*(S)=1-D^*(S^c)$ is the inner measure corresponding to $D^*(S)$. If $S \in \mathscr{P}([\alpha, \beta))$, then the correspondence $S \mapsto |\beta - \alpha|^{-1}(S - \alpha)$ associates with each $S \in \mathscr{P}([\alpha, \beta))$ a subset of the fixed interval I_1 and so, without essential loss of generality, we shall consider densities of subsets of I_1 .

Property (iii). If $S \in \mathcal{P}(I_1)$ and if $\hat{S} = S + Z$, then

$$D^*(\hat{S}) = m^*(S) = d_{I_1}(S),$$

where $d_{I_1}(S)$ is the density of S in I_1 , as defined by Knopp [3, p. 412]. *Property* (iv). If $S \in \mathscr{P}(Z^+)$ and we define $S^{\dagger} = \bigcup_{k \in S} [k-1, k)$, then

$$D^*(S^{\dagger}) = \limsup \frac{1}{n} \sum_{k \in S \cap I_n} 1 = \mu^*(S),$$

Received by the editors April 1, 1971.

where $\mu^*(S)$ is the upper density of S in $\mathscr{P}(Z^+)$, as defined by Hintzman [2, p. 133]. If we introduce the class \mathscr{M} of all measurable sets and the class \mathscr{D} of all sets having a density, i.e.,

(3)
$$\mathcal{M} = \{ S \in \mathcal{P}(I_{\infty}) \mid \forall X \in \mathcal{P}(I_{\infty}), D^*(X) = D^*(X \cap S) + D^*(X \cap S^c) \}$$

and

(4)
$$\mathscr{D} = \{ S \in \mathscr{P}(I_{\infty}) \mid D^*(S) = D_*(S) = D(S), \text{ say} \},$$

then, on selecting $X=I_{\infty}$ in (3), we see that $S \in \mathcal{M} \Rightarrow S \in \mathcal{D}$, or $\mathcal{M} \subset \mathcal{D}$. In fact, by a routine adaptation of Hintzman's proof of his Theorem 2, we have

Property (v). $\mathcal{M} \neq \mathcal{D}$ and $S \in \mathcal{M} \Leftrightarrow D^*(S) = D_*(S) = 0$ or 1.

Property (vi). If $S \in \mathscr{P}(Z^+)$ and S^{\dagger} is defined as in (iv), then Property (v) is Hintzman's principal result. [2, Theorems 1 and 2.]

2. Homogeneity.

DEFINITION 1. $S \in \mathscr{P}(I_{\infty})$ is said to be upper homogeneous modulo k of upper density $D^*(k, S)$ if, and only if,

(5)
$$D^*(k, S) = \frac{|I_k|}{|I|} D^*(S \cap I(k))$$

is independent of the particular choice of subinterval I of I_k , where I(k)=I+kZ. We define lower homogeneity modulo k analogously by replacing "upper" by "lower" everywhere, $D^*(k, S)$ by $D_*(k, S)$ and $D^*(S \cap I(k))$ by $D_*(S \cap I(k))$, in (2.5).

REMARK. If we select $I = I_k$ in (5), then

(6)
$$D^*(k, S) = D^*(S);$$

whence $D^*(k, S)$ and $D_*(k, S)$ are both independent of k and may be replaced by $D^*(S)$ and $D_*(S)$, respectively.

For our discussion of homogeneous sets it is convenient to introduce classes $H^*(k)$, $H_*(k)$, H'(k), $H^*(\infty)$, and $H_*(\infty)$, where $H^*(k)$ and $H_*(k)$ are the classes of all subsets of I_{∞} which are respectively upper and lower homogeneous modulo k. Furthermore, $H'(k)=H^*(k)$, $\cap H_*(k)$, and $H^*(\infty)=\bigcap_{1\leq k\infty} H^*(k)$, with $H_*(\infty)$ defined analogously. Elements of $H^*(\infty)$ and $H_*(\infty)$ are referred to as being upper homogeneous and lower homogeneous, respectively.

REMARK. Clearly $S=I_{\infty}$ is an element of $H'(\infty)=\bigcap_{k=1}^{\infty} H'(k)$, and so none of the classes H'(k), $H^*(k)$, $H_*(k)$, $H^*(\infty)$, and $H_*(\infty)$ is trivially empty. A less obvious example with $S \in H'(\infty)$ is given by $S=\bigcup_{k=1}^{\infty} [n\theta, n\theta + \alpha)$, where $0 < \alpha < \theta$ and θ is an irrational element of I_1 , (see Example 4 below). For the property of homogeneity itself, we introduce a variant on Definition 1 designed so that the

https://doi.org/10.4153/CMB-1973-013-6 Published online by Cambridge University Press

existence of the limit on the left side of (7) automatically excludes certain uninteresting sets S with D(S)=0 [e.g. $S=\bigcup_{n=1}^{\infty} [n^2k, n^2k+1) \in H^*(\infty)$ has upper density $D^*(S)=0$, but cannot be "homogeneous" because all its elements lie in the interval [0, 1) modulo k].

DEFINITION 2. $S \in \mathscr{P}(I_{\infty})$ is homogeneous modulo $k \Leftrightarrow$

(7)
$$\lim_{n \to \infty} \frac{m(S \cap I(k) \cap I_n)}{m(S \cap I_n)} = \frac{|I|}{|I_k|}, \text{ for all subintervals } I \text{ of } I_k.$$

Let H(k) denote the class of all elements of $\mathscr{P}(I_{\infty})$ which are homogeneous modulo k and put $H(\infty) = \bigcap_{k=1}^{\infty} H(k)$. We shall refer to $H(\infty)$ as the class of all homogeneous subsets of I_{∞} .

REMARK. Clearly, if D(S) exists (i.e. $D^*(S)=D_*(S)$) and if D(S)>0, then (7) may be written as follows:

$$S \in H(k) \Leftrightarrow D(S) = \frac{|I_k|}{|I|} D(S \cap I(k)),$$

is independent of the choice of subinterval I of I_k .

The following examples serve to distinguish the classes H(k), H'(k), and $H(\infty)$.

EXAMPLE 1. Let S be an extremal subset of I_1 , (i.e. by classical measure theory), $\exists S \subset I_1$ such that $m^*(S \cap I) = |I|$ and $m_*(S \cap I) = 0$, for all $I \subset I_1$. Then $\hat{S} \in H^*(k)$ but $\hat{S} \notin H(k)$.

EXAMPLE 2. Let $S = \bigcup_{n=0}^{\infty} [nk, nk+1)$. Then $D(S \cap I(1)/|I| = k^{-1}$, for all subintervals I of I_1 and so $S \in H(1)$. On the other hand, note that

$$\frac{|I_k|}{|I|} D(S \cap I(k)) = \begin{cases} 1 & \text{for } I = [0, 1) \\ 0 & \text{for } I = [1, 2), \end{cases}$$

whence $S \notin H(k)$ and $H(1) \notin H(k)$.

EXAMPLE 3. Let $S = \bigcup_{r=0}^{\infty} [rk+a_r, rk+a_r+1)$, where a_r = residue of r modulo k with $0 \le a_r < k$. Then $S \in H(k)$. However $S \notin H(k^2)$, because

 $D(S \cap I(k^2)) \cdot |I_k^2|/|I| = 0, \quad k^{-1} \text{ for } I = [1, 2), [0, 1),$

respectively. Hence $H(k) \notin H(k^2)$.

We propose now to reconcile homogeneity in $\mathscr{P}(I_{\infty})$ with that already defined in (a) $\mathscr{P}(I_1)$ and (b) $\mathscr{P}(Z^+)$.

Case (a). If $I \subseteq I_1$ and if $S \in \mathscr{P}(I_1)$, then Knopp [3] defined the density of S in I as $d_I(S) = m^*(S \cap I)/|I|$. If further, $d_I(S)$ is a constant d independent of I for all $I \subseteq I_1$, then S will be said to be Knopp-homogeneous. He showed [3] that S 5 is "Knopp-homogeneous" if, and only if, d=0 or 1. A complete characterization of Knopp-homogeneity in terms of upper homogeneity modulo 1 is provided by

PROPOSITION 1. $\hat{S} \in H^*(1) \Leftrightarrow D^*(\hat{S}) = 0$, or $1 \Leftrightarrow S$ is Knopp-homogeneous.

Proof of Proposition 1 rests upon the fact that if $D^*(S) \neq 0$ (i.e., $m^*(S) \neq 0$), then

$$\begin{split} \hat{S} \in H^*(1) \Leftrightarrow D^*(\hat{S} \cap I(1))/D^*(\hat{S}) &= |I| \qquad \forall I \subset I_1, \\ \Leftrightarrow m^*(S \cap I)/m^*(S) &= |I| \qquad \forall I \subset I_1, \\ \Leftrightarrow d_I(S) &= m^*(S) \text{ is independent of } I \text{ for all } I \subset I_1, \\ \Leftrightarrow S \text{ Knopp-homogeneous,} \\ \Leftrightarrow m^*(S) &= 1 \text{ and } D^*(\hat{S}) &= 1. \end{split}$$

Case (b). If $S = \{x_n \mid n \in Z^+\}$ is a set of nonnegative integers then we may choose the natural ordering on S and regard it as a strictly increasing sequence of positive integers to be denoted in what follows by $S = \langle x_n \rangle$. Following Niven [4], we let A(n; j, k) denote the number of terms x_i of the sequence S which satisfy the conditions $x_i \leq n$ and $x_i \equiv j \mod k$; and A(n) the number of elements of S which satisfy $x_i \leq n$. He defined S to be uniformly distributed modulo k ($k \in Z^+$), whenever

(8)
$$\lim_{n \to \infty} \frac{A(n; j, k)}{A(n)} = \frac{1}{k} \text{ for } j = 1, 2, \dots, k.$$

A characterization of uniform distribution modulo k in terms of homogeneity modulo k is furnished by the following proposition.

PROPOSITION 2. (i) $S^{\dagger} \in H(k) \iff S$ uniformly distributed modulo k.

(ii) $S^{\dagger} \in H(\infty) \Leftrightarrow S$ is uniformly distributed (i.e., uniformly distributed modulo k for all k).

Proof of Proposition 2 is simply a matter of examining the definitions; thus

$$S^{\dagger} \in H(k) \Leftrightarrow \lim_{n \to \infty} \frac{m(S^{\dagger} \cap I(k) \cap I_{n})}{m(S^{\dagger} \cap I_{n})} = \frac{|I|}{|I_{k}|} \text{ for all } I \subset I_{k},$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{m\left(\bigcup_{\alpha \in S} [\alpha - 1, \alpha) \cap I(k) \cap I_{n}\right)}{m\left(\bigcup_{\alpha \in S} [\alpha - 1, \alpha) \cap I_{n}\right)} = \frac{|I|}{|I_{k}|} \text{ for all } I \subset I_{k},$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{m\left(\bigcup_{\alpha \in S} [\alpha - 1, \alpha) \cap [j - 1, j] \cap I_{n}\right)}{m\left(\bigcup_{\alpha \in S} [\alpha - 1, \alpha) \cap I_{n}\right)} = \frac{1}{k} \text{ for } j = 1, 2, \dots, k,$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{A(n; j, k)}{A(n)} = \frac{1}{k} \text{ for } j = 1, 2, \dots, k,$$

as required.

64

[March

Finally, we shall relate sequences of real numbers which are uniformly distributed modulo 1 in the classical sense, to corresponding sequences of positive integers which are uniformly distributed in the sense of (ii), Proposition 2.

THEOREM 1. Let $\langle x_n \rangle$ be an infinite sequence of real numbers.

(i) If $\langle x_n | k \rangle$ is uniformly distributed modulo 1 (in the classical sense) for each $k \in \mathbb{Z}^+$ then the sequence of positive integers $\langle [x_n] \rangle$ is uniformly distributed. (Here "[x]" is defined to be the largest integer not exceeding x.)

(ii) If $\langle [kx_n] \rangle$ is uniformly distributed for each k, then $\langle x_n \rangle$ is uniformly distributed modulo 1.

Proof of Theorem 1. For "(*i*)" I follow Niven's idea [4, p. 55], noting that, if $\langle x_n/k \rangle$ is uniformly distributed modulo 1, then $\langle x_n \rangle$ is uniformly distributed throughout [0, k) when reduced modulo k. Hence

(9)
$$\lim_{n \to \infty} \frac{\sum_{m=1}^{A(n)} \chi_{J(k)}[\langle [x_m] \rangle]}{A(n)} = \frac{1}{k} \text{ for all } J = [j, j+1)$$

 $j = 0, 1, 2, \dots, k-1$

and upon applying the definition of A(n; j, k), we find that the left side of (9) reduces to the left side of (8). Hence $\langle [x_n] \rangle$ is uniformly distributed modulo k, in Niven's sense. Since $\langle x_n/k \rangle$ is uniformly distributed modulo 1 for all k, then $\langle [x_n] \rangle$ is uniformly distributed.

For (ii), we observe that if $\langle x_n \rangle$ is not uniformly distributed modulo 1 then there exists an interval $I = [lr^{-1}, (l+1)r^{-1}]$ of I_1 where $l, r \in Z^+$ such that

(10)
$$\lim_{n\to\infty}\frac{\sum_{m=1}^{n}\chi_{I(1)}[\langle x_{m}\rangle]}{n}=C|I| \text{ where } 0\leq C<1.$$

Then, on proceeding as in (i) and introducing Niven's notation, the condition (10) reduces to

$$\lim_{n\to\infty}\frac{A(n;\,l,\,r)}{A(n)}=\frac{C}{r}<\frac{1}{r},$$

where $A(n) = \operatorname{card}\{x_m \mid x_m \in \langle [rx_m] \rangle \text{ and } rx_m \leq n\}$. Hence $\langle [rx_m] \rangle$ is not uniformly distributed modulo r, contrary to hypothesis.

A consequence of Theorem 1 is an analogue of a result of H. Weyl on the uniform distribution of the fractional parts of $n^k\theta$ (and is, in fact, deduced from it); see [4, p. 55] for the case k=1.

EXAMPLE 4. For $0 < \alpha \le \theta$, where θ is a fixed irrational element of I_1 .

$$S = \bigcup_{n=1}^{\omega} [n^k \theta, n^k \theta + \alpha] \in H(\infty)$$

and $\langle [n^k \theta] \rangle$ is therefore uniformly distributed (by Proposition 2).

B. G. A. KELLY

References

- 1. R. C. Buck, The measure theoretic approach to density, Amer. J. Math., 68 (1946), 560-580.
- 2. W. Hintzman, Measure and density of sequences, Amer. Math. Monthly, Part II, (4) 73 (1966), 133-134.
- 3. K. Knopp, Mengentheoretische Behandlung einiger Probleme der diophantischen Approximationen und der transfiniten Wahrscheinlichkeiten, Math. Ann. 95 (1926), 409–426.
- 4. I. Niven, Uniform distribution of sequences of integers, Trans. Amer. Math. Soc. 98 (1961), 52-61.

UNIVERSITY OF TORONTO, TORONTO, ONTARIO