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ABSTRACT

Archaeologists tend to produce slow data that is contextually rich but often difficult to generalize. An example is the analysis of lithic
microdebitage, or knapping debris, that is smaller than 6.3 mm (0.25 in.). So far, scholars have relied on manual approaches that are prone
to intra- and interobserver errors. In the following, we present a machine learning–based alternative together with experimental archae-
ology and dynamic image analysis. We use a dynamic image particle analyzer to measure each particle in experimentally produced lithic
microdebitage (N= 5,299) as well as an archaeological soil sample (N= 73,313). We have developed four machine learning models based
on Naïve Bayes, glmnet (generalized linear regression), random forest, and XGBoost (“Extreme Gradient Boost[ing]”) algorithms. Hyperparameter
tuning optimized each model. A random forest model performed best with a sensitivity of 83.5%. It misclassified only 28 or 0.9% of lithic
microdebitage. XGBoost models reached a sensitivity of 67.3%, whereas Naïve Bayes and glmnet models stayed below 50%. Except for
glmnet models, transparency proved to be the most critical variable to distinguish microdebitage. Our approach objectifies and standar-
dizes microdebitage analysis. Machine learning allows studying much larger sample sizes. Algorithms differ, though, and a random forest
model offers the best performance so far.
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Arqueólogos tienden a producir “slow data,” quiere decir datos complejos de contextos locales pero muchas veces difícil de generalizar. Un
buen ejemplo es el análisis de microdesechos líticos o escombros de la talla lítica menor de 6.3 mm (0.25 in.). Hasta ahora, investigadores han
usado enfoques manuales que son propensos a errores intra- e ínterobservador. A continuación, presentamos una alternativa basada en
machine learning, la arqueología experimental y el análisis dinámico de imágenes. Usamos un analizador de partículas de imagen dinámica
para medir cada partícula en una muestra de microdesechos líticos producidos experimentalmente (N=5,299), así como en una muestra de
suelo arqueológico (N=73,313). Desarrollamos cuatro modelos de machine learning basados en algoritmos Naïve Bayes, glmnet (regresión
lineal generalizada), random forest y XGBoost (“Extreme Gradient Boost[ing]”). El ajuste de hiperparámetros optimizó cada modelo. Un
modelo de random forest resultó mejor. Tiene una sensibilidad del 83,5% y clasificó mal solo el 28 o el 0,9% de los microdebitos líticos. Los
modelos XGBoost alcanzan una sensibilidad del 67,3%, mientras que los modelos Naïve Bayes y glmnet se mantienen por debajo del 50%. A
excepción de los modelos glmnet, la transparencia demostró ser la variable más crítica para distinguir los microdesechos del suelo. Nuestro
enfoque objetiviza y estandariza el análisis de microdesechos. Machine learning permite estudiar tamaños de muestra mucho más grandes.
Sin embargo, algoritmos difieren y un modelo random forest ofrece el mejor rendimiento haste ahora.

Palabras clave: machine learning (aprendizaje automático), microdesechos líticos, Naïve Bayes, glmnet (regresión lineal generalizada),
random forest (bosque aleatorio), XGBoost

Microartifacts, or “invisible” human-made artifacts, promise
important insights into ancient human behaviors. Unlike their
macroscopic (> 6.3 mm, or 0.25 in.) equivalents, people have dif-
ficulties removing them from activity areas. Their presence allows
reconstructing the latter. For their analysis, archaeologists collect

soil samples, sieve them into size fractions, and study each fraction
under a microscope to count microartifacts. In the following, we
focus on lithic microdebitage because it preserves better than
other microartifacts (Sherwood 2001; Sherwood et al. 1995) and
because of extensive previous research (discussed below). In its
traditional approach, lithic microdebitage analysis exemplifies
archaeological “slow data.” According to Bickler (2021:186),
“Whereas ‘Big Data’ approaches focus on managing data flowing
in on a continuous or near-continuous basis, archaeological data
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can be very slow to create—sometimes taking years or decades—
and is delivered in large ‘lumps’ of complex contextualized
information.” In the case of microdebitage analysis, scholars have
to commit extensive time and labor. This has limited the number
of samples and increased inter- as well as intraobserver errors.
Although many archaeologists acknowledge the potential of
microdebitage, they harbor doubts about its manual analysis.
Here, we outline a new approach to microdebitage that combines
experimental archaeology, dynamic image analysis, and machine
learning. We define microdebitage as particles that result from
lithic reduction and are smaller than 6.3 mm.

Archaeologists are starting to adopt machine learning, but their
applications often suffer from small training datasets and inad-
equate statistical techniques (Bickler 2021; Yaworsky et al. 2020).
Recent studies tend to focus on large-scale phenomena such as
mounds and agricultural terraces (Orengo et al. 2020; VanValkenburgh
and Dufton 2020). The ARCADIA and ArchAIDE projects, as well as
other researchers, have used convolutional neural networks to
classify ceramic sherds (e.g., Anichini et al. 2020, 2021; Chetouani
et al. 2020; Pawlowicz and Downum 2021; Teddy et al. 2015).
To our knowledge, we are the first to apply machine learning to
microartifacts (see also Davis 2021). We address critiques of trad-
itional microdebitage analysis and make its data amendable to
big data analysis.

Here, we employ two sample datasets—experimentally produced
lithic microdebitage and archaeological soil. To obtain a pure
lithic microdebitage sample, we work with Michael McBride and
other modern stone knappers who use traditional tools and raw
materials (see below). We collect the debris and sieve out micro-
debitage. In addition to the experimental sample, we use a soil
sample from the Classic Maya village of Nacimiento. A dynamic
image particle analyzer allows us to describe each of the roughly
80,000 particles through dynamic image analysis (Figure 1; Eberl
et al. 2022; Johnson et al. 2021). We then test how well machine

learning algorithms differentiate between microdebitage and soil.
Our models are based on Naïve Bayes, glmnet (generalized linear
regression), random forest, and XGBoost (“Extreme Gradient
Boost[ing]”) algorithms (for an overview of these algorithms, see
Sammut and Webb 2017:208–209). The results suggest that ran-
dom forest models are particularly well suited to identify lithic
microdebitage.

TRADITIONAL MICRODEBITAGE
ANALYSIS
Stone knapping was essential in ancient societies before the
widespread adoption of metal tools. Yet, many aspects remain
obscure because knappers cleared products as well as debris from
their workspaces (e.g., Clark 1986a). Lithic microdebitage is too
small, though, to be easily seen and collected (Fladmark 1982). Its
presence in soil samples helps archaeologists to reconstruct
where and how knappers both produced and maintained stone
tools (reviewed in Johnson et al. 2021:111–112).

More broadly, lithic microdebitage indicates buried archaeo-
logical sites and has helped with the evaluation of site-formation
processes (Fladmark 1982:215; Gé et al. 1993:151; Nicholson 1983;
Sonnenburg et al. 2011; for a critique, see Clark 1986b:23, 28–31).
Contextual information is important. The floor composition influ-
ences the degree to which microdebitage remains. Gravel or earth
floors (as in our case study from a Classic Maya village) offer many
crevices for debris, whereas stucco floors are easy to keep clean
(Spensley 2005:436). Natural postdepositional factors affect micro-
artifacts (Hilton 2003; Mandel et al. 2017:805). Burrowing insects and
animals as well as plant roots can displace them; yet, Dempsey and
Mendel (2017:489) argue that spatial patterns remain discernible.

Scholars collect soil samples for microdebitage analysis. In the
current approach, they use soil sieves in standardized sizes to

FIGURE 1. Dynamic image particle analyzer photos of samples of chert microdebitage (top row) and soil particles (bottom row).
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separate the samples into size fractions (commonly from 0.125 mm
[125 mu] to 6.3 mm [0.25 in.]—the size of sieving screens). Then
they inspect each size fraction under a microscope and count the
microdebitage particles. This approach requires extensive time,
and it correspondingly has been applied to relatively small study
populations. Published studies include up to 156 size fractions
(discussed in Johnson et al. 2021:112). Traditional microdebitage
analysis requires scholars to spend hours sorting soil samples
under a microscope. This tedious work increases intra- and inter-
observer errors (Ullah 2012; Ullah et al. 2015).

Many archaeologists are skeptical of manual, microscope-based
microdebitage analysis. Scholars often assume that microdebitage
is macrodebitage writ small—that is, each “invisible” flake is
angular and transparent, and it shows some aspects of a conchoidal
fracture or bulb of force (see also Fladmark 1982:208–209). However,
terms such as “angular” and “transparent” have not been defined
objectively (see also Davis 2020). In addition, the sheer number and
small size of microdebitage particles has made it difficult to study
whether proposed characteristics are consistently present across all
size fractions. Scholars disagree on the threshold between macro-
and microdebitage. Whereas some argue for 1 mm to stress the
latter’s invisibility, others set a 6.3 mm limit because archaeologists
sieve out everything that falls through the common 0.25 in. screens
(compare, in particular, Dunnell and Stein 1989:34–35; Fladmark
1982:205, 207). Here, we adopt the latter threshold but recognize
the need to investigate this issue further.

A NEW APPROACH TO
MICRODEBITAGE ANALYSIS
We are developing a new approach to microdebitage analysis that
is based on experimental archaeology, dynamic image analysis,
and machine learning. To quantify lithic microdebitage, we collect
the debris of modern knappers, who employ traditional tools and
raw materials to make stone tools. We then use a dynamic image
particle analyzer to describe each microdebitage particle as well
as particles from archaeological soil samples (Eberl et al. 2022).
The output of this approach illustrates the challenge of microde-
bitage analysis. A handful of soil tends to contain hundreds of
thousands if not millions of particles. Inspecting all of them
manually is difficult in an objective and standardized way. We
introduce machine learning to cope with the particle analyzer’s
big data (see also Bickler 2021).

For the current study, we use an experimental and an archaeo-
logical sample (Supplemental Tables 1 and 2). In 2019, stone
knapper Michael McBride made a late-stage biface from a block
of Edwards chert (Georgetown variety) from central Texas. He
used deer antler and a deer antler–tipped Ishi stick for percussion
and pressure flaking. We collected all debitage on a tarp and
screened out the lithic microdebitage, or all particles smaller than
6.3 mm and larger than 125 mu. We assume that this chert sample
—consisting of 5,299 particles—is representative of microdebi-
tage. Eberl (2014) collected the archaeological soil sample during
his investigations at the Classic Maya village of Nacimiento in
modern Guatemala. The sample came from a household midden.
For this study, we took from this sample a few tablespoons of soil
with a total of 73,313 particles. A visual inspection showed that it
includes not only sand and gravel but also plant parts, ceramic

sherd fragments, and other unidentified materials. Microdebitage
studies sometimes prepare soil samples—for example, by soaking
them in vinegar to remove organic materials (Fladmark 1982:217–
218); however, this step adds additional labor and time. To
accelerate microdebitage analysis, we did not process our soil
sample. Its complex composition means that the machine learning
algorithms differentiate between lithic microdebitage and a het-
erogeneous other—an issue that we discuss further below.

We use a dynamic image particle analyzer to describe each par-
ticle (for more details, see Eberl et al. 2022). The PartAn3D mea-
sures dry particles ranging from 22 mu to 35 mm and comfortably
covers microdebitage sample particles between 125 mu and
6.3 mm (particles at the extremes of the analyzer’s range are less
reliably measured). Samples are typically processed in a few min-
utes and require no sieving. Their particles fall from a vibrating
chute and tumble by a high-speed camera. Software tracks each
particle in multiple grayscale images and, given that the particle
rotates while falling, measures it in three dimensions (Figure 1).
The 39 variables include length, width, depth, angularity, and
transparency (Eberl et al. 2022:318, Table 311). They are objectively
defined (see below for angularity and transparency) and are given
to three decimal places. For the roughly 80,000 particles of our
two samples, Dynamic Image Analysis (DIA) takes or calculates
approximately three million measurements. After tagging each
particle of the two datasets as “site” or “exp(erimental),” we
combined their measurements into one spreadsheet and applied
machine learning algorithms to them.

MACHINE LEARNING
METHODOLOGIES
Machine learning makes it easy to apply different algorithms to
the same dataset (Bickler 2021:187). The resulting classifications
can then be compared to select the best approach. For our study,
we have applied four machine learning algorithms. In the
following, we discuss Naïve Bayes, glmnet, random forest, and
XGBoost.

Naïve Bayes algorithms assume that prior experience often serves
best for selecting responses to unknown data. Bayes’s theorem—

expressed by the formula P(A|B) = P(A) × P(B|A) / P(B)—allows
calculating the conditional probability of A (in our case, the clas-
sification of a particle into one of two classes) given true prior data
B. The algorithm is called “naïve” because it assumes that all
variables are independent—a rarely valid condition in real-world
applications (Hastie et al. 2009:210–211).

Glmnet algorithms use generalized linear regression with elastic
net, a regularized penalty. Similar to standard linear regression,
these models use one or more predictor variables to explain a
dependent variable (in our case, the particle class). It is “gener-
alized” because it allows modeling of outcomes from a set of
exponential distributions (e.g., binomial, Poisson, etc.) rather than
being restricted to Gaussian distributions (i.e., standard linear
regression; H2O.ai 2021). Regular linear regression tends to per-
form more poorly for datasets with more variables than samples or
highly correlated variables. The “net” part in the glmnet algorithm
adds regularization penalties to address this issue (Zou and Hastie
2005). During training, glmnet models penalize variables that
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contribute little and regularize them while also retaining groups of
related variables.

The random forest algorithm creates multiple decision trees and, in
the case of classification problems, selects the most common class
as output (Breiman 2001). To improve on individual decision trees,
this ensemble learner minimizes the correlation among the decision
trees. It bootstraps aggregates or bags the training data by selecting
random samples with replacements. Each tree also learns on a
random subset of features. These measures result in unique training
sets for each decision tree. They decrease the model’s variance (and
the likelihood of overfitting) while balancing its bias. Random forest
models are generally more accurate than single learners, but their
output tends to be less intuitive (“black box problem”).

XGBoost, or “Extreme Gradient Boosting,” is an advanced
ensemble learner (Chen and Guestrin 2016). It improves on the
random forest approach by creating decision trees sequentially.
Each step minimizes errors through gradient descent, and it boosts
the influence of high-performing models. The “Extreme” moniker
refers to parallelized processing, tree pruning, and LASSO as well as
Ridge regularization (for the latter, see the glmnet model).

Machine learning often appears threatening because its results—
in particular, many correlated variables—are difficult to under-
stand for humans (Kissinger 2018). Data scientists address some of
these concerns through confusion matrices (Figure 4). For a binary
problem such as ours, confusion matrices differentiate between
two categories—microdebitage and other soil particles—and
identify the number of correctly identified (true positives and
negatives) as well as misclassified particles (false positives and
negatives). Several performance metrics derive from the confusion
matrix. The probability of detection (i.e., sensitivity/recall) mea-
sures the proportion of predicted true positives among all true
positive particles. Specificity is the corresponding measure for
negatives (it is of less importance here because our negative
particles—archaeological soils—may, in fact, contain positives in
the form of lithic microdebitage). The positive predictive value
(PPV), or precision, expresses how many true positive particles
were identified out of all particles predicted positive; the negative
predictive value (NPV) is the corresponding measure for negatives.
The F-score (more precisely, the F1-score) is the harmonic mean of
precision and recall.1 Accuracy measures how many particles were

correctly identified. A ROC curve plots the probability of detection
(sensitivity) against the probability of false alarm (or false positive
rate) for every threshold (during World War II, radar analysts
developed the ROC, or “receiver operating characteristic,” curve to
describe the trade-off between better detecting enemy aircraft
and generating more false alarms due to flocks of geese and other
signal noise; Peterson et al. 1954). Machine learning algorithms
maximize the area under the ROC curve (ROC AUC). At last, precision
and recall are plotted for every threshold; PR AUC measures the area
under the pr-curve. These metrics, or hyperparameters, can be
used to provide insight into the performance of the model, and
the ones most important to the application are used for model
selection.

PROGRAMMING AND EVALUATING
MACHINE LEARNING MODELS
We programmed the four machine learning algorithms following
standard data science procedures (Figure 2; Kuhn and Johnson
2019). The tuning of hyperparameters set them apart from com-
mon statistical techniques. For example, the glmnet algorithm is
based on linear regression, but it introduces additional para-
meters that allow weighing the performance. The raw data were
split into training (75%) and test data (25%). The latter are also
known as a holdout set because they are kept apart until the end
to judge model performance. After splitting, data were prepro-
cessed to avoid data leakage. The visual inspection of variable
distributions—for example with violin plots (Figure 3)—and sta-
tistical measures such as skewness help to identify potentially
unusual values and relationships among variables. If necessary,
missing values are imputed and data are log transformed or
normalized.

The training data was further divided into five random but
equal-sized subsets or folds for k-fold cross-validation (Kuhn and
Johnson 2019:47–55). Models were trained and validated multiple
times and on different subsets of the data. In this way, the per-
formance metrics of models become not too reliant on one spe-
cific dataset, and models should be able to perform better with
new data. To optimize models, their hyperparameters were then
tuned. The latter refer to parameters that users can vary. For

FIGURE 2. Flow chart showing data split, pre-processing, and cross-validation.
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example, in random forest models, hyperparameters include the
number of decision trees and the maximum depth of the tree.
Each machine learning problem is unique and correspondingly
requires finding the optimal hyperparameters. Twenty model
candidates cover a combination of different hyperparameters for

each machine learning algorithm. The folds are used to determine
the best performer by comparing hyperparameters. In addition,
they allow us to evaluate whether splitting the data results in
highly variable performance. High variance suggests that there is
no overall trend in the data and that more data should be

FIGURE 3. Violin plots for 39 variables.
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collected before generating a model. After training the four
models, we identified the best-performing fold based on its
metrics (Table 1). The hyperparameters were then used to fit the
model on the training data (data scientists discourage selecting
models based on their performance on the hold-out dataset

because this would entangle the holdout with the training and
selection process).

Hyperparameters influence the behavior of models without being
directly calculable; heuristics, sampling, and traversal of

FIGURE 4. Confusion matrix for the best-performing models of four machine learning approaches (“exp” refers to experimentally
produced microdebitage, and “site” refers to the archaeological soil sample): (a) Naïve Bayes, (b) Glmnet, (c) Random Forest, (d)
XGBoost.
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hyperparameter search spaces are often used to identify the
values of hyperparameters suitable for a model. For glmnet, we
explored the mixture (the relative weighting of l1 vs l2 regulariza-
tion) and penalty (strength of regularization) hyperparameters. For
XGBoost and random forest classifiers, we explored mtry (a pa-
rameter reflecting the number of predictors sampled at each split
for creating the model) and min_n (a hyperparameter with a
regularization effect that restricts nodes below a certain number of
data points from being split further). We populate the hyper-
parameter combinations (grid) using a max entropy sampling, a
space-filling design to enable adequate coverage of the total
hyperparameter space given the constraints.

The metrics shown in Table 1 allow comparing the performance of
any of these k-fold models for each algorithm. After picking one
or two metrics that are relevant for our application, we select the
hyperparameters that maximize that metric. The metric chosen to
define the best model was the area under the precision-recall
curve (PR AUC). This is because the dataset is highly imbalanced.
Usage of traditional area under the receiver operator curve (ROC

AUC) reflects a relationship between the true positive and false
positive rates, where the false positive rate is computed based on
the total number of negative examples, which dominates the
dataset. Consequently, PR AUC provides a more sensitive metric for
this application, particularly given our priorities of ensuring the
identification of lithic microdebitage (sensitivity) and ensuring that
predictions of the positive class are indeed correct (PPV). We then
rebuild the model on the full training set (any model built during
k-fold cross-validation is only built on a subset—n/k—of the
training data). This forms the final model for a specific algorithm.
We then compare these final models and select the best one
based on our metric of interest.

RESULTS
Data exploration allowed us to visualize the differences between
experimental microdebitage and archaeological soil particles
(Figure 3). Violin plots for almost all variables have extremely long
tails. Upon inspecting the raw data, we discovered repeated rows
with nearly identical measurements that we excluded from further
consideration.2 In addition, the very thin and long tails of several
violin plots suggest the presence of a few outliers. We left them in
our data, but we discuss below whether they should be excluded.

The two datasets—experimental microdebitage and archaeo-
logical soil particles—differ in several variables, most notably
transparency and, to a lesser degree, circularity, sphericity, com-
pactness, and others. These differences follow our expectations—
namely, that lithic microdebitage is comparatively thin and less
rounded than regular soil. They also suggest that the dynamic
image particle analyzer data is suitable for differentiating between
these two categories.

By comparing hyperparameters, we evaluated the performance of
the four machine learning algorithms (Table 1). Random forest and
XGBoost models performed best, followed by glmnet models and
then Naïve Bayes models. We discuss individual performances
and then evaluate their suitability for distinguishing lithic
microdebitage.

The 20 Naïve Bayes model candidates varied widely in their per-
formance (Figure 5a). The best performer—model candidate 14—
reaches an accuracy of 83.7% and a precision of 20.5% (Table 1).3

The relatively high accuracy of Naïve Bayes models is misleading
because most of the data are soil particles, and a default classifi-
cation as “soil” would be correct for most particles. The model
identified only one out of five microdebitage particles correctly
(Figure 4a). Among the variables, transparency, followed by com-
pactness and roundness, and then the length–thickness ratio
contributed most to the classification. The calibration curve indi-
cates that this Naïve Bayes model is not well calibrated—that is,
the scores generated by this model cannot be expected to cor-
respond to true probabilities.

Unlike Naïve Bayes models, glmnet model candidates vary less in
their performance (Figure 5b). ROC AUC values between 0.87 and
0.91 indicate that the modeling performs well and is stable for all
hyperparameters across the five folds. Very high specificity (∼99%)
indicates that the models almost always identify soil particles; on
the other hand, sensitivity values around 40% reveal difficulties in
identifying microdebitage (note that these observations are based
on an untuned 0.5 threshold). Model candidate 17 turned out to
be the best-performing glmnet model. Its sensitivity of 44.0% and
a precision of 77.7% indicate that it identifies many microdebitage
particles (Table 1). The confusion matrix shows that it classifies
1,760 microdebitage particles correctly and 504 incorrectly
(Figure 4b). The variables that contributed most to the classifica-
tion are length, convex hull perimeter, and the area equivalent
diameter. Transparency is notably—and in contrast to the three
other models—not very important.

Random forest model candidates perform generally well, with tight
areas under the precision-recall (median of about 0.77) as well as
the ROC curve (median of 0.95; Figure 5c). Their sensitivity of 63%
and precision of circa 83% means that random forest models
classify approximately two out of three microdebitage particles
correctly, and that the ones they classify as microdebitage are in
most cases correctly identified. Given the high area-under-the-
curve scores, these values will likely improve with an optimized
threshold. Model candidate 20, the best performer, differentiates
cleanly between the microdebitage and soil. It misclassifies only 28
out of 3,296 microdebitage particles (Figure 4c). The 648 misclas-
sified soil particles are probably microdebitage. Model candidate
20’s sensitivity is 83.4%, and its precision 99.2% (Table 1).
Transparency and (in a distinct second place) length are the vari-
ables that contribute most to the classification.

TABLE 1. Selected Performance Metrics of the Best Naïve
Bayes, glmnet, Random Forest, and XGBoost Model.

Naïve
Bayes Glmnet

Random
Forest XGBoost

Accuracy 0.8374 0.9534 0.9885 0.9706

F-score (“f_meas”) 0.2877 0.5619 0.9063 0.7568

Negative predictive
value (NPV)

0.9583 0.9605 0.9883 0.9766

Positive predictive
value (PPV)

0.2047 0.7774 0.9915 0.8640

Sensitivity (“sens”) 0.4840 0.4400 0.8345 0.6733

Specificity (“spec”) 0.8631 0.9908 0.9995 0.9922

Note: See Figure 5 for all model candidates.
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FIGURE 5. Distribution of mean cross-validation performance by 20 model candidates for each of the four machine learning
algorithms (metrics are explained in Table 1; pr_auc refers to the area under the precision and recall curve, roc_auc to the area
under the ROC curve): (a) Naïve Bayes, (b) Glmnet, (c) Random forest, (d) XGBoost.
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The XGBoost model candidates perform generally very well
(Figure 5d). The area under the precision-recall curve is in the 70s,
and the ROC AUC in the lower 90s. Model candidate 20 turned out to
be the best performer. Its sensitivity (that is, the ability to identify
microdebitage) is 67.3%, and its precision 86.4% (Table 1; these
values are based on a not-yet-optimized threshold of 0.5). It mis-
classified 424 microdebitage and 1,307 soil particles. The latter
are, as we note above for random forest models, less of a concern
here because they likely reflect microdebitage in the archaeo-
logical soil sample. Transparency contributed by far the most to
the model’s performance, distinctly followed by solidity and Feret
length.

DISCUSSION
Machine learning algorithms, experimental archaeology, and
dynamic image analysis allow us to address issues with lithic
microdebitage that have so far been unresolved. We discuss how to
characterize microdebitage in standardized ways and how to deal
with its variability. In addition, we debate our sampling strategy.

The lack of clearly defined characteristics hampers lithic micro-
debitage studies. Terms such as “angular” or “thin” are open to
subjective interpretation. Dynamic Image Analysis (DIA) allows us
to quantify the appearance of microdebitage by providing
approximately 40 measurements for each particle. Fladmark
(1982:208) characterizes microdebitage as highly angular but
leaves what this means open. DIA defines angularity as the aver-
age angle change at each point of a particle’s simplified outline
(based on Wang et al. 2013). The resulting angularity index ranges
from 0 (a perfect circle) to 180 (a particle with many sharp edges).
Contrary to expectations, angularity does not contribute signifi-
cantly to our machine learning models. The violin plot shows an
overlapping distribution for the experimental and the

archaeological sample. Angularity peaks four times, most pro-
nouncedly at approximately 70 and 85. In the case of experimental
microdebitage, smaller-size fractions lose the distinctive angular
edges of larger flakes and appear round (for further discussion,
see Eberl et al. 2022).

Objective definitions such as the one for angularity enable a
quantitative characterization of particles. The large number of
variables should not obscure, however, the fact that they do not
measure the bulb of force. We argue that this is not a drawback. We
have visually inspected our experimental microdebitage and
observed comparatively few flakes—especially in smaller-size frac-
tions—with a clear bulb of force. The current study indicates that
various correlated and ranked variables can be used to characterize
microdebitage. The differences among the four machine learning
algorithms provide a basis to discuss relevant variable sets.

Transparency is critical for Naïve Bayes, random forest, and
XGBoost models. This makes heuristic sense in view of the com-
paratively thin microdebitage particles (Fladmark [1982:208] lists
transparency as a key characteristic of microdebitage). Dynamic
image analysis allows us to quantify transparency. The particle
analyzer takes multiple photos of each particle as it falls in front of a
lighted back screen. The mean light intensity along the longest
vertical line is recorded and averaged for all photos of the same
particle. The value is then normalized to a 0–1 range, with 0 being
least transparent and 1 being most transparent. The transparency of
all particles in our archaeological soil sample averages 0.258 ±
0.172. This reflects the opaque sand kernels that make up most of it
(see Figure 1). On the other hand, our experimental microdebitage
sample is more transparent, with an average of 0.456 (± 0.163).

In addition to the question of which characteristics set micro-
debitage apart, it has remained unclear whether all microdebitage
flakes share these characteristics. The violin plots that we have

FIGURE 6. Comparing the performance of the four machine learning approaches. Red dots mark outliers (metrics are explained in
Table 1; pr_auc refers to the area under the precision and recall curve, and roc_auc refers to the area under the ROC curve).
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generated during data exploration (Figure 3) demonstrate the
variability of lithic microdebitage. Above, we note their often very
thin and long tails (Figure 3). These likely reflect a small number of
outliers. Given that DIA tags and photographs each particle, we
plan to filter them out and, if possible, identify them based on
their appearance. It is possible that outliers reflect different types
of particles.

This study focuses on the viability of different machine learning
approaches. We used an archaeological soil sample to simulate a
real-world application. This meant that we did not prepare the soil
sample for this study to speed up its processing. We did not sort
out ceramic sherd fragments, shells, roots, or any other artifact; we
also did not remove smaller organic matter, for example, by soak-
ing the soil sample in vinegar. The complex mix of particles
impedes quantifying how lithic microdebitage differs from specific
particles. For future studies, we propose four approaches. First, we
will reanalyze archaeological soil samples under a microscope to
identify microdebitage manually. This will allow us to evaluate the
validity of the machine learning–derived results. Second, we plan to
investigate the effect of different sample preparations on the per-
formance of the machine learning models. Third, we will prepare
experimental samples of known soil ingredients (e.g., sand and
gravel) and compare them with the experimental lithic microdebi-
tage. Fourth, we will study whether separating data into the tra-
ditional size fractions affects machine learning outcomes. The
underlying issue is the need to understand whether microdebitage
differs not only from regular debitage but also within size fractions.

CONCLUSION
Archaeologists recognize the potential of microdebitage analysis
but remain skeptical about doing it manually. The traditional
approach of sorting soil samples under a microscope not only
requires time and effort but also introduces intra- and interob-
server errors. Our approach to microdebitage analysis employs
experimentally derived microdebitage, dynamic image analysis,
and machine learning. The latter complements the first two com-
ponents that we have discussed in other publications (Eberl et al.
2022; Johnson et al. 2021). These studies use multivariate statistics
to differentiate microdebitage from other particles. The current
study indicates that machine learning algorithms are similarly
successful. Dynamic Image Analysis provides data on each particle
in samples. By showing that even a small handful of soil tends to
contain hundreds of thousands of particles, DIA demonstrates the
challenge of microdebitage analysis. A human observer must look
at all these particles under a microscope and sort out the knap-
ping debitage. We argue that machine learning makes it possible
to do this in an objective and standardized way.

Above, we compare four machine learning algorithms—namely,
Naïve Bayes, glmnet, random forest, and XGBoost (Figure 6). We
conclude that the best random forest model offers the best per-
formance, with a sensitivity of 83.5% and a 99.9% precision.
It misclassified only 28 or 0.9% of lithic microdebitage. XGBoost
models reach sensitivities in the upper 60s and precisions in the
upper 80s. In other words, they identify two out of three micro-
debitage particles correctly, and the ones they identify are lithic
microdebitage. On the other hand, the sensitivity of Naïve Bayes
and glmnet models is below 50%—that is, less than half of the
microdebitage is identified correctly. Naïve Bayes models also

vary widely in performance, unlike models using the other algo-
rithms. Our best XGBoost model underperforms our best random
forest model. This is noteworthy because the XGBoost approach is
often seen as superior to the random forest approach (Chen and
Guestrin 2016). Accuracy is often impressive (random forest mod-
els reach more than 99%), but it should be disregarded as a
measure of performance for this study because the test data (N =
73,313) are more than a magnitude larger than the training data
(N = 5,299), and identifying a particle by default as “soil” would be
correct in most cases. Above, we also discuss ways in which we
hope to improve the random forest and XGBoost models. In
combination with dynamic image analysis, either model enables
the objective study of lithic microdebitage and the processing of
hundreds if not thousands of samples.

Our study shows how machine learning can be applied success-
fully to an archaeological problem. Its data are comparatively
small, and adding more is crucial to improve our models.
Obtaining thousands or millions of data points is often chal-
lenging for archaeologists; we addressed this concern by switch-
ing to a dynamic image particle analyzer. The latter will allow us to
add more reliable data quickly. Machine learning is not inherently
superior; our four approaches differ starkly in their performance.
Far from inscrutable black boxes, these approaches rely on well-
known statistical techniques and their results—for example, the
identification of transparency as key variable—are open to human
inspection and reflection.
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NOTES
1. The F score is calculated as Fβ = (1+β2) × ((precision × recall) / ((β2 × preci-

sion) + recall))), with β as a positive real factor. To calculate the harmonic
mean of precision and recall or the F1 score, β is set to 1. Specific applica-
tions emphasize recall over precision or vice versa. This can be achieved by
setting β to 0.5 or 2 and calculating the F0.5 and F2 scores, respectively.

2. The way the particle analyzer captures data is responsible for nearly identical
measurements across multiple variables. The company that produces the
PartAn3D has not yet offered an explanation, and we have not observed
similar repetitions in other samples.

3. The current study selected the best model for each machine learning algo-
rithm based on k-fold cross-validation scores. The model number refers to
the specific model candidate (e.g., the fourteenth among the Naïve Bayes 20
model candidates). This is not the final model but the one with the best
performing metrics.

REFERENCES CITED
Anichini, Francesca, Francesco Banterle, Jaume Buxeda i Garrigós, Marco

Callieri, Nachum Dershowitz, Nevio Dubbini, Diego Lucendo Diaz, et al.
2020. Developing the ArchAIDE Application: A Digital Workflow for
Identifying, Organizing and Sharing Archaeological Pottery Using
Automated Image Recognition. Internet Archaeology 52. https://doi.org/
10.11141/ia.11152.11147.

Anichini, Francesca, Nachum Dershowitz, Nevio Dubbini, Gabriele Gattiglia,
Barak Itkin, and Lion Wolf. 2021. The Automatic Recognition of Ceramics
from Only One Photo: The ArchAIDE App. Journal of Archaeological
Science: Reports 36:102788. https://doi.org/10.1016/j.jasrep.2020.102788.

Bickler, Simon H. 2021. Machine Learning Arrives in Archaeology. Advances in
Archaeological Practice 9:186–191.

Breiman, Leo. 2001. Random Forests. Machine Learning 45:5–32.
Chen, Tianqi, and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In KDD ’16: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, edited by
Balaji Krishnapuram and Mohak Shah, pp. 785–794. Association for
Computing Machinery, New York.

Chetouani, Aladine, Sylvie Treuillet, Matthieu Exbrayat, and Sébastien Jesset.
2020. Classification of Engraved Pottery Sherds Mixing Deep-Learning
Features by Compact Bilinear Pooling. Pattern Recognition Letters 131:1–7.

Clark, John E. 1986a. Another Look at Small Debitage and Microdebitage. Lithic
Technology 15:21–33.

Clark, John E. 1986b. From Mountains to Molehills: A Critical Review of
Teotihuacan’s Obsidian Industry. In Economic Aspects of Prehispanic
Highland Mexico, Research in Economic Anthropology Supplement 2,
edited by Barry L. Isaac, pp. 23–74. JAI Press, Greenwich, Connecticut.

Davis, Dylan S. 2020. Defining What We Study: The Contribution of Machine
Automation in Archaeological Research. Digital Applications in
Archaeology and Cultural Heritage 18:e00152. https://doi.org/10.1016/j.
daach.2020.e00152.

Davis, Dylan S. 2021. Theoretical Repositioning of Automated Remote Sensing
Archaeology: Shifting from Features to Ephemeral Landscapes. Journal of
Computer Applications in Archaeology 4:94–109.

Dempsey, Erin C., and Rolfe D. Mandel. 2017. Living Surfaces. In Encyclopedia of
Geoarchaeology, edited by Allan S. Gilbert, pp. 486–492. Encyclopedia of
Earth Sciences. Springer, Dordrecht, Netherlands.

Dunnell, Robert C., and Julie K. Stein 1989. Theoretical Issues in the
Interpretation of Microartifacts. Geoarchaeology 4:31–42.

Eberl, Markus. 2014. Community and Difference. Change in Late Classic Maya
Villages of the Petexbatun Region. Vanderbilt Institute of Mesoamerican
Archaeology Studies Series 8. Vanderbilt University Press, Nashville.

Eberl, Markus, Phyllis S. Johnson, and Rebecca Estrada Aguila. 2022. Studying
Lithic Microdebitage with a Dynamic Image Particle Analyzer. North
American Archaeologist 43:312–327.

Fladmark, Knut R. 1982. Microdebitage Analysis: Initial Considerations. Journal
of Archaeological Science 9:205–220.

Gé, Thierry, Marie-Agnès Courty, Wendy Matthews, and Julia Wattez. 1993.
Sedimentary Formation Processes of Occupation Surfaces. In Formation
Processes in Archaeological Context, edited by Paul Goldberg, David
T. Nash, and Michael D. Petraglia, pp. 149–163. Monographs in World
Archaeology 17. Prehistory Press, Madison, Wisconsin.

H2O.ai. 2021. Generalized Linear Model (GLM). https://docs.h2o.ai/h2o/latest-
stable/h2o-docs/data-science/glm.html, accessed November 17, 2021.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed.
Springer, New York.

Hilton, Michael R. 2003. Quantifying Postdepositional Redistribution of the
Archaeological Record Produced by Freeze–Thaw and Other Mechanisms:
An Experimental Approach. Journal of Archaeological Method and Theory
10:165–202.

Johnson, Phyllis S., Markus Eberl, Michael McBride, and Rebecca Estrada Aguila.
2021. Using Dynamic Image Analysis as a Method for Discerning
Microdebitage from Natural Soils in Archaeological Soil Samples. Lithic
Technology 46:111–118.

Kissinger, Henry A. 2018. How the Enlightenment Ends. Atlantic, June. https://
www.theatlantic.com/magazine/archive/2018/06/henry-kissinger-ai-could-
mean-the-end-of-human-history/559124/, accessed January 11, 2022.

Kuhn, Max, and Kjell Johnson 2019. Feature Engineering and Selection: A
Practical Approach for Predictive Models. CRC Press, Boca Raton, Florida.

Mandel, Rolfe D., Paul Goldberg, and Vance T. Holliday. 2017. Site Formation
Processes. In Encyclopedia of Geoarchaeology, edited by Allan S. Gilbert, pp.
797–817. Encyclopedia of Earth Sciences. Springer, Dordrecht, Netherlands.

Nicholson, Beverly A. 1983. Comparative Evaluation of Four Sampling
Techniques and of the Reliability of Microdebitage as a Cultural Indicator in
Regional Surveys. Plains Anthropologist 28:273–281.

Orengo, Hector A., Francesc C. Conesa, Arnau Garcia-Molsosa, Agustín Lobo,
Adam S. Green, Marco Madella, and Cameron A. Petrie. 2020. Automated
Detection of Archaeological Mounds Using Machine-Learning Classification
of Multisensor and Multitemporal Satellite Data. PNAS 117:18240–18250.

Pawlowicz, Leszek M., and Christian E. Downum. 2021. Applications of Deep
Learning to Decorated Ceramic Typology and Classification: A Case Study
Using Tusayan White Ware from Northeast Arizona. Journal of
Archaeological Science 130:105375. https://doi.org/10.1016/j.jas.2021.105375.

Peterson, William W., Theodore G. Birdsall, and William C. Fox. 1954. The
Theory of Signal Detectability. Transactions of the IRE Professional Group
on Information Theory 4(4):171–212.

Sammut, Claude, and Geoffrey I. Webb (editors). 2017. Encyclopedia of Machine
Learning and Data Mining. Springer, Boston.

Sherwood, Sarah C. 2001. Microartifacts. In Earth Sciences and Archaeology,
edited by Paul Goldberg, Vance T. Holliday, and C. Reid Ferring, pp. 327–
352. Kluwer Academic/Plenum Publishers, New York.

Sherwood, Sarah C., Jan F. Simek, and Richard H. Polhemus. 1995. Artifact Size
and Spatial Process: Macro- and Microartifacts in a Mississippian House.
Geoarchaeology 10:429–455.

Sonnenburg, Elizabeth P., Joseph I. Boyce, and Eduard G. Reinhardt. 2011. Quartz
Flakes in Lakes: Microdebitage Evidence for Submerged Great Lakes Prehistoric
(Late Paleoindian–Early Archaic) Tool-Making Sites. Geology 39:631–634.

Spensley, Ellen. 2005. Resultados de estudios micro-morfológicos en sedimen-
tos, estucos y suelos en La Trinidad, Petén. In XVIII Simposio de
Investigaciones Arqueológicas en Guatemala, 2004, edited by Juan Pedro
Laporte, Bárbara Arroyo, and Héctor E. Mejía, pp. 431–439. Museo
Nacional de Arquología y Etnología, Guatemala City.

Teddy, Debroutelle, Janvier Romain, Chetouani Aladine, Treuillet Sylvie,
Exbrayat Matthieu, Martin Lionel, and Jesset Sebastien. 2015. Automatic
Pattern Recognition on Archaeological Ceramic by 2D and 3D Image
Analysis: A Feasibility Study. In 2015 International Conference on Image
Processing Theory, Tools and Applications (IPTA), 2015, edited by
Rachid Jennane, pp. 224–228. IEEE Xplore, Orleans, France.

Ullah, Isaac I. 2012. Particles from the Past: Microarchaeologial Spatial Analysis of
Ancient House Floors. In New Perspectives in Household Archaeology,
edited by Bradley J. Parker and Catherine P. Foster, pp. 123–138.
Eisenbrauns, Winona Lake, Indiana.

Ullah, Isaac I., Paul R. Duffy, and E. B. Banning. 2015. Modernizing Spatial
Micro-Refuse Analysis: New Methods for Collecting, Analyzing, and

Markus Eberl et al.

162 Advances in Archaeological Practice | A Journal of the Society for American Archaeology | May 2023

https://doi.org/10.1017/aap.2022.35 Published online by Cambridge University Press

https://doi.org/10.11141/ia.11152.11147
https://doi.org/10.11141/ia.11152.11147
https://doi.org/10.1016/j.jasrep.2020.102788
https://doi.org/10.1016/j.daach.2020.e00152
https://doi.org/10.1016/j.daach.2020.e00152
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html
https://www.theatlantic.com/magazine/archive/2018/06/henry-kissinger-ai-could-mean-the-end-of-human-history/559124/
https://www.theatlantic.com/magazine/archive/2018/06/henry-kissinger-ai-could-mean-the-end-of-human-history/559124/
https://www.theatlantic.com/magazine/archive/2018/06/henry-kissinger-ai-could-mean-the-end-of-human-history/559124/
https://www.theatlantic.com/magazine/archive/2018/06/henry-kissinger-ai-could-mean-the-end-of-human-history/559124/
https://doi.org/10.1016/j.jas.2021.105375
https://doi.org/10.1016/j.jas.2021.105375
https://doi.org/10.1017/aap.2022.35


Interpreting the Spatial Patterning of Micro-Refuse from House-Floor
Contexts. Journal of Archaeological Method and Theory 22:1238–1262.

VanValkenburgh, Parker, and J. Andrew Dufton. 2020. Big Archaeology:
Horizons and Blindspots. Journal of Field Archaeology 45:S1–S7.

Wang, Linbing, Wenjuan Sun, Erol Tutumluer, and Cristian Druta. 2013. Evaluation
of Aggregate Imaging Techniques for Quantification of Morphological
Characteristics. Transportation Research Record 2335(1):39–49.

Yaworsky, Peter M., Kenneth B. Vernon, Jerry D. Spangler, Simon C. Brewer, and
Brian F. Codding. 2020. Advancing Predictive Modeling in Archaeology: An
Evaluation of Regression and Machine Learning Methods on the Grand
Staircase–Escalante National Monument. PLoS ONE 15(10):e0239424.
https://doi:10.1371/journal.pone.0239424.

Zou, Hui, and Trevor Hastie. 2005. Regularization and Variable Selection via the
Elastic Net. Journal of the Royal Statistical Society: Series B 67:301–320.

AUTHOR INFORMATION
Markus Eberl, Amy E. Rieth, and Rebecca Estrada Aguila ▪ Department of
Anthropology, Vanderbilt University, Nashville, TN, USA (markus.eberl@van-
derbilt.edu, corresponding author)

Charreau S. Bell, Jesse Spencer-Smith, Mark Raj, Amanda Sarubbi, and
Umang Chaudhry ▪ Data Science Institute, Vanderbilt University, Nashville, TN,
USA

Phyllis S. Johnson ▪ Department of Anthropology, University of Kentucky,
Lexington, KY, USA

Michael McBride ▪ Independent Scholar, Plano, TX, USA

Machine Learning–Based Identification of Lithic Microdebitage

May 2023 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 163

https://doi.org/10.1017/aap.2022.35 Published online by Cambridge University Press

https://doi:10.1371/journal.pone.0239424
https://doi:10.1371/journal.pone.0239424
mailto:markus.eberl@vanderbilt.edu
mailto:markus.eberl@vanderbilt.edu
https://doi.org/10.1017/aap.2022.35

	Machine Learning--Based Identification of Lithic Microdebitage
	TRADITIONAL MICRODEBITAGE ANALYSIS
	A NEW APPROACH TO MICRODEBITAGE ANALYSIS
	MACHINE LEARNING METHODOLOGIES
	PROGRAMMING AND EVALUATING MACHINE LEARNING MODELS
	RESULTS
	DISCUSSION
	CONCLUSION
	Acknowledgments
	NOTES
	REFERENCES CITED


