ON LOWER BOUNDS FOR THE RADICAL OF A BLOCK IDEAL IN A FINITE *p*-SOLVABLE GROUP

by SHIGEO KOSHITANI

(Received 28th April 1983)

Dedicated to Professor Hirosi Nagao on his 60th birthday

Let F be any field of characteristic p > 0, G a finite p-solvable group, p^a the order of Sylow p-subgroups of G, FG the group algebra of G over F, and J(FG) the Jacobson radical of FG. Following Wallace [11] we write t(G) for the least integer $t \ge 1$ such that $J(FG)^t = 0$.

D. A. R. Wallace [11] proved that

$$t(G) \ge a(p-1)+1.$$

The purpose of the present paper is to generalize the above result as follows: Let B be a block ideal of FG with defect d, and let t(B) be the least integer $t \ge 1$ such that $J(B)^t = 0$ where J(B) is the Jacobson radical of B. Then

$$t(B) \ge d(p-1) + 1.$$

Since the defect groups of the principal block ideal of FG are Sylow p-subgroups of G, our result is a generalization of that of Wallace.

We use the following notation and terminology. Throughout this paper we fix a field F of characteristic p > 0 and a finite group G, all modules are finitely generated right modules, and all groups are finite. For an Artinian ring R and an integer $n \ge 1$ let us denote by Mat(n, R) the full matrix ring of degree n over R, by Z(R) the centre of R, by J(R) the Jacobson radical of R, and by t(R) the least integer $t \ge 1$ such that $J(R)^t = 0$. In particular, we write t(G) for t(FG). Following [8, §2] we call $B \leftrightarrow e$ a block of FG if e is a centrally primitive idempotent of FG such that B = FGe, and in this case we call B a block ideal of FG. When B is a block ideal of FG, we write $\delta(B)$ for a defect group of B and d(B) for the defect of B, i.e. $|\delta(B)| = p^{d(B)}$ (cf. [9, p. 211] and [8, Definition 3.9]), and we say that B has full defect if $\delta(B)$ is a Sylow p-subgroup of G. When $H \triangleleft G$ and $b \leftrightarrow f$ is a block of FH, we write $T_G(b)$ or $T_G(f)$ for the inertia group of $b \leftrightarrow f$ in G, that is to say, $T_G(b) = T_G(f) = \{x \in G | x^{-1}fx = f\}$. If $H \lhd G$ and if B and b are block ideals of FG and FH, respectively, then we say that B covers b in the sense of [8, §6] (cf. [2, p. 196]). When M_R is an R-module, we write End (M_R) for the ring of all R-moduleendomorphisms of M_R . We write Z(G) for the centre of G. We use the notation $O_{p'}(G)$, $O_p(G)$ and $O_{p',p}(G)$ as in [1, p. 397]. Further notation and terminology follow the books of Dornhoff [1] and Gorenstein [5].

SHIGEO KOSHITANI

First of all, we state Fong's results ([3], [4]) which are useful in the proof of our main result.

Lemma 1 (Fong). Assume that F is an algebraically closed field of characteristic p>0. Let $H \triangleleft G$, let $b \leftrightarrow f$ be a block of FH, and let $T = T_G(f)$. Let $G = \bigcup_{i=1}^{t} Tg_i$ be a coset decomposition of T in G, let $f_i = g_i^{-1} f g_i$ for each i, and let $e = \sum_{i=1}^{t} f_i$. Then we have the following:

- (1) f is a central idempotent of FT.
- (2) f_1, \ldots, f_t are pairwise orthogonal centrally primitive idempotents of FH.
- (3) e is a central idempotent of FG and ef = fe = f.
- (4) FGf is a free right FTf-module of rank t.
- (5) End $(FGf_{FTf}) \cong Mat(t, FTf)$ as F-algebras.

(6) For each $x \in FGe$ and $y \in FGf$, define $\varphi(x) \in End(FGf_{FTf})$ by $[\varphi(x)](y) = xy$. Then $\varphi: FGe \rightarrow \text{End}(FGf_{FTf})$ is an F-algebra-isomorphism.

(7) Let $\tilde{B}_1 \leftrightarrow \tilde{e}_1, \ldots, \tilde{B}_m \leftrightarrow \tilde{e}_m$ be blocks of FT such that $f = \sum_{j=1}^m \tilde{e}_j$, and let $B_1 \leftrightarrow e_1, \ldots, B_n \leftrightarrow e_n$ be blocks of FG such that $e = \sum_{k=1}^n e_k$. Then

(i) m = n, $\tilde{B}_1, \ldots, \tilde{B}_m$ are all block ideals of FT which cover b, and B_1, \ldots, B_m are all block ideals of FG which cover b.

For suitable indexing of \tilde{B}_i and B_j , we get for each j = 1, ..., m that

- (ii) $B_i \cong \operatorname{Mat}(t, \widetilde{B}_i)$ as F-algebras.
- (iii) $\tilde{e}_j e_i = e_i \tilde{e}_i = \tilde{e}_i$.
- (iv) $\tilde{B}_{i}^{G} = B_{i}$.
- (v) $\delta(B_i) \cong \delta(\tilde{B}_i)$.
- (vi) If \tilde{S} is a simple FT-module in \tilde{B}_j , then \tilde{S}^G is a simple FG-module in B_j where $\tilde{S}^G = \tilde{S} \otimes_{FT} FG$.

Proof. (1) Obvious.

(2) Clearly, f_1, \ldots, f_t are distinct centrally primitive idempotents of FH. Hence $f_i f_j = 0$ if $i \neq j$.

(3) By (2), $e^2 = e$ and ef = fe = f. Hence $e \neq 0$. Take any $g \in G$. Since $G = \bigcup_{i=1}^{k} Tg_i g$ is also a coset decomposition of T in G, we get $g^{-1}eg = e$, so that $e \in Z(FG)$.

(4) Since $FGf = \bigoplus_{i=1}^{i} g_i^{-1}FTf$ and $g_i^{-1}FTf \cong FTf$ as right FTf-modules for all *i*, we get (4).

(5) Trivial from (4).

(6) Obviously, φ is well-defined. Let $E = \text{End} (FG f_{FT})$. By (3), $\varphi(e)$ is the identity map of FGf, so that φ is an *F*-algebra-homomorphism.

Assume $\varphi(x)=0$ for some $x \in FGe$. Then xy=0 for all $y \in FGf$. Hence 0= $\sum_{i=1}^{t} xg_i^{-1} fg_i = xe = x$. Thus φ is monomorphic.

Take any $\sigma \in E$. Let $x = [\sum_{i=1}^{t} \sigma(g_i^{-1}f)g_i f_i]e \in FGe$. Then by (2), $x = \sum_{i=1}^{t} \sigma(g_i^{-1}f)g_i f_i$.

Let $y \in FGf$. Then we can write $y = \sum_{j=1}^{t} g_j^{-1} s_j$ where $s_j \in FTf$. By (1), $fs_j = s_j f = s_j$. Thus

$$\sigma(y) = \sum_j \sigma(g_j^{-1}s_j) = \sum_j \sigma(g_j^{-1}fs_j) = \sum_j \sigma(g_j^{-1}f)s_j$$

since $\sigma \in E$. On the other hand, since $fs_i = s_i$, we get by (2)

$$[\varphi(x)](y) = xy = \sum_{i} \sum_{j} \sigma(g_{i}^{-1}f)g_{i}f_{i}g_{j}^{-1}s_{j}$$
$$= \sum_{i} \sum_{j} \sigma(g_{i}^{-1}f)g_{i}f_{i}(g_{j}^{-1}fg_{j})g_{j}^{-1}s_{j}$$
$$= \sum_{i} \sigma(g_{i}^{-1}f)g_{i}f_{i}g_{i}^{-1}s_{i} = \sum_{i} \sigma(g_{i}^{-1}f)fs_{i}$$
$$= \sum_{i} \sigma(g_{i}^{-1}f)s_{i}.$$

Hence $\sigma(y) = [\varphi(x)](y)$, so that $\sigma = \varphi(x)$. Hence φ is epimorphic.

(7) By [2, V Lemma 3.3] (cf. [8, §6]), B_1, \ldots, B_n are all block ideals of FG which cover b. Similarly, $\tilde{B}_1, \ldots, \tilde{B}_m$ are all block ideals of FT which cover b. Then m=n by [2, V Theorem 2.5]. Since $FGe = \bigoplus_{j=1}^m FGe_j$ and $FTf = \bigoplus_{j=1}^m FT\tilde{e}_j$, by (5) and (6) for suitable indexing of e_i and \tilde{e}_j we have the F-algebra-isomorphisms

$$FGe_{j} \xrightarrow{\approx} \operatorname{End} \left[(FG\tilde{e}_{j})_{FT\tilde{e}_{j}} \right] \xrightarrow{\approx} \operatorname{Mat} (t, FT\tilde{e}_{j})$$

$$\underset{x \longmapsto}{\overset{\psi}{\longrightarrow}} \left[\varphi(x) : y \mapsto xy \right]$$

for j = 1, ..., m. Let us fix any j. Since e_j is the unit element of the ring FGe_j , $\varphi(e_j)$ is the identity map of $FG\tilde{e}_j$. Hence $\tilde{e}_j e_j = e_j\tilde{e}_j = \tilde{e}_j$. Let \tilde{S} be a minimal right ideal of $\tilde{B}_j = FT\tilde{e}_j$. Then

$$\tilde{S}^{G}e_{j} = \tilde{S}FGe_{j} = \tilde{S}\tilde{e}_{j}FGe_{j} = \tilde{S}\tilde{e}_{j}e_{j}FG = \tilde{S}\tilde{e}_{j}FG = \tilde{S}FG = \tilde{S}^{G}.$$

Hence $\tilde{S}^G \subseteq FGe_j = B_j$. Thus the correspondence $\tilde{B}_j \leftrightarrow B_j$ is the same as that of [2, V Theorem 2.5]. Therefore (7) is proved by [2, V Theorem 2.5].

Lemma 2 (Fong). Assume that F is an algebraically closed field of characteristic p > 0. Let $H \lhd G$ such that $p \not\upharpoonright |H|$, and let b be a block ideal of FH covered by a block ideal B of FG. If $T_G(b) = G$, then there are a finite group \tilde{G} and an exact sequence

$$1 \longrightarrow Z \longrightarrow \tilde{G} \xrightarrow{f} G \longrightarrow 1 \tag{*}$$

which satisfy the following:

- (1) Z is cyclic, $Z \subseteq Z(\tilde{G})$ and $|Z| ||H|^2$.
- (2) \tilde{G} has a normal subgroup \tilde{H} such that $\tilde{H} \cong H$ and $Z\tilde{H} = Z \times \tilde{H} = f^{-1}(H)$.

SHIGEO KOSHITANI

(3) $F(\tilde{G}/\tilde{H})$ has a block ideal B^* such that $B \cong Mat(n, B^*)$ as F-algebras for an integer $n \ge 1$ and that $\delta(B^*) \cong \delta(B)$.

(4) Let $X = \tilde{G}/\tilde{H}$. Especially, if G is p-solvable, p ||G| and $H = O_{p'}(G)$, then we get the following:

- (i) X is also p-solvable.
- (ii) $O_{p'}(X) \subseteq Z(X)$.
- (iii) X has a normal p-subgroup Q such that $O_{p',p}(X) = O_{p'}(X) \times Q$.
- (iv) $O_p(X) \neq 1$.
- (v) Every block ideal of FX has full defect.

Proof. By [2, X Lemma 1.1 and Theorem 1.2], $[12, \S1]$ and [10, Theorem 2], we have an exact sequence (*) which satisfies (1), (2) and (3).

(4) (i) is clear. Since $p \not\models |\tilde{H}|$, $O_{p'}(X) = O_{p'}(\tilde{G})/\tilde{H}$. By (1) and (2), $O_{p'}(\tilde{G}) = Z \times \tilde{H}$. Hence $O_{p'}(X) \subseteq Z(X)$ by (1). Since $O_{p',p}(X)$ is *p*-nilpotent, we get (iii) from (ii). Since $p \mid |X|$, by (i) and (iii) we have $1 \neq Q \subseteq O_p(X)$ (cf. [2, p. 416]). (v) is obtained from [2, X Lemma 1.4].

The next lemma has been essentially proved by Wallace [11, Theorem 2.4].

Lemma 3 (Wallace). Let F be any field of characteristic p>0 and P a normal p-subgroup of G, and let $\overline{G} = \overline{G}/P$. Let $FG \stackrel{f}{\to} F\overline{G}$ be the canonical ring-epimorphism such that f(g) = gP for each $g \in G$, and let $B \leftrightarrow e$ be a block of FG. Then we can write $f(B) = \bigoplus_{i=1}^{n} \overline{B}_i$ for an integer $n \ge 1$ where each \overline{B}_i is a block ideal of $F\overline{G}$. Moreover, we have the following:

- (1) $t(B) \leq t(P) \cdot m$ where $m = \max\{t(\overline{B}_i) | i = 1, \dots, n\}$.
- (2) $t(B) \ge t(P) + t(\overline{B}_i) 1$ for all $i = 1, \dots, n$.

Proof. The proof is similar to that of Wallace [11, Theorem 2.4]. Let $G = \bigcup_{j=1}^{q} g_j P$ be a coset decomposition of P in G. Then $FG = \bigoplus_{j=1}^{q} g_j FP$, so that $FG \cdot J(FP) = \bigoplus_{j=1}^{q} g_j J(FP)$. By [8, Lemma 4.5] and [6, Theorem 1.2], Ker $f = J(FP)FG = FG \cdot J(FP)$, so that Ker f is a nilpotent ideal of FG. Hence Ker $f \subseteq J(FG)$. Then $f(e) \neq 0$ since Ker f is nilpotent. Thus we can write $f(e) = \sum_{i=1}^{n} \bar{e}_i$ for an integer $n \ge 1$ where each \bar{e}_i is a centrally primitive idempotent of $F\overline{G}$. Let $\overline{B}_i = F\overline{G}\overline{e}_i$ for each i, then $f(B) = \bigoplus_{i=1}^{n} \overline{B}_i$.

(1) Let $\tilde{f} = f|_{B}: B \to f(B)$. Then Ker $\tilde{f} = \text{Ker } f \cap B = (\text{Ker } f)e = J(FP)B$, so that Ker $\tilde{f} = J(FP)B = B \cdot J(FP) \subseteq J(B)$. Thus \tilde{f} induces a ring-isomorphism

$$\bigoplus_{i=1}^{n} \overline{B}_{i} = f(B) \cong B/\operatorname{Ker} \tilde{f} = B/J(FP)B.$$

Since J[B/J(FP)B] = [J(B) + J(FP)B]/J(FP)B = J(B)/J(FP)B, we have

$$\bigoplus_{i=1}^{n} J(\bar{B}_{i}) = J\left(\bigoplus_{i=1}^{n} \bar{B}_{i}\right) \cong J(B)/J(FP)B$$

Then since $[\bigoplus_{i=1}^{n} J(\bar{B}_i)]^m = \bigoplus_i J(\bar{B}_i)^m = 0$, we get $J(B)^m \subseteq J(FP)B = B \cdot J(FP)$. Thus we have $J(B)^{m \cdot t(P)} = 0$, so that $t(B) \leq m \cdot t(P)$.

(2) Fix any $i (1 \le i \le n)$, and let $\overline{B} = \overline{B}_i$ and $t = t(\overline{B})$. Since $J(\overline{B})^{t-1} \ne 0$, we get

$$\tilde{f}[J(B)^{t-1}] = [\tilde{f}(J(B))]^{t-1} = [J(\tilde{f}(B))]^{t-1} = \bigoplus_{k=1}^{n} J(\bar{B}_{k})^{t-1} \neq 0.$$

Then $J(B)^{t-1} \notin \operatorname{Ker} \tilde{f} = J(FP)B$, so that there is some $w \in J(B)^{t-1} - J(FP)B$. We can write $w = \sum_{j=1}^{q} g_j s_j$ where $s_j \in FP$. Clearly, $w \notin J(FP)FG = FG \cdot J(FP)$. Thus we may assume $s_1 \notin J(FP)$. We can write $s_1 = \sum_{x \in P} c_x x$ where $c_x \in F$. Without the assumption that F is algebraically closed, the result of Wallace [11, Lemma 2.3] holds (cf. [6]). Hence by [11, Lemma 2.3(3)], $\sum_{x \in P} c_x \neq 0$. Let $\hat{P} = \sum_{x \in P} x$ in FG.

Hence by [11, Lemma 2.3(3)], $\sum_{x \in P} c_x \neq 0$. Let $\hat{P} = \sum_{x \in P} x$ in FG. Next, we want to claim that $w\hat{P} \neq 0$. Suppose $w\hat{P} = 0$. Since $w\hat{P} = (\sum_j g_j s_j)\hat{P} = \sum_j g_j(s_j\hat{P})$ and since $s_j\hat{P} \in FP$ for all j, we have $s_j\hat{P} = 0$ for all j. Thus $0 = s_1\hat{P} = (\sum_{x \in P} c_x x)\hat{P} = (\sum_{x \in P} c_x)\hat{P}$, so that $\sum_{x \in P} c_x = 0$, a contradiction.

Hence $w\hat{P} \neq 0$. Since $J(FP)^{t(P)-1} = F\hat{P}$ by [11, Lemma 2.3(2)] and since $e \cdot J(FP)^h = J(FP)^h e \subseteq J(B)^h$ for any integer $h \ge 0$, we have $w\hat{P} \in J(B)^{t+t(P)-2}$. Thus $t(B) \ge t+t(P)-1$.

Now, we are ready to prove the following main result of this paper.

Theorem. Let F be any field of characteristic p > 0, G a finite p-solvable group and B a block ideal of FG with defect d. Then we have

$$t(B) \ge d(p-1) + 1.$$

Proof. Let *E* be the algebraic closure of *F*. By [8, Lemma 12.9], we can write $E \otimes_F B = \bigoplus_{i=1}^{n} B_i^*$ for an integer $n \ge 1$ where each B_i^* is a block ideal of *EG* with the same defect *d*. By [8, Corollary 12.12], for any integer $m \ge 1$ $E \otimes_F J(B)^m = J(E \otimes_F B)^m = \bigoplus_i J(B_i^*)^m$. So $t(B) \ge t(B_i^*)$ for all *i*. Thus we may assume that *F* is algebraically closed.

We prove the theorem by double induction on d and |G|.

If d=0, then J(B)=0 (cf. [1, Theorem 62.5]), so that it is easy. Thus we may assume $d \ge 1$, so that p ||G|.

If $G = \delta(B)$, then B = FG, so that it is proved by [11, Lemma 2.3(1)].

Let $H = O_{p'}(G)$. Then there is a block ideal b of FH covered by B. Let $T = T_G(b)$. By Lemma 1(7), FT has a block ideal \tilde{B} with the same defect d and $t(\tilde{B}) = t(B)$.

If $G \neq T$, then since |T| < |G| we get the result by induction. Hence we may assume G = T.

Then by Lemma 2, there is a finite p-solvable group X such that $O_p(X) \neq 1$ and FX has a block ideal B^* with the same defect d and $t(B^*) = t(B)$. Let $P = O_p(X)$, $|P| = p^r$ and $\overline{X} = X/P$. By [2, V Lemma 4.4] and Lemma 3(2), $F\overline{X}$ has a block ideal \overline{B} with defect d-r and $t(B^*) \geq t(P) + t(\overline{B}) - 1$. By [11, Lemma 2.3(1)], $t(P) \geq r(p-1) + 1$. Since d-r < d, we get by induction that $t(\overline{B}) \geq (d-r)(p-1) + 1$. Therefore

$$t(B) = t(B^*) \ge t(P) + t(\overline{B}) - 1 \ge d(p-1) + 1.$$

This completes the proof of the theorem.

SHIGEO KOSHITANI

Corollary (Wallace [11, Theorem 3.3]). Let F be any field of characteristic p > 0, G a finite p-solvable group, p^a the order of Sylow p-subgroups of G, and $B_0(G)$ the principal block ideal of FG. Then

$$t(G) \ge t(B_0(G)) \ge a(p-1)+1.$$

Proof. Since $d(B_0(G)) = a$, it is clear from Theorem.

Remark. W. Willems [13] has also improved the result of Wallace [11, Theorem 3.3] (cf. [13, 3.5 Theorem and 3.6 Corollary]). But our theorem is not contained in that of Willems.

Let G be a finite p-solvable group such that G has no proper normal subgroups of index prime to p and that FG has a non-principal block ideal B with full defect d, so that $v_p(|G|) = d$ where we use the notation $v_p(n)$ for an integer $n \ge 1$ as in [1, p. 376]. Let S be a simple FG-module in B, and let K = Ker S where Ker S is the kernel of S in G.

Assume $v_p(|K|) = d$. Then there is a Sylow *p*-subgroup *D* of *G* such that $D \subseteq K$. Let $M = \langle g^{-1}Dg | g \in G \rangle$. Since $K \lhd G$, $M \subseteq K$. Since $M \lhd G$ and $p \not\downarrow |G:M|$, G = M. Thus K = G, so that *S* is the trivial *FG*-module. Hence *B* is the principal block ideal of *FG*, a contradiction.

Thus for any simple FG-module S in B we get $v_p(|\text{Ker S}|) < d$, so that $v_p(|\text{Ker S}|) \cdot (p-1) + 1 < d(p-1) + 1$. Thus our theorem is not contained in [13, 3.5 Theorem (b)].

In fact, there is a finite *p*-solvable group G which satisfies the above conditions. See our previous example [7, Example 3 (pp. 229-230)].

REFERENCES

1. L. DORNHOFF, Group Representation Theory (part B, Marcel Dekker, New York, 1972).

2. W. FEIT, The Representation Theory of Finite Groups (North-Holland, New York, 1982).

3. P. FONG, On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263-284.

4. P. FONG, Solvable groups and modular representation theory, Trans. Amer. Math. Soc. 103 (1962), 484-494.

5. D. GORENSTEIN, Finite Groups (Harper & Row, New York, 1968).

6. S. A. JENNINGS, The structure of the group ring of a *p*-group over a modular field, *Trans. Amer. Math. Soc.* 50 (1941), 175–185.

7. S. KOSHITANI, Group algebras of finite *p*-solvable groups with radicals of the fourth power zero, *Proc. Royal Soc. Edinburgh* 92A (1982), 205–231.

8. G. O. MICHLER, Blocks and centers of group algebras. Lectures on Rings and Modules (Lecture notes in math. 246, Springer, Berlin, 1972), 429-563.

9. A. ROSENBERG, Blocks and centres of group algebras, Math. Z. 76 (1961), 209-216.

10. Y. TSUSHIMA, On the second reduction theorem of P. Fong, Kumamoto J. Science (Math.) 13 (1978), 6-14.

11. D. A. R. WALLACE, Lower bounds for the radical of the group algebra of a finite *p*-soluble group, *Proc. Edinburgh Math. Soc.* 16 (1968), 127-134.

12. A. WATANABE, On Fong's reductions, Kumamoto J. Science (Math.) 13 (1979), 48-54.

13. W. WILLEMS, On the projectives of a group algebra, Math. Z. 171 (1980), 163-174.

Department of Mathematics Faculty of Science Chiba University Yayoi-cho, Chiba-city, 260 Japan