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Let F be any field of characteristic p>0, G a finite p-solvable group, p* the order of
Sylow p-subgroups of G, FG the group algebra of G over F, and J(FG) the Jacobson
radical of FG. Following Wallace [11] we write t(G) for the least integer =1 such that
J(FG) =0.

D. A. R. Wallace [11] proved that

t(G)zalp—1)+1.

The purpose of the present paper is to generalize the above result as follows: Let B be a
block ideal of FG with defect d, and let ¢(B) be the least integer t=1 such that J(B)'=0
where J(B) is the Jacobson radical of B. Then

t(B)=d(p—1)+1.

Since the defect groups of the principal block ideal of FG are Sylow p-subgroups of G,
our result is a generalization of that of Wallace.

We use the following notation and terminology. Throughout this paper we fix a field
F of characteristic p>0 and a finite group G, all modules are finitely generated right
modules, and all groups are finite. For an Artinian ring R and an integer n21 let us
denote by Mat(n, R) the full matrix ring of degree n over R, by Z(R) the centre of R, by
J(R) the Jacobson radical of R, and by #(R) the least integer ¢t =1 such that J(R)'=0. In
particular, we write t(G) for t(FG). Following [8, §2] we call B« e a block of FG if e is
a centrally primitive idempotent of FG such that B=FGe, and in this case we call B a
block ideal of FG. When B is a block ideal of FG, we write d(B) for a defect group of B
and d(B) for the defect of B, i.. |6(B)|=p*® (cf. [9, p. 211] and [8, Definition 3.9]), and
we say that B has full defect if 6(B) is a Sylow p-subgroup of G. When H<1 G and b f
is a block of FH, we write Tg(b) or T4(f) for the inertia group of b f in G, that is to
say, Te(b)=T(f)={xeG|x 'fx=f}. If H< G and if B and b are block ideals of FG
and FH, respectively, then we say that B covers b in the sense of [8, §6] (cf. [2, p. 196]).
When Mg is an R-module, we write End(Myg) for the ring of all R-module-
endomorphisms of M. We write Z(G) for the centre of G. We use the notation 0,.(G),
0,(G) and O, ,(G) as in [1, p. 397]. Further notation and terminology follow the books
of Dornhoff [1] and Gorenstein [5].
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First of all, we state Fong’s results ([3], [4]) which are useful in the proof of our main
result.

Lemma 1 (Fong). Assume that F is an algebraically closed field of characteristic
p>0. Let H< G, let b f be a block of FH, and let T=Ty(f). Let G=\)\_, Tg; be a
coset decomposition of T in G, let f;=g; ' fg; for each i, and let e=)}_ f;. Then we have
the following:

(1) f is a central idempotent of FT.

(2) fi,-..., f: are pairwise orthogonal centrally primitive idempotents of FH.

(3) e is a central idempotent of FG and ef = fe=f.

(4) FGf is a free right FTf-module of rank t.

(5) End(FG frr;)=Mat(t, FTf) as F-algebras.

(6) For each xe FGe and ye FGf, define ¢(x) e End(FG frr,) by [@(x)](y)=xy. Then
¢@:FGe—End (FG fgr/) is an F-algebra-isomorphism.

(7) Let B,<é,...,B,—&, be blocks of FT such that f=)7_,&, and let
Bi«ey,..., B, e, be blocks of FG such that e=Y 1 _, e,. Then

(i) m=n, 31,...,§m are all block ideals of FT which cover b, and B,,..., B, are all
block ideals of FG which cover b.

For suitable indexing of B; and B;, we get for each j=1,...,m that
(i) B;=Mat(t, B)) as F-algebras.

(ii) é;e;=e;€;=¢;.

(iv) B§=B,.

(v) &(B;)=d(B;).

(vi) If § is a simple FT-module in B;, then 5% is a simple FG-module in B; where
§¢=8®;;FG.

Proof. (1) Obvious.

(2) Clearly, fi,..., f, are distinct centrally primitive idempotents of FH. Hence f; f; =0
if ij.

(3) By (2), e*=e and ef = fe=f. Hence e¢+#0. Take any geG. Since G={Ji., Tg;g is
also a coset decomposition of T in G, we get g~ 'eg=e, so that ee Z(FG).

(4) Since FGf=),-,& 'FTf and g; 'FTf = FTf as right FTf-modules for all i, we
get (4).

(5) Trivial from (4).

(6) Obviously, ¢ is well-defined. Let E=End (FG frr/). By (3), (e) is the identity map
of FG f, so that ¢ is an F-algebra-homomorphism.

Assume ¢(x)=0 for some xeFGe. Then xy=0 for all yeFGf Hence 0=

> i-1xg ' fg;=xe=x. Thus ¢ is monomorphic.
Take any o€ E. Let x=[) i, o(g7 *f)g; f;]Je€ FGe. Then by (2), x=Y"'_, a(g ' Ng. f;-
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Let ye FG f. Then we can write y=)%_, g; 's; where s;€ FTf. By (1), fs;=s;f =s;. Thus

o(y) =Y. alg; s =Y ole;  f5) =Y. ole;  )s;

since o€ E. On the other hand, since fs;=s;, We get by (2)
[p()1(y)=2xy =Z; olg: g fig; s

=X ; olgr g filg; ' f2)gi s

=‘,‘: olg ' Neifigi s =§‘_: alg: ' N) S

=Y olei*s:.

Hence o(y) = [o(x)](»), so that o=¢(x). Hence ¢ is epimorphic.

(7) By [2, V Lemma 3.3] (cf. [8, §6]), B;,..., B, are all block ideals of FG which
cover b. Similarly, B,,..., B,, are all block ideals of FT which cover b. Then m=n by
[2, V Theorem 2.5]. Since FGe=(P., FGe; and FTf =], FT¢;, by (5) and (6) for
suitable indexing of e; and &; we have the F-algebra-isomorphisms

FGe}' .—/z-—)End [(FGéj)pTéj]—’z—)Mat (l’, FTEJ)
w w
x —[e(x): y—oxy]

for j=1,...,m. Let us fix any j. Since ¢; is the unit element of the ring FGe;, ¢(e;) is the

identity map of FGé;. Hence é;e; =¢;é;=¢;. Let S be a minimal right ideal of B; =FTe;.
Then

SSe;=8FGe;=5¢,FGe;=5¢,;e;FG=8¢,FG=SFG=5°.

Hence §°< FGe;=B;. Thus the correspondence B;«<> B, is the same as that of [2, V
Theorem 2.5]. Therefore (7) is proved by [2, V Theorem 2.5].

Lemma 2 (Fong). Assume that F is an algebraically closed field of characteristic p>0.
Let H<a G such that p Y |H |, and let b be a block~ideal of FH covered by a block ideal B
of FG. If T4(b)=G, then there are a finite group G and an exact sequence

1—2z— 6L 61 *)

which satisfy the following:

(1) Z is cyclic, ZS Z(G) and |Z|||H|*.
(2) G has a normal subgroup H such that A~H and ZH=Z x A= f~'(H).
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(3) F(G/H) has a block ideal B* such that B=Mat(n, B¥) as F-algebras for an integer
n=1 and that 6(B*)=(B).

(4) Let X=G/H. Especially, if G is p-solvable, p||G| and H=0,(G), then we get the
following:

() X is also p-solvable.

(i) 0,(X)=Z(X).

(i) X has a normal p-subgroup Q such that O,. (X)=0,(X)x Q.

(iv) 0,(X)#1.

(v) Every block ideal of FX has full defect.

Proof. By [2, X Lemma 1.1 and Theorem 1.2], [12, §1] and [10, Theorem 2], we
have an exact sequence (*) which satisfies (1), (2) and (3).

(4) (i) is clear. Since p¥|H|, 0,(X)=0,(G)/H. By (1) and (2), 0,{(G)=Z x H. Hence
0,(X)S Z(X) by (1). Since O, ,(X) is p-nilpotent, we get (iii) from (ii). Since p||X|, by
(i) and (ii)) we have 1#+#Q0<0,(X) (cf. [2, p. 416]). (v) is obtained from [2, X Lemma
14].

The next lemma has been essentially proved by Wallace [11, Theorem 2.4].

Lemma 3 (Wallace). Let F be any field of characteristic p>0 and P a normal
p-subgroup of G, and let G=G/P. Let F G FG be the canonical ring-epimorphism such
that f(g)=gP for each geG, and let B«se be a block of FG. Then we can write
f(B)=@P}-1 B; for an integer n21 where each B; is a block ideal of FG. Moreover, we
have the following:

(1) «B)=1(P)-m where m=max {t(B))|i=1,...,n}.
) «B)=tP)+1(B,)—1 for all i=1,...,n.

Proof. The proof is similar to that of Wallace [11, Theorem 2.4]. Let G=Ujl=1 g;P
be a coset decomposition of P in G. Then FG=@.,g;FP, so that FG-J(FP)=
&h-,g;J(FP). By [8, Lemma 4.5] and [6, Theorem 12], Ker f=J(FP)FG=
FG- J(FP), so that Ker f is a nilpotent ideal of FG. Hence Ker f S J(FG). Then f(e)#0
since Ker f is nilpotent. Thus we can write f(e) =) 7., & for an integer n>1 where each
g; is a centrally primitive idempotent of FG. Let B,=FGe; for each i, then f(B)
=i-1 B

(1) Let ]=f|B:B—>f(B). Then Ker f=Ker fnB=(Ker f)e=J(FP)B, so that Ker f=
J(FP)B=B- J(FP)< J(B). Thus f induces a ring-isomorphism

& B, = f(B)=B/Ker J=B/J(FP)B.
i=1
Since J[B/J(FP)B]=[J(B)+J(FP)B]/J(FP)B=J(B)/J(FP)B, we have

G IB)=J (G_-) B,.> ~J(B)/J(FP)B.
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Then since [P}-, J(B)I" =) J(B;)" =0, we get J(B)"<J(FP)B=B-J(FP). Thus we
have J(B)™ ") =0, so that t(B)<m-t(P).

(2) Fix any i (1Zi<n), and let B=B; and t=¢(B). Since J(B)' "' #0, we get
JU®B 1=[JU®B)I '=[I(f(B)] '= @ J(By)' 71 #0.

Then J(B)"1$Ker]=J(FP)B, so that there is some weJ(B)'"!—J(FP)B. We can
write w=)19_,g;s; where s;eFP. Clearly, w¢ J(FP)FG=FG-J(FP). Thus we may
assume s, ¢ J(FP). We can write s, =) ,.pc,x where c,eF. Without the assumption
that F is algebraically closed, the result of Wallace [11, Lemma 2.3] holds (cf. [6]).
Hence by [11, Lemma 2.3(3)], erpc #0. Let P= erpx in FG.

Next, we want to claim that wP#0. Suppose wP=0. Since wP = Qg sp)P=Y; g(s; P)
and since s; PeFP for all j, we have §; P=0 for all j. Thus 0=s,P= QO xertx x)P—
(O xepcs)P, so that ¥, pc, =0, 2 contradlctlon

Hence wP+0. Since J(FP)®~'=FP by [11, Lemma 23(2)] and since e- J(FP)'=
J(FP)*e< J(B)" for any integer h=0, we have wPeJ(B) **® -2, Thus t(B)=t+t(P)—1.

Now, we are ready to prove the following main result of this paper.

Theorem. Let F be any field of characteristic p>0, G a finite p-solvable group and B
a block ideal of FG with defect d. Then we have

tB)=d(p—1) +1.

Proof. Let E be the algebraic closure of F. By [8, Lemma 12.9], we can write E®Q ; B=
@7, Bt for an integer n>1 where each B¥ is a block ideal of EG with the same defect d.
By [8, Corollary 12.12], for any integer m=1 EQ J(B)"=J(E® B)"‘=(—Di J(B¥)™. So
t(B) = t(B}) for all i. Thus we may assume that F is algebraically closed.

We prove the theorem by double induction on d and |G|.

If d=0, then J(B)=0 (cf. [1, Theorem 62.5]), so that it is easy. Thus we may assume
d21, so that p||G|.

If G=4(B), then B=FG, so that it is proved by [11, Lemma 2.3(1)].

Let H=0,(G). Then there is a block ideal b of FH covered by B. Let T=Ty(b). By
Lemma 1(7), F T has a block ideal B with the same defect d and t(B) =¢(B).

If G# T, then since |T| |G| we get the result by induction. Hence we may assume
G=T

Then by Lemma 2, there is a finite p-solvable group X such that 0,(X)#1 and FX
has a block ideal B* with the same defect d and ¢(B*)=t(B). Let P= OP(X) |P| =p" and
X=X/P. By [2, V Lemma 4.4] and Lemma 3(2), FX has a block ideal B with defect
d—r and t(B¥)2t(P)+t(B)—1. By [11, Lemma 2.3(1)], t(P)=r(p—1)+ 1. Since d—r <d,
we get by induction that t(B)=(d—r)(p— 1) + 1. Therefore

t(B)=t(B*) 2 t(P)+t(B)— 12 d(p—1)+1.

This completes the proof of the theorem.
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Corollary (Wallace [11, Theorem 3.3]). 1et F be any field of characteristic p>0, G a
finite p-solvable group, p® the order of Sylow p-subgroups of G, and By(G) the principal
block ideal of FG. Then

HG) 2 tBy(G)) 2a(p— 1 +1.
Proof. Since d(By(G))=a, it is clear from Theorem.

Remark. W. Willems [13] has also improved the result of Wallace [11, Theorem
3.3] (cf. [13, 3.5 Theorem and 3.6 Corollary]). But our theorem is not contained in that
of Willems.

Let G be a finite p-solvable group such that G has no proper normal subgroups of
index prime to p and that FG has a non-principal block ideal B with full defect d, so
that v,(|G|)=d where we use the notation v,(n) for an integer n2 1 as in [1, p. 376]. Let
§ be a simple FG-module in B, and let K=Ker S where Ker S is the kernel of S in G.

Assume v,(|K|)=d. Then there is a Sylow p-subgroup D of G such that DS K. Let
M={g"'Dg|geG). Since K<« G, M= K. Since M<a G and p ¥ |G: M|, G=M. Thus K =G,
so that S is the trivial FG-module. Hence B is the principal block ideal of FG, a
contradiction.

Thus for any simple FG-module S in B we get v,(|Ker S|) <d, so that v,([Ker S))-(p—1)
+1<d(p—1)+1. Thus our theorem is not contained in [13, 3.5 Theorem (b)].

In fact, there is a finite p-solvable group G which satisfies the above conditions. See
our previous example [7, Example 3 (pp. 229-230)].
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