ON LOWER BOUNDS FOR THE RADICAL OF A BLOCK IDEAL IN A FINITE p-SOLVABLE GROUP

by SHIGEO KOSHITANI

(Received 28th April 1983)

Dedicated to Professor Hirosi Nagao on his 60th birthday

Let F be any field of characteristic $p>0, G$ a finite p-solvable group, p^{a} the order of Sylow p-subgroups of $G, F G$ the group algebra of G over F, and $J(F G)$ the Jacobson radical of $F G$. Following Wallace [11] we write $t(G)$ for the least integer $t \geqq 1$ such that $J(F G)^{t}=0$.
D. A. R. Wallace [11] proved that

$$
t(G) \geqq a(p-1)+1
$$

The purpose of the present paper is to generalize the above result as follows: Let B be a block ideal of $F G$ with defect d, and let $t(B)$ be the least integer $t \geqq 1$ such that $J(B)^{t}=0$ where $J(B)$ is the Jacobson radical of B. Then

$$
t(B) \geqq d(p-1)+1
$$

Since the defect groups of the principal block ideal of $F G$ are Sylow p-subgroups of G, our result is a generalization of that of Wallace.

We use the following notation and terminology. Throughout this paper we fix a field F of characteristic $p>0$ and a finite group G, all modules are finitely generated right modules, and all groups are finite. For an Artinian ring R and an integer $n \geqq 1$ let us denote by Mat (n, R) the full matrix ring of degree n over R, by $Z(R)$ the centre of R, by $J(R)$ the Jacobson radical of R, and by $t(R)$ the least integer $t \geqq 1$ such that $J(R)^{t}=0$. In particular, we write $t(G)$ for $t(F G)$. Following [8, §2] we call $B \leftrightarrow e$ a block of $F G$ if e is a centrally primitive idempotent of $F G$ such that $B=F G e$, and in this case we call B a block ideal of $F G$. When B is a block ideal of $F G$, we write $\delta(B)$ for a defect group of B and $d(B)$ for the defect of B, i.e. $|\delta(B)|=p^{d(B)}$ (cf. [9, p. 211] and [8, Definition 3.9]), and we say that B has full defect if $\delta(B)$ is a Sylow p-subgroup of G. When $H \triangleleft G$ and $b \leftrightarrow f$ is a block of $F H$, we write $T_{G}(b)$ or $T_{G}(f)$ for the inertia group of $b \leftrightarrow f$ in G, that is to say, $T_{G}(b)=T_{G}(f)=\left\{x \in G \mid x^{-1} f x=f\right\}$. If $H \triangleleft G$ and if B and b are block ideals of $F G$ and $F H$, respectively, then we say that B covers b in the sense of [8, §6] (cf. [2, p. 196]). When M_{R} is an R-module, we write $\operatorname{End}\left(M_{R}\right)$ for the ring of all R-moduleendomorphisms of M_{R}. We write $Z(G)$ for the centre of G. We use the notation $O_{p^{\prime}}(G)$, $O_{p}(G)$ and $O_{p^{\prime}, p}(G)$ as in [1, p. 397]. Further notation and terminology follow the books of Dornhoff [1] and Gorenstein [5].

First of all, we state Fong's results ([3], [4]) which are useful in the proof of our main result.

Lemma 1 (Fong). Assume that F is an algebraically closed field of characteristic $p>0$. Let $H \triangleleft G$, let $b \leftrightarrow f$ be a block of $F H$, and let $T=T_{G}(f)$. Let $G=\bigcup_{i=1}^{t} T_{i}$ be a coset decomposition of T in G, let $f_{i}=g_{i}^{-1} f g_{i}$ for each i, and let $e=\sum_{i=1}^{t} f_{i}$. Then we have the following:
(1) f is a central idempotent of $F T$.
(2) f_{1}, \ldots, f_{t} are pairwise orthogonal centrally primitive idempotents of $F H$.
(3) e is a central idempotent of $F G$ and $e f=f e=f$.
(4) $F G f$ is a free right $F T f$-module of rank t.
(5) $\operatorname{End}\left(F G f_{F T f}\right) \cong \operatorname{Mat}(t, F T f)$ as F-algebras.
(6) For each $x \in F G e$ and $y \in F G f$, define $\varphi(x) \in \operatorname{End}\left(F G f_{F T f}\right)$ by $[\varphi(x)](y)=x y$. Then $\varphi: F G e \rightarrow \operatorname{End}\left(F G f_{F T S}\right)$ is an F-algebra-isomorphism.
(7) Let $\widetilde{B}_{1} \leftrightarrow \tilde{e}_{1}, \ldots, \widetilde{B}_{m} \leftrightarrow \tilde{e}_{m}$ be blocks of $F T$ such that $f=\sum_{j=1}^{m} \tilde{e}_{j}$, and let $B_{1} \leftrightarrow e_{1}, \ldots, B_{n} \leftrightarrow e_{n}$ be blocks of $F G$ such that $e=\sum_{k=1}^{n} e_{k}$. Then
(i) $m=n, \widetilde{B}_{1}, \ldots, \tilde{B}_{m}$ are all block ideals of $F T$ which cover b, and B_{1}, \ldots, B_{m} are all block ideals of $F G$ which cover b.

For suitable indexing of \widetilde{B}_{j} and B_{j}, we get for each $j=1, \ldots, m$ that
(ii) $B_{j} \cong \operatorname{Mat}\left(t, \widetilde{B}_{j}\right)$ as F-algebras.
(iii) $\tilde{e}_{j} e_{j}=e_{j} \tilde{e}_{j}=\tilde{e}_{j}$.
(iv) $\widetilde{B}_{j}^{G}=B_{j}$.
(v) $\delta\left(B_{j}\right) \cong \delta\left(\widetilde{B}_{j}\right)$.
(vi) If \tilde{S} is a simple $F T$-module in \tilde{B}_{j}, then \tilde{S}^{G} is a simple $F G$-module in B_{j} where $\tilde{S}^{G}=\tilde{S} \otimes_{F T} F G$.

Proof. (1) Obvious.
(2) Clearly, f_{1}, \ldots, f_{t} are distinct centrally primitive idempotents of $F H$. Hence $f_{i} f_{j}=0$ if $i \neq j$.
(3) By (2), $e^{2}=e$ and $e f=f e=f$. Hence $e \neq 0$. Take any $g \in G$. Since $G=\bigcup_{i=1}^{t} T g_{i} g$ is also a coset decomposition of T in G, we get $g^{-1} e g=e$, so that $e \in Z(F G)$.
(4) Since $F G f=\bigoplus_{i=1}^{t} g_{i}^{-1} F T f$ and $g_{i}^{-1} F T f \cong F T f$ as right $F T f$-modules for all i, we get (4).
(5) Trivial from (4).
(6) Obviously, φ is well-defined. Let $E=\operatorname{End}\left(F G f_{F T S}\right)$. By (3), $\varphi(e)$ is the identity map of $F G f$, so that φ is an F-algebra-homomorphism.

Assume $\varphi(x)=0$ for some $x \in F G e$. Then $x y=0$ for all $y \in F G f$. Hence $0=$ $\sum_{i=1}^{t} x g_{i}^{-1} f g_{i}=x e=x$. Thus φ is monomorphic.

Take any $\sigma \in E$. Let $x=\left[\sum_{i=1}^{t} \sigma\left(g_{i}^{-1} f\right) g_{i} f_{i}\right] e \in F G e$. Then by (2), $x=\sum_{i=1}^{t} \sigma\left(g_{i}^{-1} f\right) g_{i} f_{i}$.

Let $y \in F G f$. Then we can write $y=\sum_{j=1}^{t} g_{i}^{-1} s_{j}$ where $s_{j} \in F T f$. By (1), $f s_{j}=s_{j} f=s_{j}$. Thus

$$
\sigma(y)=\sum_{j} \sigma\left(g_{j}^{-1} s_{j}\right)=\sum_{j} \sigma\left(g_{j}^{-1} f s_{j}\right)=\sum_{j} \sigma\left(g_{j}^{-1} f\right) s_{j}
$$

since $\sigma \in E$. On the other hand, since $f s_{j}=s_{j}$, we get by (2)

$$
\begin{aligned}
{[\varphi(x)](y) } & =x y=\sum_{i} \sum_{j} \sigma\left(g_{i}^{-1} f\right) g_{i} f_{i} g_{j}^{-1} s_{j} \\
& =\sum_{i} \sum_{j} \sigma\left(g_{i}^{-1} f\right) g_{i} f_{i}\left(g_{j}^{-1} f g_{j}\right) g_{j}^{-1} s_{j} \\
& =\sum_{i} \sigma\left(g_{i}^{-1} f\right) g_{i} f_{i} g_{i}^{-1} s_{i}=\sum_{i} \sigma\left(g_{i}^{-1} f\right) f s_{i} \\
& =\sum_{i} \sigma\left(g_{i}^{-1} f\right) s_{i} .
\end{aligned}
$$

Hence $\sigma(y)=[\varphi(x)](y)$, so that $\sigma=\varphi(x)$. Hence φ is epimorphic.
(7) By [2, V Lemma 3.3] (cf. [8, §6]), B_{1}, \ldots, B_{n} are all block ideals of $F G$ which cover b. Similarly, $\widetilde{B}_{1}, \ldots, \widetilde{B}_{m}$ are all block ideals of $F T$ which cover b. Then $m=n$ by [2, V Theorem 2.5]. Since $F G e=\oplus_{j=1}^{m} F G e_{j}$ and $F T f=\bigoplus_{j=1}^{m} F T \tilde{e}_{j}$, by (5) and (6) for suitable indexing of e_{j} and \tilde{e}_{j} we have the F-algebra-isomorphisms

$$
\begin{aligned}
F G e_{j} & \approx \operatorname{End}\left[\left(F G \tilde{e}_{j}\right)_{F T \tilde{e}_{j}}\right] \\
w & \stackrel{*}{\approx} \operatorname{Mat}\left(t, F T \tilde{e}_{j}\right) \\
x & \longmapsto[\varphi(x): y \mapsto x y]
\end{aligned}
$$

for $j=1, \ldots, m$. Let us fix any j. Since e_{j} is the unit element of the ring $F G e_{j}, \varphi\left(e_{j}\right)$ is the identity map of $F G \tilde{e}_{j}$. Hence $\tilde{e}_{j} e_{j}=e_{j} \tilde{e}_{j}=\tilde{e}_{j}$. Let \tilde{S} be a minimal right ideal of $\widetilde{B}_{j}=F T \tilde{e}_{j}$. Then

$$
\tilde{S}^{G} e_{j}=\tilde{S} F G e_{j}=\tilde{S} \tilde{e}_{j} F G e_{j}=\tilde{S} \tilde{e}_{j} e_{j} F G=\tilde{S} \tilde{e}_{j} F G=\tilde{S} F G=\tilde{S}^{G}
$$

Hence $\tilde{S}^{G} \subseteq F G e_{j}=B_{j}$. Thus the correspondence $\widetilde{B}_{j} \leftrightarrow B_{j}$ is the same as that of [2, V Theorem 2.5]. Therefore (7) is proved by [2, V Theorem 2.5].

Lemma 2 (Fong). Assume that F is an algebraically closed field of characteristic $p>0$. Let $H \triangleleft G$ such that $p \nmid|H|$, and let b be a block ideal of $F H$ covered by a block ideal B of $F G$. If $T_{G}(b)=G$, then there are a finite group \widetilde{G} and an exact sequence

$$
\begin{equation*}
1 \longrightarrow Z \longrightarrow \tilde{G} \xrightarrow{f} G \longrightarrow 1 \tag{*}
\end{equation*}
$$

which satisfy the following:
(1) Z is cyclic, $Z \subseteq Z(\tilde{G})$ and $|Z|\left||H|^{2}\right.$.
(2) \tilde{G} has a normal subgroup \tilde{H} such that $\tilde{H} \cong H$ and $Z \tilde{H}=Z \times \tilde{H}=f^{-1}(H)$.
(3) $F(\tilde{G} / \tilde{H})$ has a block ideal B^{*} such that $B \cong \operatorname{Mat}\left(n, B^{*}\right)$ as F-algebras for an integer $n \geqq 1$ and that $\delta\left(B^{*}\right) \cong \delta(B)$.
(4) Let $X=\tilde{G} / \tilde{H}$. Especially, if G is p-solvable, $p\left||G|\right.$ and $H=O_{p^{\prime}}(G)$, then we get the following:
(i) X is also p-solvable.
(ii) $O_{p}(X) \subseteq Z(X)$.
(iii) X has a normal p-subgroup Q such that $O_{p^{\prime}, p}(X)=O_{p^{\prime}}(X) \times Q$.
(iv) $O_{p}(X) \neq 1$.
(v) Every block ideal of $F X$ has full defect.

Proof. By [2, X Lemma 1.1 and Theorem 1.2], [12, §1] and [10, Theorem 2], we have an exact sequence (${ }^{*}$) which satisfies (1), (2) and (3).
(4) (i) is clear. Since $p \nmid|\tilde{H}|, O_{p^{\prime}}(X)=O_{p^{\prime}}(\tilde{G}) / \tilde{H}$. By (1) and (2), $O_{p^{\prime}}(\tilde{G})=Z \times \tilde{H}$. Hence $O_{p^{\prime}}(X) \subseteq Z(X)$ by (1). Since $O_{p^{\prime}, p}(X)$ is p-nilpotent, we get (iii) from (ii). Since $p \| X \mid$, by (i) and (iii) we have $1 \neq Q \subseteq O_{p}(X)$ (cf. [2, p. 416]). (v) is obtained from [2, X Lemma 1.4].

The next lemma has been essentially proved by Wallace [11, Theorem 2.4].
Lemma 3 (Wallace). Let F be any field of characteristic $p>0$ and P a normal p-subgroup of G, and let $\bar{G}=\bar{G} / P$. Let $F G \stackrel{f}{\rightarrow} F \bar{G}$ be the canonical ring-epimorphism such that $f(g)=g P$ for each $g \in G$, and let $B \leftrightarrow e$ be a block of $F G$. Then we can write $f(B)=\bigoplus_{i=1}^{n} \bar{B}_{i}$ for an integer $n \geqq 1$ where each \bar{B}_{i} is a block ideal of $F \bar{G}$. Moreover, we have the following:
(1) $t(B) \leqq t(P) \cdot m$ where $m=\max \left\{t\left(\bar{B}_{i}\right) \mid i=1, \ldots, n\right\}$.
(2) $t(B) \geqq t(P)+t\left(\bar{B}_{i}\right)-1$ for all $i=1, \ldots, n$.

Proof. The proof is similar to that of Wallace [11, Theorem 2.4]. Let $G=\bigcup_{j=1}^{q} g_{j} P$ be a coset decomposition of P in G. Then $F G=\bigoplus_{j=1}^{q} g_{j} F P$, so that $F G \cdot J(F P)=$ $\oplus_{j=1}^{q} g_{j} J(F P)$. By [8, Lemma 4.5] and [6, Theorem 1.2], Ker $f=J(F P) F G=$ $F G \cdot J(F P)$, so that $\operatorname{Ker} f$ is a nilpotent ideal of $F G$. Hence Ker $f \cong J(F G)$. Then $f(e) \neq 0$ since $\operatorname{Ker} f$ is nilpotent. Thus we can write $f(e)=\sum_{i=1}^{n} \bar{e}_{i}$ for an integer $n \geqq 1$ where each \bar{e}_{i} is a centrally primitive idempotent of $F \bar{G}$. Let $\bar{B}_{i}=F \bar{G} \bar{e}_{i}$ for each i, then $f(B)$ $=\bigoplus_{i=1}^{n} \bar{B}_{i}$.
(1) Let $\tilde{f}=\left.f\right|_{B}: B \rightarrow f(B)$. Then $\operatorname{Ker} \bar{f}=\operatorname{Ker} f \cap B=(\operatorname{Ker} f) e=J(F P) B$, so that $\operatorname{Ker} \tilde{f}=$ $J(F P) B=B \cdot J(F P) \cong J(B)$. Thus f induces a ring-isomorphism

$$
\bigoplus_{i=1}^{n} \bar{B}_{i}=f(B) \cong B / \operatorname{Ker} \tilde{f}=B / J(F P) B
$$

Since $J[B / J(F P) B]=[J(B)+J(F P) B] / J(F P) B=J(B) / J(F P) B$, we have

$$
\bigoplus_{i=1}^{n} J\left(\bar{B}_{i}\right)=J\left(\oplus_{i=1}^{\oplus} \bar{B}_{i}\right) \cong J(B) / J(F P) B
$$

Then since $\left[\bigoplus_{i=1}^{n} J\left(\bar{B}_{i}\right)\right]^{m}=\bigoplus_{i} J\left(\bar{B}_{i}\right)^{m}=0$, we get $J(B)^{m} \cong J(F P) B=B \cdot J(F P)$. Thus we have $J(B)^{m \cdot t(P)}=0$, so that $t(B) \leqq m \cdot t(P)$.
(2) Fix any $i(1 \leqq i \leqq n)$, and let $\bar{B}=\bar{B}_{i}$ and $t=t(\bar{B})$. Since $J(\bar{B})^{t-1} \neq 0$, we get

$$
\mathfrak{f}\left[J(B)^{t-1}\right]=[\tilde{f}(J(B))]^{t-1}=[J(\tilde{f}(B))]^{t-1}=\bigoplus_{k=1}^{n} J\left(\bar{B}_{k}\right)^{t-1} \neq 0 .
$$

Then $J(B)^{t-1} \neq \operatorname{Ker} f=J(F P) B$, so that there is some $w \in J(B)^{t-1}-J(F P) B$. We can write $w=\sum_{j=1}^{q} g_{j} s_{j}$ where $s_{j} \in F P$. Clearly, $w \notin J(F P) F G=F G \cdot J(F P)$. Thus we may assume $s_{1} \notin J(F P)$. We can write $s_{1}=\sum_{x \in P} c_{x} x$ where $c_{x} \in F$. Without the assumption that F is algebraically closed, the result of Wallace [11, Lemma 2.3] holds (cf. [6]). Hence by [11, Lemma 2.3(3)], $\sum_{x \in P} c_{x} \neq 0$. Let $\hat{P}=\sum_{x \in P} x$ in $F G$.

Next, we want to claim that $w \hat{P} \neq 0$. Suppose $w \hat{P}=0$. Since $w \hat{P}=\left(\sum_{j} g_{j} s_{j}\right) \hat{P}=\sum_{j} g_{j}\left(s_{j} \hat{P}\right)$ and since $s_{j} \hat{P} \in F P$ for all j, we have $s_{j} \hat{P}=0$ for all j. Thus $0=s_{1} \hat{P}=\left(\sum_{x \in P} c_{x} x\right) \hat{P}=$ ($\left.\sum_{x \in P} c_{x}\right) \hat{P}$, so that $\sum_{x \in P} c_{x}=0$, a contradiction.

Hence $w \hat{P} \neq 0$. Since $J(F P)^{t(P)-1}=F \hat{P}$ by [11, Lemma 2.3(2)] and since $e \cdot J(F P)^{h}=$ $J(F P)^{h} e \cong J(B)^{h}$ for any integer $h \geqq 0$, we have $w \widehat{P} \in J(B)^{t+t(P)-2}$. Thus $t(B) \geqq t+t(P)-1$.

Now, we are ready to prove the following main result of this paper.
Theorem. Let F be any field of characteristic $p>0, G$ a finite p-solvable group and B a block ideal of $F G$ with defect d. Then we have

$$
t(B) \geqq d(p-1)+1
$$

Proof. Let E be the algebraic closure of F. By [8, Lemma 12.9], we can write $E \otimes_{F} B=$ $\bigoplus_{i=1}^{n} B_{i}^{*}$ for an integer $n \geqq 1$ where each B_{i}^{*} is a block ideal of $E G$ with the same defect d. By [8, Corollary 12.12], for any integer $m \geqq 1 E \otimes_{F} J(B)^{m}=J\left(E \otimes_{F} B\right)^{m}=\bigoplus_{i} J\left(B_{i}^{*}\right)^{m}$. So $t(B) \geqq t\left(B_{i}^{*}\right)$ for all i. Thus we may assume that F is algebraically closed.

We prove the theorem by double induction on d and $|G|$.
If $d=0$, then $J(B)=0$ (cf. [1, Theorem 62.5]), so that it is easy. Thus we may assume $d \geqq 1$, so that $p||G|$.

If $G=\delta(B)$, then $B=F G$, so that it is proved by [11, Lemma 2.3(1)].
Let $H=O_{p^{\prime}}(G)$. Then there is a block ideal b of $F H$ covered by B. Let $T=T_{G}(b)$. By Lemma 1(7), FT has a block ideal \tilde{B} with the same defect d and $t(\tilde{B})=t(B)$.

If $G \neq T$, then since $|T|<|G|$ we get the result by induction. Hence we may assume $G=T$.

Then by Lemma 2, there is a finite p-solvable group X such that $O_{p}(X) \neq 1$ and $F X$ has a block ideal B^{*} with the same defect d and $t\left(B^{*}\right)=t(B)$. Let $P=O_{p}(X),|P|=p^{r}$ and $\bar{X}=X / P$. By [2, V Lemma 4.4] and Lemma 3(2), $F \bar{X}$ has a block ideal \bar{B} with defect $d-r$ and $t\left(B^{*}\right) \geqq t(P)+t(\bar{B})-1$. By [11, Lemma 2.3(1)], $t(P) \geqq r(p-1)+1$. Since $d-r<d$, we get by induction that $t(\bar{B}) \geqq(d-r)(p-1)+1$. Therefore

$$
t(B)=t\left(B^{*}\right) \geqq t(P)+t(\bar{B})-1 \geqq d(p-1)+1
$$

This completes the proof of the theorem.

Corollary (Wallace [11, Theorem 3.3]). Let F be any field of characteristic $p>0, G a$ finite p-solvable group, p^{a} the order of Sylow p-subgroups of G, and $B_{0}(G)$ the principal block ideal of $F G$. Then

$$
t(G) \geqq t\left(B_{0}(G)\right) \geqq a(p-1)+1
$$

Proof. Since $d\left(B_{0}(G)\right)=a$, it is clear from Theorem.
Remark. W. Willems [13] has also improved the result of Wallace [11, Theorem $3.3]$ (cf. [13, 3.5 Theorem and 3.6 Corollary]). But our theorem is not contained in that of Willems.

Let G be a finite p-solvable group such that G has no proper normal subgroups of index prime to p and that $F G$ has a non-principal block ideal B with full defect d, so that $v_{p}(|G|)=d$ where we use the notation $v_{p}(n)$ for an integer $n \geqq 1$ as in [1, p. 376]. Let S be a simple $F G$-module in B, and let $K=\operatorname{Ker} S$ where $\operatorname{Ker} S$ is the kernel of S in G.

Assume $v_{p}(|K|)=d$. Then there is a Sylow p-subgroup D of G such that $D \subseteq K$. Let $M=\left\langle g^{-1} D g \mid g \in G\right\rangle$. Since $K \triangleleft G, M \subseteq K$. Since $M \triangleleft G$ and $p \nmid|G: M|, G=M$. Thus $K=G$, so that S is the trivial $F G$-module. Hence B is the principal block ideal of $F G$, a contradiction.

Thus for any simple $F G$-module S in B we get $v_{p}(|\operatorname{Ker} S|)<d$, so that $v_{p}(|\operatorname{Ker} S|) \cdot(p-1)$ $+1<d(p-1)+1$. Thus our theorem is not contained in [13, 3.5 Theorem (b)].
In fact, there is a finite p-solvable group G which satisfies the above conditions. See our previous example [7, Example 3 (pp. 229-230)].

REFERENCES

1. L. Dornhoff, Group Representation Theory (part B, Marcel Dekker, New York, 1972).
2. W. Feir, The Representation Theory of Finite Groups (North-Holland, New York, 1982).
3. P. Fong, On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263284.
4. P. Fong, Solvable groups and modular representation theory, Trans. Amer. Math. Soc. 103 (1962), 484-494.
5. D. Gorenstein, Finite Groups (Harper \& Row, New York, 1968).
6. S. A. Jennings, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
7. S. Koshitani, Group algebras of finite p-solvable groups with radicals of the fourth power zero, Proc. Royal Soc. Edinburgh 92A (1982), 205-231.
8. G. O. Michler, Blocks and centers of group algebras. Lectures on Rings and Modules (Lecture notes in math. 246, Springer, Berlin, 1972), 429-563.
9. A. Rosenberg, Blocks and centres of group algebras, Math. Z. 76 (1961), 209-216.
10. Y. Tsushima, On the second reduction theorem of P. Fong, Kumamoto J. Science (Math.) 13 (1978), 6-14.
11. D. A. R. Wallace, Lower bounds for the radical of the group algebra of a finite p-soluble group, Proc. Edinburgh Math. Soc. 16 (1968), 127-134.
12. A. Watanabe, On Fong's reductions, Kumamoto J. Science (Math.) 13 (1979), 48-54.
13. W. Willems, On the projectives of a group algebra, Math. Z. 171 (1980), 163-174.

Department of Mathematics
Faculty of Science
Chiba University
Yayol-cho, Chiba-city, 260
Japan

