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Abstract

We present OntoScene, a framework aimed at understanding the semantics of visual scenes
starting from the semantics of their elements and the spatial relations holding between them.
OntoScene exploits ontologies for representing knowledge and Prolog for specifying the interpre-
tation rules that domain experts may adopt, and for implementing the SceneInterpreter engine.
Ontologies allow the designer to formalize the domain in a reusable way and make the system
modular and interoperable with existing multiagent systems, while Prolog provides a solid basis
to define complex rules of interpretation in a way that can be affordable even for people with
no background in Computational Logics. The domain selected for experimenting OntoScene is
that of prehistoric rock art, which provides us with a fascinating and challenging testbed.
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1 Introduction

Human perception of complex visual scenes has been studied for a long time in psychology

and neuroscience (Kondo et al . 2017): according to the seminal work on “high-level

scene perception” (Henderson and Hollingworth 1999), besides low-level or early vision,

concerned with extraction of physical properties such as depth, color, and texture from

an image (Marr 1982), and intermediate-level vision, concerned with extraction of shape
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and spatial relations that can be determined without regard to meaning (Ullman 1996),

a further level of vision is required to perceive and understand a scene:

high-level vision concerns the mapping from visual representations to meaning and includes
[...] the identification of objects and scenes.

In their recent studies, Kveraga and Bar (2014) and Baldassano (2015) demonstrate

that the brain has regions related to higher-order properties like overall geometry, inter-

actions between objects, esthetic beauty, or memorability of a scene. These regions show

a larger response to full scenes than to isolated objects.

Artificial intelligence can play a major role in modeling and understanding, on the one

hand, and reproducing, on the other, the way visual scenes are interpreted by humans.

While deep learning has shown impressive potential in recognizing images (He et al .

2016; Simonyan and Zisserman 2014; Wan et al . 2014; Donahue et al . 2014), hence

providing an ideal tool for low-level and intermediate-level vision, tackling the high-

level vision, and associating a meaning with complex scenes may require an explicit and

symbolic representation of the domain knowledge, and the ability to reason over it.

To understand the semantics of a scene starting from the semantics of its elements and

the relations holding among them we developed OntoScene, which exploits a powerful

combination of ontologies and Prolog: ontologies are used for representing knowledge,

and Prolog for specifying the rules that domain experts actually use to interpret visual

scenes and for implementing the SceneInterpreter engine. OntoScene also relies upon

technologies developed in the multiagent systems (MASs) area: it is in fact part of a

holonic MAS (Gerber et al . 1999) named IndianaMAS (Mascardi et al . 2014; Briola et al .

2014; Briola 2016; Briola et al . 2017) where agents and MASs devoted to multilingual

text understanding, hand-drawn sketch recognition, human interaction, and integration

of digital libraries, cooperate and coordinate with the OntoScene framework to classify

heterogeneous digital objects.

Following a widely accepted approach for the interpretation of a scene, we consider

a scene as an instance or phrase of a visual language where, by analogy with textual

languages, relevant graphical symbols can be understood as lexical components or to-

kens that can be aggregated through the syntactic rules defined according to relations

holding among them. Tokens are the sub-images that make up the scene, the grammar

is represented by rules defined by the domain expert, and geometric relationships are

“vertical”, “overlapping”, “close”, and the like, and represent aggregation operators. To

allow domain experts to describe the rules for interpreting scenes using a language close

to the one in which these rules would be expressed in natural language, we use Prolog.

We have designed a user-friendly language that domain experts may use. This rule-based,

domain-specific language is very similar to Prolog but it hides most Prolog technicalities

and can be compiled into standard Prolog clauses.

OntoScene consists of:

• Detector and Classifier, two external modules (whose functioning is outside the

scope of this paper, and which could be based on our own previous proposals (Briola

et al . 2017) or on more recent deep learning techniques) that partition the input

image into tokens and associate a list of classifications with them, respectively;

• SceneInterpreter, the Prolog core of OntoScene; it reasons on a symbolic represen-

tation of images that make up a scene and returns their interpretations;
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• OntoScene Agent, an agent providing the interface between OntoScene and the

other agents in IndianaMAS;

• The OntoScene Ontology, which models general concepts needed by OntoScene to

work, as well as domain-dependent concepts.

To show the potentiality of the OntoScene framework and to verify the concrete appli-

cability of the proposed solution, we exploit it for the interpretation of complex scenes

from the rock art domain, in particular the one of Mount Bego, in France: Mount Bego

archeological site is well known for its petroglyphs (carvings on rocks), ancient testimonies

of human first activities (Bianchi 2011; Bicknell 1913; de Lumley and Echassoux 2009;

2011). These carvings represent animals, geometric shapes, rural elements, and anthro-

pomorphic figures, often represented together to form complex scenes: if identifying and

interpreting single elements could be quite simple, interpreting complex scenes requires

a very detailed knowledge of the domain and offers a challenging testbed to OntoScene.

The core functionality of SceneInterpreter, namely the generation of all the possible

scene interpretations according to the interpretation rules, is implemented by Donald

Knuth’s Algorithm X for the exact cover problem (Knuth 2000). Algorithm X is a state

space searching algorithm that natively exploits depth-first search and backtracking:

Prolog turns out to be the perfect language for its implementation. Also, Prolog is very

effective as a scene interpretation rule modeling language. Such rules are either sketched

by the domain experts using the user-friendly syntax that we devised to mask Prolog

details or written by ourselves in close cooperation with the experts: in both cases,

the domain expert that we involved in the experiments, the archeologist Dr. Nicoletta

Bianchi, easily grasped the concepts of unification and backtracking, that allowed her

to specify the rules she had in mind, often based on a generate and test technique, in a

natural and intuitive way.

The paper is organized as follows: Section 2 offers the background knowledge needed

for reading the paper and overviews works related to ours; Section 3 provides a gentle

introduction to OntoScene; Section 4 describes how we modeled domain and spatial

knowledge; Section 5 presents the SceneInterpreter module and exemplifies its functioning

on a synthetic domain; Section 6 describes the experiments carried out in the rock art

domain; Section 7 concludes and outlines the future directions of our research.

2 Background and related work

OntoScene is used inside the IndianaMAS holonic MAS, which has been designed and

developed as a JADE (Java Agent DEvelopment Framework (Bellifemine et al . 2007))

MAS. Although OntoScene’s main components are not agents, its interface toward the

IndianaMAS components is the JADE OntoScene Agent, which heavily exploits the

tools that JADE offers to integrate ontologies in the MAS. Assuming the reader is fa-

miliar with knowledge representation in general and with ontologies in particular1, and

in Section 2.1, we provide a brief introduction to IndianaMAS, to JADE, and to the

way ontologies are supported therein. We also provide references to the JPL library2

1 The reader may find an introduction to computational ontologies in (Guarino et al . 2009), the specifi-
cation of the OWL Web Ontology Language in (McGuinness et al . 2004), and information on Protégé
on the official website, https://protege.stanford.edu/, accessed on July 2019.

2 http://www.swi-prolog.org/packages/jpl/, accessed on July 2019.
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for interfacing SWI-Prolog and Java, and to the JTS Topology Suite3 we used to com-

pute relationships among elements in a scene. Section 2.2 compares our work with re-

lated proposals in the logic-based visual languages field, and with spatial ontologies and

ontology-driven scene interpretation.

2.1 Background

IndianaMAS. According to the seminal paper by Wooldridge and Jennings (1995), an

agent is a hardware or, more usually, a software-based computer system that is au-

tonomous (agents operate without the direct intervention of humans or others and have

some kind of control over their actions and internal state); social (agents interact with

other agents and possibly humans via some kind of agent communication language); sit-

uated and reactive (agents perceive their environment and respond in a timely fashion

to changes that occur in it); and proactive (agents do not simply act in response to their

environment, but they are able to exhibit goal-directed behavior by taking the initiative).

Agents are the right tool for coordinating the functioning of software artifacts that show

different capabilities and are possibly distributed across a network, with the purpose of

making the software architecture as modular, flexible, and reliable as possible.

The “Indiana MAS and the Digital Preservation of Rock Carvings: A Multi-Agent

System for Drawing and Natural Language Understanding Aimed at Preserving Rock

Carvings” project (“IndianaMAS” for short4), funded by the Italian Ministry for Ed-

ucation, University and Research (MIUR) and spanning from March 2012 to February

2015, developed a technology platform based on intelligent software agents for the digital

preservation of rock carvings, which both integrates and complements the techniques

usually adopted to preserve heritage sites. IndianaMAS enables the preservation of all

kinds of available data about rock carvings, such as images, geographical objects, tex-

tual descriptions of the represented subjects, allowing the domain experts to organize

and structure such digital objects in a standard way and to supply domain experts with

facilities for issuing complex queries on the data repositories.

The choice of agent technology for addressing the IndianaMAS goals was a very natural

one, given the need that each component of the system, while operating in a highly

autonomous way, could interact and coordinate with the other components to share

information and to reason about it in the most effective way. As discussed by Mascardi

et al . (2014), the three key services offered by IndianaMAS (sketch recognition, image

recognition, and multilingual access to digital libraries) are provided by systems that

may be MASs themselves and that are seen as black boxes by the IndianaMAS agents.

Besides OntoScene, the main components of IndianaMAS, sketched in Figure 1, are:

• The Indiana Ontology, which structures the domain of interest, consists of sub-

ontologies, among which the OntoScene Ontology5 and is accessed by all the agents

and components in the system.

3 https://locationtech.github.io/jts/, accessed on July 2019.
4 We use “IndianaMAS” to denote both the funded project and the MAS that resulted from it. The
project website, http://indianamas.disi.unige.it/, accessed on July 2019, gives access to all
the project’s deliverables and papers.

5 The OntoScene Ontology shares the “Thing” class with the Indiana Ontology: we will not address the
question of whether it should be named an “ontology” or a “sub-ontology”, as this distinction is not
relevant for the paper, and we will always use “ontology” to describe it.
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Fig. 1. IndianaMAS architecture and data flow.

• Client with a graphical user interface, for interacting with IndianaMAS.

• The Indiana GioNS Digital Library, which contains all the digital objects inserted

into the system by registered users, together with their metadata, needed for their

later retrieval.

• Text Agent able to interpret multilingual documents according to the Indiana On-

tology.

• Query Agents, each managing one query coming from the client.

• Loader Agent collecting new data from external resources like the Bicknell Legacy

website6 and managing the creation and insertion of new digital objects into the

Indiana GioNS Digital Libray.

• Interface Agent, managing the creation of new Query Agents.

• The Digital Library (DL) Harvester MAS, which independently and proactively

searches digital libraries on the web to retrieve new images and texts related to the

domain modeled by the Indiana Ontology.

• AgentSketch MAS, which interprets manual drawings based on the Indiana

Ontology.

JADE. JADE is a Java-based software platform that supports the development of agents

and MASs thanks to a graphical user interface and tools supporting the MAS debugging

and deployment phases. JADE MASs can be distributed across machines in a way that is

fully transparent to the developer. The minimal system requirement is the Java runtime

environment or JDK, version 5.

Ontologies in JADE. JADE helps developers in achieving semantic interoperability be-

tween agents thanks to a simple and fast way to exploit ontologies directly inside the

platform and the agents: agents can exchange messages referring to a shared ontology,

6 http://www.bicknell-legacy.it, accessed on July 2019.
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and then rely on the JADE Ontology management offered by the ContentManager class.

The developer may use an ontology to formalize what the agents know (Concepts and

Predicates) and can do (Actions), and share this ontology among the agents: in this way,

knowledge is modeled outside the agents, boosting modularity and reuse, and the content

of messages is based on a shared ontology, facilitating interactions and simplifying the

serialization phase that is then demanded to the JADE platform.

The three types of objects considered when creating an ontology for JADE are:

• Predicates: boolean expressions describing something about the agent environment

or its beliefs.

• Concepts: structured objects describing the elements of the world and their rela-

tionships.

• Agent actions: special Concepts modeling what an agent can do and can be re-

quested to do with a message.

If two agents share the same ontology, one agent can request the other to perform an

Action and can receive an answer containing the Action results, which will be a Concept,

a Predicate, or a list of them.

To allow developers to automatically generate a Java representation of an OWL on-

tology coherent with the JADE requirements, the tool OntologyBeanGenerator7 can be

adopted. The latest version of OntologyBeanGenerator available on the official website

is 4.1, including a basic ontology modeling the over mentioned concepts: domain-specific

concepts must be added as subclasses of Concept, Predicate, and Agent, and then the

tool will provide a Java representation of the ontology, directly usable by JADE.

Given some limitations of that version, we developed OntologyBeanGenerator 5.0

(Briola et al . 2018) as a new Protégé plugin8. OntologyBeanGenerator 5.0 (OBG5.0 in

the sequel, available from www.disi.unige.it/person/MascardiV/Download/
OBG5.0.zip) has been developed with three goals in mind: correcting some bugs of

OntologyBeanGenerator 4.1; adding the methods and exceptions management directly

inside the ontology; and producing an additional output to support the OntoScene frame-

work.

The main improvements of OBG5.0 w.r.t. OntologyBeanGenerator 4.1 are:

• Addition of a new tab called Java Method Mapper to manage the methods creation

and exportation: the purpose of the new tab is to offer the designer of the ontology

a way to directly add methods to the Java version of the ontology: in the previous

version, the only option was to add a property and consequently to get the setter

and getter automatically.

• Exception management: methods are allowed to raise Exceptions. To do this, a spe-

cific ontology to be imported has been created. Thanks to this addition, Exceptions

can be exchanged between agents too, since they are a subclass of Concept.

• Correction of some bugs that were present in the ontology generation stage.

• Possibility to export the class hierarchy in a Prolog format: in order to imple-

ment Prolog rules that reason about the ontology, we need a Prolog representation

7 https://protegewiki.stanford.edu/wiki/OntologyBeanGenerator, accessed on July 2019.
8 We asked and obtained a written consent from the author of OntologyBeanGenerator, Chris van Aart,
to extend the original source code.
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Fig. 2. A simple ontology to be exported in Prolog.

of it. To achieve this goal, we added an automatic ontology export functionality to

OBG5.0. The obtained Prolog representation only formalizes the classes hierarchy,

as this is the only knowledge we currently need in OntoScene.

As an example, the Prolog version of the class hierarchy shown in Figure 2 is:

subclass_of(‘C1’, ‘C11’).
subclass_of(‘C1’, ‘C12’).
subclass_of(‘C11’, ‘C111’).
subclass_of(‘C2’, ‘C21’).

The JPL Library. JPL can be used to embed SWI-Prolog in Java as well as for embed-

ding Java in SWI-Prolog. In both setups, it provides a bidirectional interface. The two

predicates that we used for accessing Java from inside SceneInterpreter are:

jpl_new(+X, +Params, -V) where X is an object (non-array) type or descriptor

and Params is a list of values or references unifies V with the result of an invocation

of that type’s most specifically typed constructor to whose respective formal parameters

the actual Params are assignable (and assigned).

jpl_call( +V, +Method, +Params, -Result) unifies Result with a JPL

reference to (or value of) the result of calling the named Method of V with Params.

The JTS suite. The JTS Topology Suite (JTS) is an open source Java software library

that provides an object model for planar geometry together with a set of fundamental

geometric functions. In OntoScene, it was used to implement the basic relations between

regions that characterize the Region Connection Calculus (RCC, (Li and Ying 2003;

Randell and Cohn 1989)) such as disjoint, named “Disconnetted” in RCC, overlap
(“Partially Overlapping” in RCC), and contains (“Non-Tangential Proper Part In-

verse” in RCC), plus further derived relations.

Using JPL and JTS together. If GR is a reference to the implementation of the interface

for geometric relations, jpl_call(GR, contains, [BB1, BB2], @(true)) suc-

ceeds if the method contains, implemented in Java by exploiting the API offered by

JTS, and called on BB1 (where BB stands for the “Bounding Box” of one image) and

BB2 (the bounding box of another image), returns true. In a similar way, we may have

the following predicate calls in a Prolog piece of code

• jpl_call(GR, overlap, [BB1, BB2], @(true))),
• jpl_call(GR, vertical, [BB2, BB1, ‘up’], @(true)),
• jpl_call(GR, near, [BB1, BB2, 0.5], @(true)) (0.5 is the threshold

for considering two bounding boxes close to each other, expressed in pixels),

• . . .
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with their intuitive meaning, better explained in Section 4.2. As a more complex ex-

ample, the call to jpl_call(GR, group, [JavaBBs, 0.5], @(true)) works if

JavaBBs is the Java representation of a Prolog list, and the group method called on

that list with 0.5 as proximity threshold returns true.

2.2 Related work

Logic-based visual languages. Many approaches for dealing with visual languages have

been proposed in the literature: this research area has a long tradition, with both an ad

hoc conference established in 1984, VL/HCC9, and a high-quality journal, the Journal

of Visual Languages and Computing.10 In this section, we review some approaches that

use logical or relational formalisms for recognizing and understanding visual languages,

starting from the older and more established ones, and moving toward more recent pro-

posals. A complementary approach, which is out of the scope of this paper, is to use

visual programming approaches to specify logic-based languages, as done by Ladret and

Rueher (1991) and Agust́ı et al . (1998)

Defining visual languages using a logic-based language in general, and Prolog in par-

ticular, ensures that declarative and operational semantics can be shared among humans

and between humans and machines. The declarative semantics allows both humans and

machines to reason about the specification independently of the implementation, while

the operational semantics allows the generation and recognition of images defined by

the specification. After a very active period in the early nineties of the last century, the

“logic-based visual languages” research field has produced less results, probably due to

the raise of statistical approaches in the meanwhile.

Crimi et al . (1991) introduced the concept of relational grammars: while textual

languages use an implicit sequential concatenation relationship, the proposed extension

relaxes this constraint by providing an arbitrary number of geometric relationships.

Helm and Marriott (1991) defined the relationships between images and their meaning

via a class of declarative and constraint-based specification languages, written in

Prolog, and Wittenburg et al . (1991) presented a formalism called unification-based

grammar and a parsing algorithm for visual languages. The formalism extends D-PATR

(Karttunen 1986) with logical constraints and a new bottom-up parsing method.

Meyer (1992) introduced a new technique to extend logic programming with terms

representing partially specified images. To this aim, the picture clause grammar, a form

of specification for visual languages similar to the definite clause grammar of textual

languages, is defined. None of these proposals come with an implemented prototype,

making their practical applicability limited.

Santosh et al . (2009) proposal is close to ours both in the system architecture and in

the methodological approach, but not in the final goal. They aim at expressing graphic

symbols by a number of graphical primitives that may be of any complexity and connect-

ing relationships that can be deduced from state-of-the art image treatment and analysis

tools. The existence of suitable tools for image pre-processing is also assumed by us, by

9 The most recent edition of VL/HCC dates back to 2018, https://vlhcc18.github.io/index.
html, accessed on July 2019.

10 https://www.journals.elsevier.com/journal-of-visual-languages-and-computing,
accessed on July 2019.
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including the Detector and Classifier modules presented in the next sections in the On-

toScene architecture. The symbolic representation obtained by the image analysis tools

is then provided to an inductive logic programming solver that outputs a set of logical

rules that define the positive example set. On the contrary, we provide the symbolic rep-

resentation of elements detected in the scene to a Prolog program that, thanks to rules

that model the domain expert knowledge, provide a semantic interpretation of the scene.

Antanas et al . (2012) present a framework combining compositional hierarchies, quali-

tative spatial relations, relational instance-based learning, and robust feature extraction.

For each layer in the hierarchy, substructures in the images are detected, classified, and

then employed one layer up the hierarchy to obtain higher-level semantic structures, by

making use of qualitative spatial relations implemented in Prolog. Given that we may

have scenes that include scenes, we support a hierarchical structure as well. So far, we

only employed two levels in the hierarchy (one scene that includes another scene, that

only includes “atomic” tokens, as in Table 13, third and fourth images) but there are

in principle no reasons for adding more layers. W.r.t. that work, we also have a domain

ontology and a MAS coordinating the interactions among the framework components.

In their work, Di Martino and Esposito (2016) do not consider any low-level image

processing stage, but integrate a domain ontology in the system architecture, like in On-

toScene: the authors describe a procedure and a prototype implementation for the auto-

matic recognition of design patterns from documentation of software artifacts design and

implementation, provided in XMI11. The procedure exploits a semantic representation

of the patterns to be recognized, based on an existing ontology. Both the UML set of

diagrams related to the analyzed software artifacts and the patterns represented in the

ontology are translated into a Prolog knowledge base. A Prolog program implements the

heuristics and features that trigger the recognition on that knowledge base.

Although not based on logic programming, it is worth mentioning the work by

Hammond and Davis (2007), which uses the rule-based language Jess (Hill 2003) for

specifying how sketched diagrams in a domain are drawn, displayed, and edited, and the

work by Costagliola et al . (2005), which uses rules named “sketch patterns” for describing

and recognizing diagrammatic sketch languages, and that are very close to Jess rules.

Spatial ontologies and ontology-driven scene interpretation. Research on modeling either

spatial or domain-dependent concepts (or both) in an ontology, and exploiting such an

ontology for interpreting a graphical scene, is closely connected with our work. Haarslev

et al . (1994) present one of the first works in this area, introducing “spatio-terminological

inferences” to mean a three-level view of inference processes combining quantitative, qual-

itative, and conceptual representations. They use the TBox and ABox of LOOM (Baader

et al . 1991) and apply spatio-terminological reasoning to parsing visual programming lan-

guages. Other works by the same research group use different ontology languages and

address different application domains, but remain consistent with the seminal proposal.

As an example, Haarslev et al. exploit description logic and apply ontological reasoning

to sketch-based queries for Geographical Information Systems (Haarslev 1999; Haarslev

et al . 2002).

11 The XML Metadata Interchange (XMI), https://www.omg.org/spec/XMI, accessed on July 2019.
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In his recent book “Description Logics in Multimedia Reasoning”, Sikos (2017) presents

an integrated and comprehensive analysis of issues relevant to our work, with chapters

on spatial description logics, spatial annotations, and reasoning tools.

Forestier et al . (2008) and Bannour and Hudelot (2011) present other ontologies for

modeling spatial concepts and reasoning on scenes and images. To make a recent example,

Guérin et al . (2017) exploit one ontology that formalizes the basic concepts of the image

processing domain and provides a way to organize and use input and output data in a

formal structure, and provide a formal ontological implementation of the comic books

domain. This ontology is meant to handle the content of a comic book, to support the

automatic extraction of its visual components, and to formalize the semantics of the

domain’s codes.

While taking inspiration from works on spatial ontologies, OntoScene needs to model

notions like “Classification” and “Interpretation” that allow us to distinguish between

the “syntax” of the image, dealt with by the Detector and Classifier modules, and its

semantics, devised thanks to ontological reasoning on the domain, along with logical

reasoning. Being a JADE MAS, our framework requires the OntoScene Ontology to be

compliant with the JADE requirements for ontology management. For these reasons, we

could not reuse existing ontologies as they are; moreover, some ontologies were not avail-

able to the research community and others were not modeled in OWL, as needed in our

work. Nevertheless, we took them into account when modeling the “GeometricRelations”

concept.

3 The OntoScene framework: A gentle introduction

3.1 The initial scenario

Viviana is very curious about the prehistoric rock art of Mount Bego and she would like

to know how a domain expert would interpret the image shown in Figure 3 according to

the most recent archeological findings.

In that image, Viviana can only see a “matrix” in the top right corner, with a kind

of filled trapeze overlapping it, and three symbols very similar to each other, made of

lines with filled rectangles in the middle, in the center, and the bottom left corner of the

image.

Massimiliano, who is good at detecting and classifying symbols from a purely syntactic

point of view, explains her that the “matrix” can be classified as a “Reticulum Class”

with 100% confidence, the trapeze along with the rectangle just below it can be classified

as a “Dagger Class”, and the three symbols made of lines with small filled rectangles

in the middle can be classified as “Up Corn Class”. These classes are drawn from an

ontology modeling information about Mount Bego’s petroglyphs.

Viviana is far from being satisfied, since this syntactic classification says nothing about

the meaning of symbols and of the scene as a whole. She sends the information provided

by Massimiliano to Daniela, who knows many archeologists, and asks her if she can

provide a semantic interpretation of the scene.

Daniela contacts Annie and Henry: Annie is very good in associating domain-dependent

meaning to symbol classifications. By exploiting the same ontology used by Massimiliano,

she can confirm that a symbol classified as a “Reticulum Class”, when interpreted inside
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Fig. 3. A Complex Scene from the book by de Lumley and Echassoux (2009), page 176, Figure
142. This and all the other images taken from that book are reproduced by kind permission of

Professors de Lumley and Echassoux.

a rock art artifact from Mount Bego, actually represents a “Reticulum”; in another

domain, the “Reticulum Class” might have been interpreted as “Prison Bars” or “Chess

Board”: decoupling the classification from the interpretation fosters reuse and modularity,

and the domain ontology is a good means for achieving this aim. A “Dagger Class”

represents a “Dagger” in the Mount Bego rock art domain, and the “Up Corn Class”

represents a “Corniform”.

The semantics associated by Annie with the classifications devised by Massimiliano is

still not enough to interpret the scene: more knowledge and more reasoning are needed.

Taking Annie’s interpretation of symbols belonging to the scene into account, Henry

reasons about them and their spatial relationships and finally informs Daniela that the

dagger and the reticulate at the top of the image identify the “Storm God” inside a

pastoral scene, characterized by a group of corniforms (de Lumley and Echassoux 2009).

Another possible interpretation could be that the two corniforms in the center of the

image, one inside the other, identify the “Bull God”, and the bottom left corniform is

a stand-alone symbol, unrelated with the others. However, Henry thinks that the first

interpretation is the most likely one.

Viviana is now happy with this explanation: by moving from symbol classification (sym-

bol syntax) to interpretation (symbol semantics), and then combining interpretations into

coherent subscenes via domain-dependent rules, her friends helped her understanding the

image.

The people involved in this scenario and the way they interact reflect the OntoScene

framework that we developed: each person could be suitably associated with an agent or

a component in the OntoScene software framework depicted in Figure 4:

• Viviana is an unnamed, generic agent AgentX that wants to understand the mean-

ing of a scene depicted inside an input image: she interacts with a software module

(Massimiliano) able to detect coherent sub-images, also named “tokens”, inside
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Fig. 4. OntoScene Framework: architecture and data flow.

an image and to classify them, and with another agent (Daniela) that acts as an

interface with the domain experts.

• Massimiliano plays the role of token Detector and Classifier, and is able to

divide an input image into sub-images. The computed set of sub-images, each one

associated with a list of possible classifications, is sent back to AgentX, Viviana in

this example.

• Daniela acts as the OntoScene Agent, managing the interactions with Annie

and Henry, to provide an interpretation for the image.

• Annie and Henry implement the intelligent engine able to interpret scenes according

to the meaning of classified tokens, and to the rules that aggregate such interpre-

tations (also taking spatial relations into account), to provide a semantics of the

complex scenes (SceneInterpreter).
• All these agents and components share a common ontology.

To go deeper inside the high-level architecture of OntoScene and the data flow within

it, white rectangles in Figure 4 represent system modules, while light yellow (light gray

in B/W) rectangles represent either data flowing between them, or data that are used by

them. Circles represent agents and the blue (dark gray in B/W) rectangles with rounded

corners represent the two platforms involved in the process.

An arrow flowing from A to B tagged with data D, represented as a rectangle on the

arrow itself, means that D is generated as an output by A and used as an input by B.

An arrow flowing from A to B with no tag means that A generates some output that

becomes an input for B (but we do not need to identify it). A gray line between two

components means that a “uses/is used” relationship holds between them.

Data managed by OntoScene are:

• Image, the raw input image to be interpreted;
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Fig. 5. How the Detector and Classifier modules interact.

• InputImages, the output of the Detector and Classifier representing the input image

and the tokens therein, along with their bounding boxes and their classifications,

in a symbolic format;

• Prolog Rules, which are set by the domain experts and define how to interpret an

image;

• Interpretations, which represent the final output computed by OntoScene;

• Ontology, which represents the application domain, namely the classifications, in-

terpretations, and geometric relationships that are meaningful for the specific image

domain and interpretation task; these concepts are used by the Rules (Section 3.5).

3.2 Syntactic pre-processing: Detector and Classifier

The interpretation of the input scene requires that it has been segmented into atomic

sub-images (“tokens”) and that one or more classifications have been associated with

each of them. To this aim, we assume the availability of a Detector and Classifier.
We do not enter into the details of how these modules could be designed and imple-

mented, since many libraries and tools for solving the bounding box detection and the

classification problems exist and are available to the community. Just to make some ex-

amples, the MathWorks Image Processing Toolbox12 provides algorithms for image pro-

cessing, analysis, visualization, and segmentation; OpenCV13, cross-platform and free for

both academic and commercial use, offers 2D segmentation and recognition functionali-

ties suitable for the implementation of both the Detector and the Classifier, besides many

other advanced features; ImageJ14, written in Java, and Pillow15, in Python, are other

libraries providing edge detection functionalities useful for implementing the Detector
module.

As far as the classification of images in the rock art domain is concerned, we refer to our

previous work within the IndianaMAS project, where ad hoc detection and classification

algorithms were developed (Briola et al . 2017; Mascardi et al . 2014).

To show how the Detector and Classifier modules are expected to work, we

consider an example. The input image in Figure 5 contains three figures: a rectangle,

a triangle, and a circle. The Detector identifies the three sub-images and associates

them with a bounding box rectangle (BB) representing their position and size within

the image. The Classifier analyzes the sub-images identified by the Detector and

assigns the R (rectangle), T (triangle), and C (circle) classifications, consistently with

the domain ontology.

12 https://www.mathworks.com/products/image.html, accessed on July 2019.
13 http://opencv.org/, accessed on July 2019.
14 https://imagej.nih.gov/ij/index.html, accessed on July 2019.
15 https://python-pillow.org/, accessed on July 2019.
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Fig. 6. The SceneInterpreter module.

The Classifier is expected to assign multiple classifications to the detected figures,

in case of ambiguity. Its output is hence a list of possible classifications for each BB,

with an associated confidence in the interval [0.0, 1.0]. If there are no doubts about the

classification, the list will contain one element only.

3.3 From syntax to semantics: SceneInterpreter

Figure 6 shows the SceneInterpreter, the core module of OntoScene. SceneIn-
terpreter takes an image consisting of a set of tokens in input (we will call this set a

“scene”) and returns all its interpretations. It is driven by logical rules that define the

possible meanings of each token recognized during the detection and classification stages,

and the “well formed” scenes that the framework can recognize and interpret along with

their meaning.

A figure classified as a Circle might be interpreted as a Planet in an astronomic

domain, as a Face in an emoticon recognition domain, as a Traffic_Light_Element
by a self-driving car: the classification as a circle is not enough to correctly interpret a

figure in a context made up of other figures. Making the link between the classification

and the interpretation levels explicit allows the designer to reuse the classification output

and to change the scene interpretation according to the current domain, by only changing

the interpretation rules.

As an example, in the rock art domain that provides the case study of this work, a

figure classified as an Anthropomorphic_Shape might be interpreted as a Human, a
figure classified as a Line_Shape might be either a Sword or a Staff, and a triangle

should be interpreted as a mage cap.

The interpretation of an individual token is defined by means of the

interpretation(Cl, ImgInt) fact that associates the interpretation ImgInt with

the classification Cl. In the rock art example, interpretation facts might look like

interpretation(‘Anthropomorphic_Shape’, ‘Human’).
interpretation(‘Line_Shape’, ‘Sword’).
interpretation(‘Line_Shape’, ‘Staff’).
interpretation(‘Triangle_Shape’, ‘MageCap’).

Rules that define how to interpret scenes can be presented, in a user-friendly and

simplified form, as rule(SceneInt, ImgList){Cond}, stating that the scene con-

sisting of sub-images listed in ImgList should be interpreted as SceneInt based on

conditions Cond. The conditions involve the interpretations of sub-images in ImgList
and the spatial relations between/among them.
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Table 1. User-friendly modeling language for scene interpretation rules: boldface symbols

are terminals; alphanumeric uppercase strings are defined in the usual way; properties

should include at least the geometric binary relations listed in the BNF, but unary prop-

erties such as the image color or source, and n-ary properties such as belonging to the

same group, could be added

interpretationRule ::= rule(sceneInt , [ imgList ] ){cond}
sceneId ::= uppercase alphanumeric string
imgId ::= uppercase alphanumeric string
interprId ::= uppercase alphanumeric string
sceneInt ::= ‘ sceneId ’
imgList ::= imgId | imgId , imgList
constraint ::= interprId( imgId ) | property( imgList )
disjcond ::= constraint or constraint | constraint or disjcond
cond ::= constraint | ( disjcond ) | constraint ; cond
property ::= horizontal | vertical | diagonal | disjoint | ...

Fig. 7. Input scene: first example.

Domain experts may use the user-friendly syntax, whose BNF is presented in Table 1,

which can be automatically translated into standard Prolog16.

As an example, the first rule below can be read as “if token X has been interpreted

as a human figure, and if token Y has been interpreted as a sword, and if X and Y are

positioned horizontally, then they form a scene representing a Warrior”. The second

rule is similar, but states when two tokens represent a Shepherd.

rule(‘Warrior’, [X,Y]) { rule(‘Shepherd’, [X,Y]) {
Human(X); Human(X);
Sword(Y); Staff(Y);
horizontal(X,Y); horizontal(X,Y);

} }

Let us suppose that the Classifier has classified the leftmost sub-image in

Figure 7 as an Anthropomorphic Shape and the rightmost as a Line_Shape,
and the rules above have been loaded into the SceneInterpreter module. Let

us also assume that the horizontal geometric relationship holds between the two

sub-images. SceneInterpreter generates two interpretations: Warrior(I1) and

Shepherd(I2). Interpretation I1 is generated when the rightmost sub-image is in-

terpreted as a Sword (because of the rule for Warrior), while I2 is generated when it

is interpreted as a Staff (because of the rule for Shepherd).

16 The translation has not been implemented so far, but the automatic translation rules are easy to
devise, with “;” translated into “,”, or translated into “;”, testing of geometric properties translated
into jpl call with the property to be tested as argument.
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Fig. 8. Input scene: second example.

Fig. 9. Input scene: third example.

Figure 8 shows the interpretations of the same scene shown in Figure 7 where a tri-

angular shape has been added on top of the human figure. SceneInterpreter always

tries to aggregate as many tokens as possible, but since there are no rules involving the

mage cap together with the other elements of the figure, the computed interpretations

are those output before, where the triangle is interpreted as a “stand-alone” element.

If another rule were available,

rule(‘Wizard’, [X,Y,Z]) {
Human(X);
MageCap(Y);
Staff(Z);
vertical(X,Y);
horizontal(X,Z);

}

stating that a wizard is a human figure with a magician’s hat on top and a stick placed

horizontally, then the SceneInterpreter output would be the one shown in Figure 9.

3.4 Making OntoScene functionalities available to JADE: The

OntoSceneAgent

OntoScene has been designed to be a component able to offer the interpretation service,

and to be naturally integrated within a JADE MAS. The steps required to perform the

integration in a JADE MAS are:

• to integrate the ontology used in the MAS with the OntoScene Ontology in order

to allow all agents to be aware of the input and output concepts used within the

framework and allow their exchange via JADE messages;

https://doi.org/10.1017/S1471068419000462 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000462


472 D. Briola et al.

Fig. 10. The OntoScene Ontology in the OntoScene context.

• to add a new JADE action representing the interpretation of a scene

(InterpretAction): we achieved both these two steps thanks to the OBJ5.0

framework (Briola et al . 2018);

• to implement an agent acting as an interface between the other agents and On-

toScene; this agent (the OntoSceneAgent) waits for an agent A to send a re-

quest to perform the action InterpretAction, with an input scene, calls the

SceneInterpreter module on it, and returns the scene interpretations to A.

Since this issue is not central to the paper, which focuses on the implementation of the

OntoScene framework, we do not expand it further.

3.5 The OntoScene Ontology

To formalize the OntoScene domain and make interoperability among the many modules

involved in the framework possible (Figure 10), an ontology called OntoScene Ontology

has been designed and implemented.

The OntoScene Ontology is aimed at ensuring modularity and domain independence:

the user can extend it by adding more domain concepts from existing or new ontologies.

In fact, concepts such as Classification and Interpretation, which characterize

the ontology (see Section 4.1 for more details) are necessarily domain-specific: by changing

the domain ontology that extends the OntoScene Ontology, and consistently changing

the interpretation rules, the user can modify the application domain while leaving the

OntoScene core functionalities unchanged.

3.6 Back to the initial scenario

Thanks to the components mentioned in the previous sections, we can obtain the bound-

ing boxes shown in Figure 11 and the interpretations, represented in a way that should

be intuitive enough and that will be explained in details in Section 5, below:

I1 = [Storm_God(Reticulum-0, Dagger-1),
Group_Of_Corniforms(Corniform-2,Corniform-3,Corniform-4)].

I2 = [Storm_God(Reticulum-0, Dagger-1),
Bull_God(Corniform-2,Corniform-3),Corniform-4].
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Fig. 11. The Scene from the book by de Lumley and Echassoux (2009) with detected
bounding boxes.

Given that bb(X,Y,W,H) states the X and Y coordinates of the top- and leftmost corner

of the bounding box plus its Width and Height, this is the actual result we get by running

OntoScene on the input

image(0, bb(161, 12, 165, 167), [class(‘Reticulum_Class’, 1.0)]).
image(1, bb(257, 68, 109, 281), [class(‘Dagger_Class’, 1.0)] ).
image(2, bb(86, 323, 162, 129), [class(‘Up_Corn_Class’, 1.0)] ).
image(3, bb(107, 337, 181, 162),[class(‘Up_Corn_Class’, 1.0)] ).
image(4, bb(3, 506, 144, 23), [class(‘Up_Corn_Class’, 1.0)] ).

and includes the correct interpretation I1 provided by Henry de Lumley and Annie

Echassoux, two archeologists who spent their life on rock art interpretation, in the book

from which the image is taken.

4 Modeling and implementing domain and spatial knowledge

4.1 Domain knowledge

The OntoScene Ontology imports the JADE template ontology, needed to let the ontology

be directly usable by JADE, as described in Section 2.1. It contains all the concepts that

SceneInterpreter uses during a scene interpretation and is designed to be extended

with an existing domain ontology to integrate SceneInterpreter within a MAS in a

transparent way. The classes provided by the OntoScene Ontology are shown in Figure 12.

Point. The Point class contains two single float properties X and Y.

BoundingBox. The BoundingBox class, abbreviated as BB, represents the rectangle that
bounds a single image.
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Fig. 12. The OntoScene Ontology.

ComputedClassification. The ComputedClassification class represents a classi-

fication computed by the Classifier along with its confidence. It contains the

single properties identifiedClassification with range Classification and

confidence with range float.

ComputedInterpretation. The ComputedInterpretation class represents an inter-

pretation computed by SceneInterpreter with the associated confidence and its

size, namely how many input images have been aggregated. It contains the single proper-

ties identifiedInterpretation with range Interpretation, confidence with

range float and size, with range int.

Classification and Interpretation. Classification and Interpretation are two

classes without any property and their meaning is the intuitive one. To allow

SceneInterpreter to interpret an input scene, some classes from the domain on-

tology must necessarily extend these two classes with domain-specific classifications and

interpretations.

GR. The GR class is used as a container for methods representing geometric relation-

ships, to be called within the body of rules through predicates offered by the JPL Library.

SceneInterpreter uses an internal class called GeometricRelationsImpl with

the implementation of those methods that we used to test the program. More sophis-

ticated implementations can be used instead of the ones we provide: the Java Method

Mapper panel of OBG5.0 allows the developer to create methods under the GR class and

export their interface, in order to be implemented.
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Fig. 13. The Image class. The “multiple” attribute associated with classifications,
interpretations, and subParts, means “list of”.

Image. The Image class represents a basic or composite scene. It contains a sin-

gle id property of type int that acts as an identifier, a single boundingBox
property of type BoundingBox for the BB, a multiple classification prop-

erty of type ComputedClassification listing all the classifications assigned by

the Classifier to the image in the scene, a multiple interpretation prop-

erty of type ComputedInterpretation including the interpretations computed by

SceneInterpreter and a multiple subParts property of type Image that contains

all the sub-images that form the image, as shown in Figure 13.

The Image class is the main data structure used by SceneInterpreter to keep

track of the relationship between Prolog scenes represented as Prolog facts, and Java

scenes represented as instances of the Java Image class. Each time a new node (namely,

a new scene) is added to the scene graph, the corresponding Image instance is also

created inside it: there is a one-to-one association between each node in the scene graph

and an Image instance. In the sequel, we will usually use image and sub-image when we

refer to data representations on the Java side, and scene and sub-scene when we refer to

the Prolog side.

In order to work properly, SceneInterpreter expects input images with these fea-

tures:

• id and boundingBox fields instantiated;

• classifications instantiated with a list of one or more classifications;

• empty interpretations list;

• empty subParts list.

The association between classifications and interpretations is computed by the Prolog

engine via the interpretation/2 predicate introduced in Section 3.3.

After the creation, via the aggregation rules, of a composite scene in Prolog, Scene-
Interpreter creates a new Image object that corresponds to the new scene and has

these features:

• id field instantiated with a new unique identifier;

• boundingBox obtained by merging the BBs of the subscenes;

• empty classifications list, as only basic scenes have a classification;

• interpretations list containing the computed interpretations;

• subParts instantiated with the list of the sub-images.

SceneInterpretation. The SceneInterpretation class represents an interpretation of

the input scene. It contains a composedBy property of type Image that contains all the
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Fig. 14. Domain-dependent concepts that extend OntoScene classes.

Fig. 15. The files generated by OBG5.0.

images of the interpretation in the format presented above, corresponding to the scenes

that can coexist.

The agent that, upon reception of an InterpretScene action presented below, is

required to provide a scene interpretation, returns a SceneInterpretation list.

InterpretScene action. The InterpretScene class extends the JADE AgentAction
class and represents the action of requesting the interpretation of an input scene. It

contains a multiple property inputImages of type Image representing the images in

the input scene and two boolean properties, distinct and filtered, which refer to

the interpretation mode. When distinct mode is selected, all the scenes in the final list

of SceneInterpretation must be distinct Java objects, in order to obtain a readable

and writable data structure. When filtered mode is on, only filtered interpretations

are returned.

An example ontology: Battle. The Battle ontology models a simplified domain that

will be used in the next section. Figure 14 shows how the Classification and

Interpretation classes of OntoScene can be sub-classed by classes characteriz-

ing the Battle domain, where armed warriors fight using swords or axes. The Java files

generated by OBG5.0 are shown in Figure 15.
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Fig. 16. Graphical representation of the formula used by relNear.

4.2 Spatial knowledge

To interpret scenes with SceneInterpreter, the user must identify the required geo-

metric relationships and must create methods in the GR class of the OntoScene Ontology

to represent them. If the user has no special requirements, (s)he can use the GRImpl we

provide with the framework. Implementing geometric relationships is not easy, because

different domains may need different relationships. An exception are topological relation-

ships (disjoint, overlap, etc.) for which known mathematical formalisms exist. We used

the JTS library to implement the following ones:

Boolean horizontal (BB bb1, BB bb2, String pos)
Boolean horizontal (BB bb1, BB bb2)
Boolean vertical (BB bb1, BB bb2, String pos)
Boolean vertical (BB bb1, BB bb2)
Boolean diagonal (BB bb1, BB bb2, String pos)
Boolean diagonal (BB bb1, BB bb2)
Boolean disjoint (BB bb1, BB bb2)
Boolean overlap (BB bb1, BB bb2)
Boolean contains (BB bb1, BB bb2)
Boolean absNear (BB bb1, BB bb2, float th) /* absolute proximity */
Boolean relNear (BB bb1, BB bb2, float th) /* relative proximity */
Boolean absGroup (List <BB> bbs, float th) /* group, using absNear */
Boolean relGroup (List <BB> bbs, float th) /* group, using relNear */

Horizontal, vertical, and diagonal relationships. The parameters of these methods are

two BBs and – optionally – a string indicating the position that bb1 must have w.r.t.

bb2. The position may be right or left for horizontal, up or down for vertical, and se,

sw, ne, nw for diagonal. For example, diagonal(bbx, bby, ne) is true if bbx is

positioned northeast w.r.t. bby.

Topological relationships disjoint, overlap, and contain. These methods take two BBs
bbx and bby in input and answer whether bbx rel bby holds. For example,

contains(bbx,bby) is true if bbx contains bby.

Absolute proximity AbsNear and relative proximity RelNear. Besides the two BBs, these
methods also have a third parameter to state the threshold under which the two BBs are
considered “close”. This threshold therefore defines the proximity semantics.

In absNear, the threshold indicates an absolute value expressed in an arbitrary mea-

sure unit determined by the domain expert such as pixels, centimeters. For example,

assuming pixels as the measure unit, absNear(bbx, bby, 10.0) is true if the ab-

solute distance between the edges of bbx and bby is less than 10 px.
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In relNear, the threshold indicates a relative value between 0 and 1.0. This allows us

to define “proximity” in a way robust to the image scaling. For example, relNear(bbx,
bby, 0.2) is true if X ≤ 0.2, where X is the value of some expression that the user can

define. The one we implemented is explained in Figure 16: we compute JTSDist, namely

the distance between bbx and bby computed by JTS, we merge bbx and bby into mbb,
we compute Diagonal, namely the length of mbb diagonal. X is JTSDist/Diagonal.
If both bounding boxes are scaled by a factor F, relNear(bbx*F, bby*F, 0.2) is

the same as relNear(bbx, bby, 0.2), making the definition invariant w.r.t. scaling.

Finally, the absGroup and relGroup methods compute the “neighborhood” rela-

tionship on a list of BBs using absNear and relNear, respectively.

5 SceneInterpreter

The Detector and Classifier modules work on raw images and produce an “in-

put image” consisting of bounding boxes associated with possibly many classifications

of their content, drawn from an ontology, along with a confidence on that classifica-

tion. SceneInterpreter takes this classified “input image” as input and transforms

it into a set of “basic scenes”, namely triples consisting of (image, classification, and

interpretation).

For each input image, SceneInterpreter creates as many basic scenes from the

(classification, interpretation) pairs as it can. For example, if a sub-image Img1 has

been classified by the Classifier module as C1 or C2, and C1 has I11 and I12 as

possible interpretations, while C2 can only be interpreted as the I21, three basic scenes

are generated:

basic_scene(Img1, C1, I11).
basic_scene(Img1, C1, I12).
basic_scene(Img1, C2, I21).

The scene interpretation rules that drive SceneInterpreter define how to aggre-

gate the elements in a scene, be they atomic sub-images or scenes, depending on the

geometric relationships holding among them. We name them aggregation rules in the

remainder. Aggregation rules have been also called “scene interpretation rules” in the

paper; in this section, we prefer to use “aggregation” to clearly differentiate them from

the interpretation predicate that will be presented in Section 5.1, which associates

an interpretation to a basic image, based on its classification. A composite scene is a scene

created by the aggregation of other scenes, which may be in turn basic or composite ones.

We talk about scene, without further distinction, when it is not necessary to distinguish

whether the scene is a basic or a composite one. SceneInterpreter generates a scene

graph representing all the scenes that can be derived by applying the aggregation rules

to the basic scenes generated from an input image.

As an example, the figure in Table 2, left, shows a scene graph resulting from an input

scene containing five different sub-images: they have been transformed into five basic

scenes (BS1, BS2, BS3, BS4, and BS5), and then into [composite] scenes thanks to the

available aggregation rules. For example in this case, by applying some aggregation rule,

BS1 and BS2 can be aggregated into CS1. BS2, BS3, and BS4 can be aggregated into

CS2, and so on. We point out that BS2 was used by an aggregation rule to form CS1,
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Table 2. A scene graph created from an input image with five sub-images, plus the

generated interpretations.

Input image Interpretations

I1 = [BS1, BS2, BS3, BS4, BS5]
I2 = [CS1, BS3, BS4, BS5]
I3 = [CS1, BS3, CS3]
I4 = [BS1, CS2, BS5]
I5 = [BS1, CS4]

and by another to form CS2. In the same way, BS4 can be used to form both CS2 and

CS3. BS2 and BS4 are called shared scenes. The scene graph is oriented (from top to

bottom) and acyclic. A top node, or top scene, is a node with no incoming edges. In the

figure in Table 2, left, CS1 and CS4 are top nodes.

SceneInterpreter core functionalities have been implemented in Prolog. For effi-

ciency issues, however, geometric relationships have been implemented in Java and are

called by Prolog through the JPL Library introduced in Section 2.1.

The steps to be performed to set up SceneInterpreter and to interpret an input

image are the following:

1. define the aggregation rules in Prolog (done only once);

2. initialize the Java SceneInterpreter module;

3. select the aggregation rules;

4. load a scene composed of a list of images plus their classification (the output of the

Detector and Classifier modules), serializing them into basic scenes;

5. apply aggregation rules to create composite scenes and generate the scene graph;

6. generate all the interpretations by calling the knuth algo x predicate on the scene

graph;

7. filter out interpretations that can be derived from others (optional) and provide

the final sorted result.

The steps from 4 to 7 are discussed in Sections from 5.1, 5.2, 5.3, and 5.4, respectively.

5.1 Serializing images in basic scenes

To allow SceneInterpreter to serialize input images into Prolog scenes, associations

between classifications and domain interpretations created under the Classification
and Interpretation ontology classes must be provided. The predicate that OntoScene

offers to this aim is

interpretation/2
interpretation(Class,Inter).
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whose meaning is that a picture classified as Class can be interpreted as Inter. For
the classification and interpretation within the Battle domain, we defined the following

facts:

interpretation(‘Human_Class’, ‘Human’).
interpretation(‘Sword_Class’, ‘Sword’).
interpretation(‘Axe_Class’, ‘Axe’).

The Human Class classification can be directly interpreted as Human, the Sword Class
as Sword, and the Axe Class as Axe. During the image serialization, these facts are

used by SceneInterpreter to create the basic scenes.

A predicate called scenes/6 is used to represent basic and composite scenes in Prolog.

The signature of the predicate is the following:

scenes/6.
scenes(ID, BB, Class, Inter, Conf, SS).

• ID is the identifier that Prolog uses to identify scenes17;

• BB is the reference to the Java object representing the BoundingBox of the image

in the input scene;

• Class is the classification of the image from which this scene comes from. The

field is instantiated in basic scenes and is empty in composite scenes;

• Inter is the interpretation of the scene. For basic scenes the variable is instantiated

by calling the interpretation/2 predicate, while for composite scenes the value

to associate with the variable is computed by applying the aggregation rules;

• Conf is the confidence of the interpretation associated with the scene. For ba-

sic scenes whose confidence in the classification is C, Conf is computed as

C*(1.0/Count), where Count is the number of interpretations associated with

the scene. For composite scenes, Conf = (Conf1 + Conf2 + ... ConfN)/N
where N is the number of aggregated scenes, and ConfX is the confidence of X
scene;

• SS stands for SubScenes and is the list of the IDs of the basic scenes belonging

to the scene.

The serialization algorithm is, in pseudocode, the following:

InputScene S;
For (Image img: S.getImages ())
For (Classification class: img.getClassifications ())

For (Interpretation inter: interpretation (class, inter))
Assert (scenes (ID, BB, class, inter, Conf, SS))

That is, given an input scene S, for each sub-image img belonging to S, for each clas-

sification class of img, for each interpretation inter found by calling the Prolog

interpretation/2 predicate, the fact scene with suitable arguments is asserted in

the Prolog knowledge base, for efficient retrieval. Each individual input image is subdi-

vided into as many basic scenes as the found (class, inter) pairs.

17 The Id property of the Image class is used by Java and may be different from ID.
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Table 3. Input Scene, example 1

Input Image Interpretations

scene(0, BB1, ‘Human_Class’, ‘Human’, 1.0, [0]).

scene(1, BB2, ‘Sword_Class’, ‘Sword’, 1.0, [1]).

scene(2, BB3, ‘Axe_Class’, ‘Axe’, 1.0, [2]).

Fig. 17. Extending the Battle ontology with new classifications and interpretations.

For example, let us suppose that the input scene consists of three sub-images shown

in Table 3, classified as Human Class, Sword Class, and Axe Class with maximum

confidence. Images are serialized in three scene Prolog facts as shown in the right part

of the table.

In the first example, each classification is associated with only one interpretation de-

fined by the domain ontology, but in general there could be a one-to-many relationship.

Let us now make the example more complex by adding the Dagger Class classifica-

tion and the Dagger, God, God Axe, and Wizard interpretations (Figure 17). New

interpretation facts could be defined as:

interpretation(‘Human_Class’, ‘God’).
interpretation(‘Human_Class’, ‘Wizard’).
interpretation(‘Axe_Class’, ‘God_Axe’).
interpretation(‘Dagger_Class’, ‘Dagger’).

In a second example shown in Table 4, the image in the center can be classified into two

ways: Sword Class and Dagger Class (each having only one interpretation), while

the image on the left has one classification Human Class with three interpretations

(Human, God, and Wizard). The image on the right has one classification (Axe Class)
and two interpretations (Axe and God Axe). The confidence is 1.0*(1.0/3) = 0.33
for each interpretation of the left image, is 0.8*(1.0/1) and 0.5*(1.0/1)) for the

two interpretations of the image in the center, and is 1.0*(1.0/2) for the image on

the right.
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Table 4. Input Scene, example 2

Input Image Interpretations

scene(0, BB1, ‘Human_Class’, ‘Human’, 0.33, [0]).

scene(0, BB1, ‘Human_Class’, ‘God’, 0.33, [0]).

scene(0, BB1, ‘Human_Class’, ‘Wizard’, 0.33, [0]).

scene(1, BB2, ‘Sword_Class’, ‘Sword’, 0.8, [1]).

scene(1, BB2, ‘Dagger_Class’, ‘Dagger’, 0.5, [1]).

scene(2, BB3, ‘Axe_Class’, ‘Axe’, 0.5, [2]).

scene(2, BB3, ‘Axe_Class’, ‘God_Axe’, 0.5, [2]).

5.2 Applying aggregation rules for composite scenes and updating the scene

graph

After defining the interpretation/2 predicate for the basic scenes, it is necessary to

create aggregation rules for composite scenes. We use the predicate rules/2, stating
which scenes should be aggregated, which geometric relationships between their BBs

should hold, and computing a list of scene facts that SceneInterpreter uses to

generate (possibly) a new composite scene, with interpretation Inter.
The clauses for the rule predicate, which are semi-automatically compiled into Prolog

from the user-friendly modeling language presented in Table 1, follow this pattern:

rule(Inter, Scenes): -
% Part 1: Selects the scenes to be aggregated in the Scenes list
% Part 2: Computes geometric relationships

These rules convey the very same meaning and structure as those presented in Section

3.3; they are less readable since they use the concrete Prolog syntax and JPL calls to

spatially related methods based on JTS. For the sake of clarity, we will abuse Prolog

notation using ImgInt(X) to mean that token X has been interpreted as ImgInt. The
(manual) process for compiling the user-friendly modeling language into Prolog is not

optimized: this can be noticed for example in the usage of append in Table 5, which

could be avoided using unification instead. While losing in elegance of the resulting code,

the naif manual compilation produced rules which follow the same pattern and gave

useful hints on how they implement the automatic compilation, which will be addressed

as a close future work.

Two utility predicates used inside rule clauses are

relations/1
relations(GR).

and

subclass_of/2
subclass_of(Class, SubClass).
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Table 5. Warrior Scene (Human + Weapon). Image and rule

Example image Scene interpretation rule

rule(‘Warrior’, Scenes) :-
scene(ID1, BB1, Class1, ‘Human’, Conf1, SS1),
subclass_of(‘Weapon_Class’, Class),
interpretation(Class, Weapon),
scene(ID2, BB2, Class2, Weapon, Conf2, SS2),
append([scene(ID1, BB1, Class1, ’Human’, Conf1, SS1)],

[scene(ID2, BB2, Class2, Weapon, Conf2, SS2)],
Scenes),

relations(GR),
jpl_call(GR, horizontal, [BB1, BB2], @(true)),
jpl_call(GR, near, [BB1, BB2, 2.0], @(true)).

relations(GR) unifies GR with a reference to the implementation of the interface for

the geometric relations, instantiated during the OntoScene configuration stage via a call

to jpl new/3. In our code, the assertion of the relations(GR) predicate is achieved

via

assert_relations :-
jpl_new(‘onto_impl.GeometricRelationsImpl’, [], GR),
assert(relations(GR)).

Other OntoScene users might use our implementation of geometric relations, provided

via the ‘onto impl.GeometricRelationsImpl’ interface, or develop a new one.

The subclass of(Class, SubClass) is a predicate exported with OBG5.0: it al-

lows scenes to be analyzed by exploring hierarchies of classes in the ontology, in particular

those below the Classification and Interpretation classes.

Each scene generated by applying one aggregation rule is asserted as a node of the

scene graph which is modeled via the image graph(G) fact, and which is updated any

time a new scene interpretation is computed for a given image, reaching at the end the

structure exemplified in Table 2.

In the sequel, we provide some examples of aggregation (scene interpretation): near
is used as an abbreviation for absNear and lengths are expressed in pixels.

Example 1: Warrior Scene (Human + Weapon). A generic Warrior scene can be defined

as a combination of a Human scene and a basic scene classified as X, where X is a subclass

of Weapon Class in the ontology (Table 5).

A composite scene can be defined by other composite scenes. For example, if we want

to define a Battle scene as a combination of two composite Warrior scenes, a rule
could be defined to check that two Warrior scenes have been detected in the image, and

that they are close enough. In general, the user can implement rule in any way, using

all the expressive power of Prolog and creating auxiliary predicates for designing and

implementing more complex rules. The rules presented so far only aggregate two scenes

at a time, but of course it is possible to select a larger number. For example, a scene of

War could be formed by an arbitrary number of Battle scenes close to each other, as

shown in the next paragraph.
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Table 6. War scene (group of Battles)

Example image Scene interpretation rule

rule(‘War’, Scenes) :-
findall(scene(ID, BB, Class, ‘Battle’, Conf, SS),

scene(ID, BB, Class, ‘Battle’, Conf, SS),
Battles),

sublist(Battles, Scenes),
relations(GR),
jpl_call(GR, group, [BBs, 10.0], @(true)).

Example 2: War scene (group of Battle). Figure in Table 6 shows a War scene consisting

of three Battle scenes, close to each other. The rule implementation could be the one

on the right of the table, which looks for all the asserted Battle scenes and nonde-

terministically selects some of them using the sublist/2 predicate. Finally, it checks

that those scenes are close enough to form a group (jpl call(GR, group, [BBs,
10.0], @(true))).

5.3 Computing all the possible interpretations

The main functionality of SceneInterpreter consists of analyzing all the nodes in

the scene graph to determine which of them can coexist in an interpretation (which has

to contain all the basic scenes). Two nodes can coexist in the same interpretation if and

only if they do not share any basic scene. For example, in the figure in Table 2, node

CS1 and node CS2 cannot coexist in an interpretation because they share BS2.

This “coexistence check” resorts to the NP-complete exact cover problem (Karp 1972).

Let X be the set of the basic scenes computed, and asserted, in the way discussed in

Section 5.1. Each node in the scene graph identifies a subset of X: the scene graph is a

collection S of subsets of a set X. By definition, an exact cover of X is a subcollection S*

of S that satisfies two conditions:

1. The intersection of any two distinct subsets in S* is empty, that is, the subsets in

S* are pairwise disjoint. In other words, each element in X is contained in at most

one subset in S*.

2. The union of the subsets in S* is X, that is, the subsets in S* cover X. In other

words, each element in X is contained in at least one subset in S*.

A subcollection S* satisfying the two properties above is indeed what we name a scene

interpretation. SceneInterpreter implements Donald Knuth’s Algorithm X for the

exact cover problem (Knuth 2000). Algorithm X is a recursive, nondeterministic, depth-

first, backtracking algorithm: the ideal algorithm for Prolog!

If we disregard the code for managing matrices (an update matrix predicate is

needed, whose code is not shown), the Algorithm X’ Prolog implementation is 14 lines

long, excluding comments.

The exact cover problem is represented in Algorithm X using a matrix A consisting of

0 s and 1 s. The goal is to select a subset of the rows so that the digit 1 appears in each
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Table 7. Donald Knuth’s Algorithm X implementation in Prolog

% if the matrix is empty, terminate by unifying the last argument
% with the accumulator
knuth_algo_x([], _, _, Solution, Solution) :- !.

% otherwise
knuth_algo_x(M, Nodes, NumNodes, AccSolution, Solution) :-

% deterministically select one column containing as few 1s
% as possible
transpose(M, TM),
get_col_with_less_ones(TM, NumNodes, 0, 0, ColIndex, ColCount),
ColCount > 0,

% non deterministically select one row with the selected
% column equal to 1
member(Row, M),
nth0(ColIndex, Row, 1, _),

% update the partial solution
nth0(Index, M, Row, _),
nth0(Index, Nodes, SolutionNode, _),
append(AccSolution, [SolutionNode], NewAccSolution),

% update the matrix
findall(I, nth0(I, Row, 1, _), ColumnsToRemove),
update_matrix(M, ColumnsToRemove, NewM, RemovedRowsIndexes),

% remove the nodes that were associated with the removed rows
findall(N,(member(N,Nodes), nth0(I1, Nodes, N, _),
\+ member(I1, RemovedRowsIndexes)), NewNodes),

% recursively call the algorithm on the reduced matrix and nodes
knuth_algo_x(NewM, NewNodes, NumNodes, NewAccSolution, Solution).

column exactly once. Table 7 shows the Prolog code for the algorithm, implemented by

the knuth algo x predicate:

knuth_algo_x/5.
knuth_algo_x(M, Nodes, NumNodes, AccSolution, Solution).

• M represents the matrix associated with the collection S of subsets of X (which,

in turn, is associated with the scene graph stored via the image graph(G) fact);

it is represented in a standard way as a list of lists, making it possible to exploit

the transpose/2 predicate offered by the SWI-Prolog CLP(FD) library for Con-

straint Logic Programming over Finite Domains18.

• Nodes is the list of nodes in the scene graph.

• NumNodes is the number of nodes in the scene graph.

18 https://www.swi-prolog.org/pldoc/doc/_SWI_/library/clp/clpfd.pl, accessed on July
2019.
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• AccSolution is the accumulator argument.

• Solution is unified with the solution, when the algorithm terminates.

The nondeterministic choice of the row via the member(Row, M) goal allows the

algorithm to “clone” itself into independent subalgorithms which work on a reduced

version of the matrix M. Searching the state space is of course left to the Prolog interpreter.
Each set of nodes in the graph scene which is an exact cover of the basic scenes is an

interpretation of the input scene. The possible interpretations of the figure in Table 2,

left, are reported in the table right side.

The set [BS1, BS2, BS3] is not an interpretation because it does not contain all

the input images (BS4 and BS5 are missing) and [CS1, CS4] is not correct as well

because both CS1 and CS4 share the same scene BS2 (and hence cannot coexist).

5.4 Filtering, sorting, and returning interpretations

Usually, one input image generates many scene interpretations, some of which can be

derived from others by substituting one aggregated scene with the subscenes which form

it. SceneInterpreter can filter out interpretations that can be derived by others in

this way. In the example above, I1 and I2 can be derived from I3 and can be filtered out:

if we substitute CS1 with its children BS1 and BS2, and (resp. or) CS3 with BS4 and

BS5, we obtain I1 (resp. I2).

Each interpretation is checked against the others computed so far, to avoid duplicates

due to order of nodes in the interpretation, and is associated with a weight computed as

the sum of the squares of the aggregated scenes lengths. As an example, the weight of

the following interpretations is 8 and 4, respectively.

I1 = [W1(Human-0, Sword-1), W2(Human-3, Sword-2)]. % Weight = 8
I2 = [Human-0, Sword-1, Human-3, Sword-2]. % Weight = 4

Interpretations are sorted in decreasing weight order, from the one which aggregates

more scenes together to the one where less aggregation rules have been exploited. In the

example above, I1 “aggregates more” than I2 and comes before I2 in the list of computed

interpretations, but both are returned.

5.5 SceneInterpreter at work

In this section, we show further examples in the Battle domain, each coming with

an informal description and the interpretations that the Prolog interpreter generates

when the generateAllInterpretations and generateFilteredInterpreta-
tions predicates are called. We consider images whose possible classifications are

Human Class, Sword Class, and Axe Class, with maximum confidence. For each

classification, we assume that only one interpretation exists:

interpretation(‘Human_Class’, ‘Human’).
interpretation(‘Sword_Class’, ‘Sword’).
interpretation(‘Axe_Class’, ‘Axe’).

In Table 8, the basic scenes generated for the images that will be used in the examples

are reported.
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Table 8. Basic scenes used in the next examples

Input Image Basic Scenes

scene(ID1, BB1, ‘Human_Class’, ‘Human’, 1.0, [0]).
scene(ID2, BB2, ‘Sword_Class’, ‘Sword’, 1.0, [1]).
scene(ID3, BB3, ‘Axe_Class’, ‘Axe’, 1.0, [2]).

Table 9. Example 1 of a complex scene with its interpretations

Input image Interpretations

generateAllInterpretations (4):
I1 = [W1(Human-0, Sword-1)].
I2 = [W2(Human-0, Axe-1)].
I3 = [Human-0, Sword-1].
I4 = [Human-0, Axe-1].

GenerateFilteredInterpretations (2):
I1 = [W1(Human-0, Sword-1)].
I2 = [W2(Human-0, Axe-1)].

In the next examples, for each scene, we show the scene graph (generated by calling

the applyRules method) and the generated interpretations. We consider the following

composite scenes:

Warrior = Human + Weapon (Sword or Axe)
with distance between the BB of Human and the BB of Weapon ≤ 2 px.

Battle = Warrior + Warrior
with distance between the BBs ≤ 5 px.

Example scene 1. Table 9 shows a Human (ID = 0) close to another figure (ID = 1)
that can be classified as Sword Class and Axe Class, and hence interpreted as Sword
and Axe. The scene graph generated by applyRules contains two Warriors, W1 and

W2. The generated interpretations are reported on the right of the table.

Example scene 2. Table 10 shows four Humans and four Weapons. Each Human is close

enough to the Weapon at its right to be interpreted as a Warrior (W1, W2, W3,
W4), and each Warrior is close enough to the adjacent Warrior to be considered as a

Battle (B1, B2, B3). The first five generated interpretations, on a total of 29 ones,

are reported on the right of the table.
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Table 10. Example 2 of a complex scene with its interpretations

Input Image Interpretations

generateAllInterpretations (29):

I1 = [B1(W1, W2), B3(W3, W4)].

I2 = [W1(Human-0, Sword-1), B2(W2, W3),

W4(Human-6, Axe-7)].

I3 = [W1(Human-0, Sword-1), W2(Human-2, Sword-3),

B3(W3, W4)].

I4 = [B1(W1, W2), W3(Human-4, Sword-5),

W4(Human-6, Axe-7))].

I5 = [Human-0, Sword-1, B2(W2, W3),

W4(Human-6, Axe-7)].

(24 more interpretations are generated).

GenerateFilteredInterpretations (2):

I1 = [B1(W1, W2), B3(W3, W4)].

I2 = [W1(Human-0, Sword-1), B2(W2, W3),

W4(Human-6, Axe-7)].

Table 11. Example 3 of a complex scene with its interpretations

Input image Interpretations

generateAllInterpretations (3):
I1 = [B1(W1, W2)].
I2 = [W1(Human-0, Sword-1), W2(Human-3, Sword-2)].
I3 = [Human-0, Sword-1, Human-3, Sword-2].

GenerateFilteredInterpretations (1):
I1 = [B1(W1, W2)].

Example scene 3. Table 11 shows two Humans on the right and on the left of the picture,

both close to the two Swords in the center. Each Human can only be associated with the

Sword that is closest to him (Human 0 cannot be associated with Sword 2 and the same

for 3 and 1). Hence, the only possible interpretations are two Warriors W1 and W2 and

one Battle B1. The generated interpretations are reported on the right of the table.

6 Case study: Interpreting scenes from the rock art domain

In this section, we present OntoScene at work. The domain where we experimented it is

the one introduced in Section 3.1: Mount Bego’s prehistoric rock art.
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6.1 Studies by Clarence Bicknell and Henry de Lumley

Archeologists and historians look at the area around Mount Bego as an incredibly valu-

able source of knowledge, due to the up to 40,000 figurative petroglyphs and 60,000

nonfigurative petroglyphs scattered over a large area at an altitude of 2000m to 2700m.

The historical relevance of the Mount Bego petroglyphs is unquestionable, as they

date back to the early Bronze Age, when humans left no written evidences and the only

witnesses of their existence are their tools and, indeed, their drawings.

The explorer who first realized the importance of Mount Bego carvings was Clarence

Bicknell, who, at the turn of the 20th century, created an important catalog of most of

the petroglyphs in Mount Bego (Bicknell 1913).

Many years after Bicknell’s campaigns, several teams led by Henry de Lumley have

been surveying and mapping this archeological area starting from 1967 (Bianchi 2011;

de Lumley and Echassoux 2009).

The University of Genova owns a collection of 16,000 drawings and reliefs made by

Clarence Bicknell between 1898 and 1910, in his campaigns on Mount Bego. Bicknell’s

Legacy also includes nine notebooks, filled with notes in Victorian English, mostly

unpublished. The publication on the web of about 350 images from the Bicknell’s

drawings and reliefs (Rolls 8, 20, 23, available on the Bicknell Legacy website) along

with their classification was one of the results of the IndianaMAS research project.

The images used for the experiments presented in this section and in the Appendix

come from the Bicknell’s Legacy and from the book by de Lumley and Echassoux (2011):

we report an identifier under each image to refer to the first (abbreviated into BL, R.

for Roll and P. for page) or to the second (abbreviated into DE, P. for page and F. for

figure number).

For each type of scene in the dataset, three or four images were manually selected

to represent the most frequent recognized patterns. The Detector and Classifier
modules were simulated by manually drawing BBs around the sub-images of the scene and

assigning them the classifications provided by Dr. Nicoletta Bianchi, who collaborated

with us in the IndianaMAS project and in the construction of the Bicknell Legacy website.

With her help, we also produced a natural language interpretation rule for Bicknell’s

images and we translated them in Prolog for each scene type. As far as de Lumley and

Echassoux’ images are concerned, the natural language interpretation rules are those

written in their book.

6.2 Experiments

We analyzed 34 images of scenes, covering 9 different interpretations. In the sequel,

we report the facts and rules used to interpret the pastoral scene, and the results of the

performed tests; to make the paper more compact, for three more scenes, we only provide

a textual explanation of the scene interpretation and the computed results. The Prolog

rules for these three scenes can be found in the Appendix, along with five more examples.

For sake of clarity, the bb(X,Y,W,H) argument of the image predicate is omitted in

the following tables, which report the selected images and the respective interpretations

with the test results.
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6.3 Pastoral scene (corniforms group)

Interpretation of the scene by archeologists: A group of corniforms close to each

others represents a pastoral scene.

Association between sub-image classification and sub-image interpretation:

interpretation(‘Corniform_Class’, ‘Corniform’).

Rules for scene interpretation:

rule(‘Group_Of_Corniforms’, Scenes) :-
findall(scene(ID, BB, Cl, ‘Corniform’, Conf, SS),

scene(ID, BB, Cl, ‘Corniform’, Conf, SS),
Corns),

sublist(Corns, Scenes),
findall(BB,

member(scene(_, BB, _, _, _, _), Scenes),
BBs),

prolog_list_to_java_list(BBs, JavaBBs),
relations(GR),
jpl_call(GR, group, [JavaBBs, 0.5], @(true)).

Explanation: The rule

• creates the set of corniforms in the scene by calling findall(scene(ID, BB,
Cl, ‘Corniform’, Conf, SS), scene(ID, BB, Cl, ‘Corniform’,
Conf, SS), Corns)),

• nondeterministically picks one partition of the set of corniforms by calling

sublist(Corns, Scenes),
• for the selected partition, retrieves the list of bounding boxes of the images therein

by calling findall(BB, member(scene( , BB, , , , ), Scenes),
BBs),

• transforms the Prolog list BBs into a format suitable for being passed as an argu-

ment to a Java call (prolog list to java list(BBs, JavaBBs), and finally

• checks if the bounding boxes form a group by calling relations(GR),
jpl call(GR, group, [JavaBBs, 0.5], @(true)).

Table 12 reports the results of the four analyzed images, all correctly interpreted.

6.4 Ritual sacrifice

Interpretation of the scene by archeologists: One halberd near one, or few more,

corniforms, represents a ritual sacrifice. From the analysis of the available images, we

identified three patterns: one where the BB of the corniform is inside the one of the

halberd, another one where the two BBs are overlapping, and a last one where there are

more corniforms.

Explanation: The rule shown in Section A.1 selects one halberd and another scene

called Victim (a corniform or a group of corniforms) in the Scenes list. The check
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Table 12. Results of the interpretation of Pastoral scenes

Final result Resulting InterpretationInput Single ImagesImage

BL, R. 20, P. 5

image(0, [class(’Corniform_Class’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])
image(2, [class(’Corniform_Class’, 1.0)])
image(3, [class(’Corniform_Class’, 1.0)])
image(4, [class(’Corniform_Class’, 1.0)])
image(5, [class(’Corniform_Class’, 1.0)])
image(6, [class(’Corniform_Class’, 1.0)])
image(7, [class(’Solid_Ellipse_Class’, 1.0)])
image(8, [class(’Corniform_Class’, 1.0)])
image(9, [class(’Corniform_Class’, 1.0)])
image(10, [class(’Solid_Ellipse_Class’, 1.0)])
image(11, [class(’Corniform_Class’, 0.6)])

I1 = [Group_Of_Corniforms(Corniform-0, Corniform-1,
Corniform-2, Corniform-3, Corniform-4, Corniform-5,
Corniform-6, Corniform-8, Corniform-9, Corniform-11),
Cup_Stone_7, Cup_Stone_10]
I2 = [Corniform-0, Corniform-1, Corniform-2, ...,
Cup_Stone_7, Cup_Stone_10]

Passed

BL, R. 20, P. 63

image(0, [class(’Corniform_Class’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])
image(2, [class(’Corniform_Class’, 1.0)])
image(3, [class(’Corniform_Class’, 1.0)])
image(4, [class(’Corniform_Class’, 1.0)])

I1 = [Group_Of_Corniforms(Corniform-0, Corniform-1,
Corniform-2, Corniform-3, Corniform-4)]
I2 = [Corniform-0, Corniform-1, Corniform-2,
Corniform-3, Corniform-4]

Passed

BL, R. 20, P. 80

image(0, [class(’Corniform_Class’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])
image(2, [class(’Corniform_Class’, 1.0)])
image(3, [class(’Corniform_Class’, 1.0)])
image(4, [class(’Corniform_Class’, 0.7)])
image(5, [class(’Corniform_Class’, 1.0)])])

I1 = [Group_Of_Corniforms(Corniform-0, Corniform-1,
Corniform-2, Corniform-3, Corniform-4, Corniform-5)]
I2 = [Corniform-0, Corniform-1, Corniform-2, ...]

Passed

DL, P. 230, F. 202

image(0, [class(’Corniform_Class’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])
image(2, [class(’Corniform_Class’, 1.0)])
image(3, [class(’Corniform_Class’, 1.0)])

I1 = [Group_Of_Corniforms(Corniform-0, Corniform-1,
Corniform-2, Corniform-3)]
I2 = [Corniform-0, Corniform-1, Corniform-2,
Corniform-3]

Passed
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Fig. 18. The High Goddess, DE, P. 328, F. 342.

succeeds if the halberd’s BB contains or overlaps with the one of the Victim.

Table 13 reports the results of the four analyzed images: the last one has not been

recognized because the two bounding boxes are neither overlapping nor one inside the

other, as required by the rule.

6.5 Bull God birth

Interpretation of the scene by archeologists: One corniform below the High

Goddess, shown in Figure 18, represents the Bull God born by the High Goddess. By

analyzing the available images, two patterns were discovered: the first is where the High

Goddess is above the Bull God, and close to him; the other is where she is above and

partially overlaps with him.

Explanation: The rule shown in Section A.2 checks whether the token recognized as

High Goddess is vertically aligned with the token representing the Bull God, and either

overlaps with it, or it is close to it.

Table 14 reports the results of the four analyzed images: the fourth one has not been

correctly interpreted because the High Goddess is not close enough to the Bull God. The

problem might be easily solved by changing the proximity parameter in jpl call(GR,
near, [BB1, BB2, 0.5], @(true)) from 0.5 to a higher value. Nevertheless,

given that in most scenes representing the Bull God birth, the High Goddess is very

close to him, increasing the proximity threshold might cause scenes with the High God-

dess and one unrelated corniform nearby to be interpreted in the wrong way.

6.6 Storm God

Interpretation of the scene by archeologists: One dagger and one reticulum with

some overlaps represent the Storm God.

Explanation: The rule shown in Section A.3 searches for a dagger and a reticulum,

checking if they overlap.

Table 15 reports the results of four analyzed images; the first three ones have been

correctly interpreted. The last one has not, because the reticulate and the dagger are

very close, but do not overlap.
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Table 13. Results of the interpretation of Ritual Sacrifice scenes

Final resultResulting InterpretationInput Single ImagesImage

DE, P. 187, F. 154(3)

image(0,[(’Halberd_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])

I1=[Ritual_Sacrifice(Halberd-0,Corn-1)]
I2=[Halberd-0, Corn-1] Passed

DE, P. 187, F. 154(10)

image(0,[(’Halberd_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])

I1=[Ritual_Sacrifice(Halberd-0,Corn-1)]
I2=[Halberd-0, Corn-1] Passed

DE, P. 187, F. 154(12)

image(0,[(’Halberd_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])
image(2,[(’Corniform_Class’,1.0)])

I1=[Ritual_Sacrifice(Halberd-0,
Group_Of_Corniforms(Corniform-1,Corniform-2))]
I2=[Halberd-0,
Group_Of_Corniforms(Corn-1, Corn-2)]
I3=[Halberd-0, Corn-1, Corn-2]

Passed

BL, R. 8, P. 165

image(0,[(’Halberd_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])
image(2,[(’Corniform_Class’,1.0)])

I1=[Halberd-0,
Group_Of_Corniforms(Corn-1, Corn-2)]
I2=[Halberd-0, Corn-1, Corn-2]

Failed (no
overlap)
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Table 14. Results of the interpretation of Bull God Birth scenes

Final resultResulting InterpretationInput Single ImagesImage

BL, R. 20, P. 134

image(0, [class(’Double_Appendixes’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])

I1 = [HG_Giving_Birth_BG(High_Goddess-0,
Bull_God-1)]
I2 = [High_Goddess-0, Bull_God-1]

Passed

DE, P. 330, F. 345(2)

image(0, [class(’Double_Appendixes’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])

I1 = [HG_Giving_Birth_BG(High_Goddess-0,
Bull_God-1)]
I2 = [High_Goddess-0, Bull_God-1]

Passed

DE, P. 330, F. 345(4)

image(0, [class(’Double_Appendixes’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])

I1 = [HG_Giving_Birth_BG(High_Goddess-0,
Bull_God-1)]
I2 = [High_Goddess-0, Bull_God-1]

Passed

DE, P. 330, F. 345(3)

image(0, [class(’Double_Appendixes’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)]) I1 = [High_Goddess-0, Bull_God-1] Failed (not close

enough)
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Table 15. Results of the interpretation of Storm God scenes

Final resultResulting InterpretationInput Single ImagesImage

DE, P. 171, F.
133(2)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Reticulum_Class’,1.0)])

I1=[Storm_God(Dagger-0, Reticulum-1)]
I2=[Dagger-0, Reticulum-1] Passed

DE, P. 171, F.
133(4)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Reticulum_Class’,1.0)])

I1=[Storm_God(Dagger-0, Reticulum-1)]
I2=[Dagger-0, Reticulum-1] Passed

DE, P. 171, F.
133(5)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Reticulum_Class’,1.0)])

I1=[Storm_God(Dagger-0, Reticulum-1)]
I2=[Dagger-0, Reticulum-1] Passed

BL, R. 20, P. 33

image(0,[(’Corniform_Class’,1.0)])
image(1,[(’Reticulum_Class’,1.0)])
image(2,[(’Dagger_Class’,1.0)])
image(3,[(’Corniform_Class’,1.0)])

I1=[Dagger-2, Reticulum-1,Corn-0, Corn-3] Failed (no
overlap)
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6.7 Discussion

Suitability of Prolog for modeling and implementing the scene interpretation rules. The

power of Prolog for specifying scene interpretation rules is properly exemplified by the

rule in Section 6.3 that exploits the findall all-solutions predicate for collecting all

the images interpreted as corniforms into one set, generates one partition of the set in

a nondeterministic way, and tests whether this partition enjoys the definition of being a

group. If it does not, another partition is generated in backtracking and tested. By putting

the sublist predicate inside a findall one, and then running the “is a group?” test on

all the computed solutions, we would have obtained many more interpretations, one for

each subgroup of corniforms in the scene. To keep it as simple and efficient as possible, the

rule(‘Group Of Corniforms’, Scenes) goal succeeds as soon as the first group

is found. While this rule was directly implemented in Prolog by the authors, based on

the trivial intuition of what is a group of corniforms, other rules where sketched by

the domain expert Dr. Nicoletta Bianchi using the formalism presented in Table 1, and

then translated by the authors into Prolog, following translation rules that can be easily

automatized. This is the case, for example, of the Bull God birth rule presented in Section

A.2, whose rule in the user-friendly syntax is

rule(‘HG_Giving_Birth_BG’, [X,Y]) {
High_Goddess(X);
Bull_God(Y);
(vertical(X,Y) or near(X,Y) or overlap(X,Y))

}

Test results. We consider one test passed when OntoScene returns the correct interpre-

tation, possibly together with other ones; 29 scenes out of 34 were correctly interpreted.

The five scenes whose interpretation failed, did not satisfy the geometric constraints that

the associated rule imposed. Failures are due to sub-images in the scene which do not

overlap, while they should according to the rule, or that are not close enough, or that do

not respect the expected orientation. In one case, failure is due to the lack of a suitable

implementation for a geometric relation, “around”. Given that scenes in this domain

present a high variability, even when they have been resorted to the same interpretation

by the domain experts, writing “the perfect rules”, keeping them as compact as possible,

and as few as possible, is very hard. For example, the last test presented in Section A.8

fails because the priest is above the repository, whereas the rule designed by the expert

only accepts scenes where the priest is (or the two priests are) below. Adding one rule

for coping with the failed test would not be difficult, but Nicoletta Bianchi knew that

scenes like the one that failed the test are definitely less frequent than those that passed

the test, and she suggested that – in some cases – obtaining a false negative could be

better than designing many complex rules. In fact, OntoScene is meant to be a support

to the domain experts, and not to substitute them in any way. Having a sound tool as

OntoScene allows the expert to trust the “Passed” result and to check only the “Failed”

one. Although the human in the loop is still required, this approach may save a lot of

time.

Likelihood of interpretations. SceneInterpreter computes all the scene interpreta-

tions which are consistent with the provided rules, but says nothing on the likelihood of
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one interpretation versus another. Coping with this further refinement does not repre-

sent a technical obstacle as it just resorts to sorting the elements in the list of computed

interpretations according to some criterion. The actual obstacle is eliciting the sorting

criterion from the domain experts and formalizing it. In all the 29 passed tests, the

first interpretation returned, namely the one which “aggregates more” (see Section 5.4),

turned out to be the correct one. This observation might suggest some heuristics for prun-

ing the search tree, such as keeping the weight of the best interpretation obtained so far,

and avoiding to expand branches whose weight is expected to be lower. However, the fact

that this simple sorting criterion worked finely in the rock art application domain tells

nothing on its generality. Different domain experts may have different personal opinions

on how to select the correct interpretation of a scene, among many plausible ones, and

associating a likelihood weight with each scene is not only domain-dependent, but even

domain expert-dependent. This makes general and universally accepted sorting criteria

difficult to assess: we did not face this issue in this paper, but it could be addressed

either by integrating a heuristic criterion in the Algorithm X presented in Section 5.3 to

stop recursion before the matrix M is empty, or by adding a post-processing stage of the

SceneInterpreter output into the framework data flow. In the first case, the solution

could be computed more efficiently, but could even get lost if the heuristic is not precise

enough. In the second case, all the solutions should be computed, and efficiency would

not benefit from the post-processing.

Performance. We did not assess the performance of OntoScene, both because efficiency

was not our main concern, and because our experiments were run on scenes with no

more than 11 sub-images: too few to raise efficiency issues. Despite the implemented

optimization of Donald Knuth’s Algorithm X, where selection of the column to remove

is made in a clever way, the complexity of the problem itself is high, and the only way

to reduce it would be to give up finding the exact solution, and integrate some heuristics

in the algorithm.

If stress-tested on scenes consisting of a large number of sub-images, we expect that

OntoScene bottleneck should turn out to be SceneInterpreter, which would be a

bottleneck even if implemented in any other language, because of the complexity of the

exact cover algorithm it implements. Dovier et al . (2005) show how different NP-complete

problems could be solved with either ASP (Lifschitz 1999) or CLP(FD) (Marriott and

Stuckey 1998), and also on inputs with size greater than 2000. Based on these results,

and considering that they date back to 15 years ago, we may suppose that, with to-

day’s computing power, with efficient Prolog implementations, and possibly with a care-

ful exploitation of more advanced technologies like ASP and CLP(FD), we could use

SceneInterpreter on scenes with 2000 sub-images or more.

We point out, however, that adopting OntoScene to model scenes with hundreds or

thousands of sub-images does not seem a viable approach to scene interpretation, and

not because of performance issues. Rule modeling is worth the effort if the modeled

rules are general enough to cover a large number of different scenes, but the more the

scene elements, the more specific the rule. For example, designing an OntoScene rule for

interpreting the scene represented in the Parthenon frieze would require to model the

relations holding between/among 378 human figures and 245 animals. A precise rule for

achieving this goal would succeed on the Parthenon frieze and would fail on anything

else, and its usefulness would be very limited.
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7 Conclusions and future works

OntoScene is a modular platform aimed at supporting the interpretation of complex

scenes based on ontologies and logical rules defined in Prolog. Ontologies allow the de-

signer to formalize the domain and make the system modular and interoperable with

existing MASs, while Prolog provides a solid basis to define complex rules of interpreta-

tion in a way that can be affordable even for people with no background in Computational

Logics. The feedback we got from Nicoletta Bianchi, with whom we designed the rules

presented in Sections 6 and Appendix A, is that such rules are in a one-to-one, straight-

forward correspondence with the interpretation rules she had in mind, making their

formalization easy to address at least in the user-friendly syntax presented in Section 3.

The overall design of our framework allows to easily change both the domain,

modifying the ontology in the domain-specific parts (under Classification and

Interpretation classes), the used geometric relationships, and the Prolog rules (that

are formalized in an external file): furthermore, its inclusion in an already existing JADE

MAS is quite simple (as described in Section 3.4) thanks to the adoption of the standard

JADE usage of OWL ontologies. This makes the exploitation of our framework for other

visual languages and existing systems easily achievable.

The case study presented in Section 6 comes from the IndianaMAS project. The results

obtained from the experiments are encouraging and demonstrate the flexibility of our

approach. The failures that we have reported might have been solved by minor changes

to the rules or to the parameters therein. Given that the purpose of our experiments

was neither to stress-test the framework, nor to provide a systematic evaluation of its

precision and recall, but to show its applicability to a real domain, we left them as hints

for a practical use of the framework.

Many improvements can be made to OntoScene.

So far, we assume that the Detector associates one bounding box with each sub-image:

we did not take the possibility of detection ambiguity into account, as we assume that the

Detector operates in a deterministic way. Apart from a growing time complexity, there

would be no technical obstacles in allowing the Detector to produce more solutions (we

mean producing, for the same input image, different decompositions into the sub-images

detected there, namely different “sets of recognized bounding boxes”) and then deal

with each of them separately, by running the Classifier and the SceneInterpreter on each

of them.

Also, scenes are sensitive to orientation. While this is the correct approach in the

rock art domain, where the interpretation may change depending, for example, on one

sub-image being above or below another, it might turn out to be a limitation in other

domains.

As far as Prolog rules are concerned, we only used rules meeting a very specific pattern:

the initial part of the rule deals with the selection of the scenes to be aggregated, while the

second part computes the geometric relations holding among them. This pattern worked

well in the rock art domain, but more properties could be associated with images, ranging

from features intrinsic to the image itself like the color, to semantically or emotionally

related notions like the mood, and these properties could be part of the rules as well.

OntoScene allows to add new properties to the Image class in the ontology and use these

properties within the logical rules, according to the needs of the end user. For example,
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we might want to extend the example presented in Figure 7 and define a happy, red

warrior. The Prolog rule might be

rule(‘Red_Happy_Warrior’, Scenes) :-
scene(ID1, Img1, Class1, ‘Human’, Conf1, SS1),
scene(ID2, Img2, Class2, ‘Sword’, Conf2, SS2),
append([scene(ID1, Img1, Class1, ‘Human’, Conf1, SS1)],

[scene(ID2, Img2, Class2, ‘Sword’, Conf2, SS2)],Scenes),
bb(Img1, BB1),
bb(Img2, BB2),
mood(Img1, ‘Happy’),
color(Img2, ‘Red’),
relations(GR),
jpl_call(GR, overlap, [BB1, BB2], @(true)).

where mood and color appear before the relations predicate.

Another extension we could address in the close future is to improve geometric re-

lationships. OntoScene supports the addition and definition of new arbitrarily complex

geometric relationships: the Image class in the ontology can be extended with new geo-

metric properties as the area, the notion of BB can be refined using a polygonal closed line

instead of a rectangle, and so on: the framework puts no limits on the type of accepted

geometric relationships.

Finally, engraved rock art scenes are represented by black-white, bidimensional images

often containing just a few elements placed in relatively simple geometric relationships.

Given that the two phases of the SceneInterpreter computation (the creation of the

scene graph and the generation of interpretations) are computationally heavy, they might

require optimizations to scale to more complex domains. The possibility to improve the

SceneInterpreter efficiency by rewriting it in ASP or CLP(FD) is under evaluation,

although, before facing this language shift, we should find a domain where scenes are as

complex as to motivate it.

The Prolog code for the SceneInterpreter and for some of the examples used

for our experiments, and the OWL representation of the ontology, are currently

available “as they are” from http://www.disi.unige.it/person/MascardiV/
Download/OntoScene.zip. Once the above improvements will be ready, we plan to

make OntoScene available to the research community via a well-designed website, after

a suitable addition of comments, tutorials, and a user guide in English.
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Appendix A

A.1 Ritual sacrifice

Association between sub-image classification and sub-image interpretation:

interpretation(‘Corniform_Class’, ‘Corniform’).
interpretation(‘Halberd_Class’, ‘Halberd’).

Rules for scene interpretation:

rule(‘Group_Of_Corniforms’, Scenes):-...
% Rule for interpreting a group of corniforms, Section 5.3.

rule(‘Ritual_Sacrifice’, Scenes) :-
scene(ID1, BB1, Class1, ‘Halberd’, Conf1, SS1),
(Victim = ‘Corniform’;
Victim = ‘Group_Of_Corniforms’),

scene(ID2, BB2, Class2, Victim, Conf2, SS2),
append([scene(ID1, BB1, Class1, ’Halberd’, Conf1, SS1)],

[scene(ID2, BB2, Class2, Victim, Conf2, SS2)], Scenes),
relations(GR),
(jpl_call(GR, contains, [BB1, BB2], @(true));
jpl_call(GR, overlap, [BB1, BB2], @(true))).

A.2 Bull God birth

Association between sub-image classification and sub-image interpretation:

interpretation(‘Double_Appendixes’, ‘High_Goddess’).
interpretation(‘Corniform_Class’, ‘Bull_God’).

Rules for scene interpretation:

rule(‘HG_Giving_Birth_BG’, Scenes) :-
scene(ID1, BB1, Class1, ‘High_Goddess’, Conf1, SS1),
scene(ID2, BB2, Class2, ‘Bull_God’, Conf2, SS2),
append([scene(ID1, BB1, Class1, ‘High_Goddess’, Conf1, SS1)],

[scene(ID2, BB2, Class2, ‘Bull_God’, Conf2, SS2)],
Scenes),

relations(GR),
jpl_call(GR, vertical, [BB1, BB2, ‘up’], @(true)),
(jpl_call(GR, near, [BB1, BB2, 0.5], @(true));
jpl_call(GR, overlap, [BB1, BB2], @(true)))
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A.3 Storm God

Association between sub-image classification and sub-image interpretation:

interpretation(‘Dagger_Class’, ‘Dagger’).
interpretation(‘Reticulum_Class’, ‘Reticulum’).

Rules for scene interpretation:

rule(‘Storm_God’, Scenes) :-
scene(ID1, BB1, Class1, ‘Dagger’, Conf1, SS1),
scene(ID2, BB2, Class2, ‘Reticulum’, Conf2, SS2),
append([scene(ID1, BB1, Class1, ‘Dagger’, Conf1, SS1)],

[scene(ID2, BB2, Class2, ‘Reticulum’, Conf2, SS2)],Scenes),
relations(GeometricRelations),
jpl_call(GeometricRelations, overlap, [BB1, BB2], @(true)).

A.4 Rain invocation

Interpretation of the scene by archeologists: One human wielding a halberd or

an axe (or in general a weapon) represents the rain invocation. From the analysis of

the available images, we discovered that the weapon is usually on above the human,

positioned in a vertical or diagonal way.

Association between sub-image classification and sub-image interpretation:

interpretation(‘Human_Class’, ‘Human’).
interpretation(‘Halberd_Class’, ‘Halberd’).
interpretation(‘Axe_Class’, ‘Axe’).

Rules for scene interpretation:

rule(‘Rain_Summon’, Scenes) :-
scene(ID1, BB1, Class1, ‘Human’, Conf1, SS1),
subclass_of(‘Weapon_Class’, Class),
interpretation(Class, Weapon),
scene(ID2, BB2, Class2, Weapon, Conf2, SS2),
append([scene(ID1, BB1, Class1, ‘Human’, Conf1, SS1)],
[scene(ID2, BB2, Class2, Weapon, Conf2, SS2)], Scenes),
relations(GR),
jpl_call(GR, vertical, [BB2, BB1, ‘up’], @(true)),
!,
jpl_call(GR, near, [BB1, BB2, 0.5], @(true)).

rule(‘Rain_Summon’, Scenes) :-
[omissis] % as in the previous rule
relations(GR),
(jpl_call(GR, diagonal, [BB2, BB1, ‘ne’], @(true)) ;
jpl_call(GR, diagonal, [BB2, BB1, ‘nw’], @(true))),
jpl_call(GR, near, [BB1, BB2, 0.5], @(true)).

Explanation: The rule searches for a human figure, then it searches for a weapon (note

that halberd and axe are subclasses of weapon in the domain ontology, so we write a

general rule including all the weapons as required by the archeologists) and checks for

the correct geometrical relationship; then, the rule checks if the BBs of the human and

of the weapon are close to each other, and if the one of the weapon is above the human,

in vertical or diagonal relationship.

Table A 1 reports the results of the four analyzed images, all correctly interpreted.

A.5 Queens fight

Interpretation of the scene by archeologists: Two corniforms with juxtaposed

horns represent a ritual fighting called in archeology “the Queens Fight”. The two
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Table A 1. Results of the interpretation of Rain Invocation scenes

Final resultResulting InterpretationInput Single ImagesImage

DE, P. 189, F. 157(4)

image(0,[(’Human_Class’, 1.0)])
image(1,[(’Halberd_Class’,1.0)])

I1=[Rain_Summon(Human-0,Halberd-1)]
I2=[Human-0, Halberd-1] Passed

DE, P. 189, F. 157(6)

image(0,[(’Human_Class’, 1.0)])
image(1,[(’Halberd_Class’,1.0)])

I1=[Rain_Summon(Human-0,Halberd-1)]
I2=[Human-0, Halberd-1] Passed

DE, P. 189, F. 157(12)

image(0,[(’Human_Class’, 1.0)])
image(1,[(’Halberd_Class’,1.0)])

I1=[Rain_Summon(Human-0,Halberd-1)]
I2=[Human-0, Halberd-1] Passed

DE, P. 200, F. 171(2)

image(0,[(’Human_Class’, 1.0)])
image(1,[(’Axe_Class’,1.0)])

I1=[Rain_Summon(Human-0,Axe-1)]
I2=[Human-0, Axe-1] Passed
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corniforms must be one over the other, with contrary directions of the horns (we assume

that the Classifier is able to discriminate between the two different positions), and their

BBs may, or may not, intersect, but should be close to each other.

Association between sub-image classification and sub-image interpretation:

interpretation(‘Up_Corn_Class’, ‘Corniform’).
interpretation(‘Up_Down_Corn_Class’, ‘Corniform’).

Rules for scene interpretation:

rule(‘Queens_Fight’, Scenes) :-
scene(ID1, BB1, ‘Up_Down_Corn_Class’, ‘Corniform’,Conf1, SS1),
scene(ID2, BB2, ‘Up_Corn_Class’, ‘Corniform’,Conf2, SS2),
append([scene(ID1, BB1, ‘Up_Down_Corn_Class’,‘Corniform’, Conf1, SS1)],

[scene(ID2, BB2, ‘Up_Corn_Class’,‘Corniform’, Conf2, SS2)], Scenes),
relations(GR),
jpl_call(GR, vertical, [BB1, BB2, ‘up’], @(true)),
jpl_call(GR, near, [BB1, BB2, 0.5], @(true)).

Explanation: The rule searches for two corniforms, one with up horns and the other

with down horns, in vertical relationship and close to each other.

Table A 2 reports the results of the four analyzed images: the last one is not correctly

interpreted because the geometrical relationships “Around” has not been implemented

yet, and a third unexpected element (a rock) appears in the scene.

A.6 Bull God

Interpretation of the scene by archeologists: One corniform inside the horns of

another one represents the Bull God. By analyzing the available images, two patterns

were discovered: the first is one or more corniforms inside another one, and another is a

group of corniforms vertically aligned, not necessary one inside the other.

Association between sub-image classification and sub-image interpretation:

interpretation(‘Up_Corn_Class’, ‘Corniform’).

Rules for scene interpretation:

rule(‘Group_Of_Corniforms’, Scenes) :- .... (from Section 5.3)

rule(‘Bull_God’, Scenes) :- (Inner = ‘Corniform’;
Inner = ‘Group_Of_Corniforms’),
scene(ID1, BB1, Class1, Inner, Conf1, SS1),
scene(ID2, BB2, Class2, ‘Corniform’, Conf2, SS2),
append([scene(ID1, BB1, Class1, Inner, Conf1, SS1)],

[scene(ID2, BB2, Class2, ‘Corniform’, Conf2, SS2)], Scenes),
relations(GR),
jpl_call(GR, contains, [BB2, BB1], @(true)).

rule(‘Bull_God’, Scenes) :-
get_corniforms_same_direction(Corniforms),
sublist(Corniforms, Scenes), length(Scenes, Len), Len > 1,
findall(BB, member(scene(_, BB, _, _, _, _), Scenes), BBs),
relations(GR),
test_vertical(BBs, GR).

Explanation: The first rule selects one corniform (or a group of corniforms) and

another one from the list and checks if they are one inside the other. The second rule

uses the predicate get_corniforms_same_direction to get all the corniforms with

the same orientation and checks if they are in vertical relationships. We omit here the

definition of the test vertical(BBs, GR) predicate.
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Table A 2. Results of the interpretation of Queens Figth

Final resultResulting InterpretationInput Single ImagesImage

DE, P. 221, F. 191(5)

image(0,[(’Up_Down_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])

I1=[Queens_Fight(Corniform-0,Corniform-1)]
I2=[Corniform-0,Corniform-1]

Passed

DE, P. 221, F. 191(7)

image(0,[(’Up_Down_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])

I1=[Queens_Fight(Corniform-0,Corniform-1)]
I2=[Corniform-0,Corniform-1]

Passed

DE, P. 221, F. 191(8)

image(0,[(’Up_Down_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])

I1=[Queens_Fight(Corniform-0,Corniform-1)]
I2=[Corniform-0,Corniform-1]

Passed

DE, P. 221, F. 191(9)

image(0,[(’Up_Down_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])
image(2,[(’Rock_Class’,1.0)])

I1=[Corniform-0,Corniform-1, Rock-1]
Failed
(Around
not avail-
able)
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Table A 3 reports the results of the four analyzed images, all correctly interpreted.

A.7 Rain propitiatory rite

Interpretation of the scene by archeologists: One dagger between the horns of a

corniform represents a propitiatory rite for the rain. The two sub-images should intersect

and at the same time the dagger should be partially inside the horns, above them. With

the currently implemented geometrical relationships we cannot express this relation in

a precise way, so we approximated it.

Association between sub-image classification and sub-image interpretation:

interpretation(‘Corniform_Class’, ‘Corniform’).
interpretation(‘Dagger_Class’, ’Dagger’).

Rules for scene interpretation:

rule(‘Rain_Propitiatory_Rite’, Scenes) :-
scene(ID1, BB1, Class1, ‘Dagger’, Conf1, SS1),
scene(ID2, BB2, Class2, ‘Corniform’, Conf2, SS2),
append([scene(ID1, BB1, Class1, ‘Dagger’, Conf1, SS1)],

[scene(ID2, BB2, Class2, ‘Corniform’, Conf2, SS2)], Scenes),
relations(GR),
jpl_call(GR, vertical, [BB1, BB2, ‘up’], @(true)),
jpl_call(GR, overlap, [BB1, BB2], @(true)).

Explanation: The rule searches for a dagger and a corniform, checking if they overlap

and if the dagger is above the corniform.

Table A 4 reports the results of the three analyzed images, all correctly interpreted.

A.8 Agricultural rite

Interpretation of the scene by archeologists: One or two priests making water

spring from an artificial repository represent an agricultural rite. The most recurring

pattern includes one or two humans holding a repository, which is above them, from

which the water falls down.

Association between sub-image classification and sub-image interpretation:

interpretation(‘Human_Class’, ‘Priest’).
interpretation(‘Repository_Class’, ‘Repository’).
interpretation(‘Water_Class’, ‘Water’).

Rules for scene interpretation:

rule(‘Agricultural_Rite’,
[scene(ID1, BB1, Class1, ‘Priest’, Conf1, SS1),
scene(ID2, BB2, Class2, ‘Priest’, Conf2, SS2),
scene(ID3, BB3, Class3, ‘Repository’, Conf3, SS3),
scene(ID4, BB4, Class4, ‘Water’, Conf4, SS4)]) :-

scene(ID1, BB1, Class1, ‘Priest’, Conf1, SS1),
scene(ID2, BB2, Class2, ‘Priest’, Conf2, SS2),
scene(ID3, BB3, Class3, ‘Repository’, Conf3, SS3),
scene(ID4, BB4, Class4, ‘Water’, Conf4, SS4),
relations(GR),
jpl_call(GR, diagonal, [BB1, BB3, ‘sw’], @(true)),
jpl_call(GR, near, [BB1, BB3, 0.5], @(true)),
jpl_call(GR, diagonal, [BB2, BB3, ‘se’], @(true)),
jpl_call(GR, near, [BB2, BB3, 0.5], @(true)),
jpl_call(GR, vertical, [BB3, BB4, ‘up’], @(true)),
jpl_call(GR, near, [BB3, BB4, 0.5], @(true)).
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Table A 3. Results of the interpretation of Bull God

Resulting InterpretationInput Single ImagesImage Final result

DE, P. 218, F. 186(2)

image(0,[(’Up_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])

I1=[Bull_God(Corn-0,Corn-1)]
I2=[Corn-0,Corn-1] Passed

DE, P. 218, F. 186(9)

image(0,[(’Up_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])
image(2,[(’Up_Corn_Class’,1.0)])

I1=[Bull_God(Corn-0,Corn-1,Corn-2)]
I2=[Corn-0,Corn-1,Corn-2] Passed

DE, P. 218, F. 186(7)

image(0,[(’Up_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])
image(2,[(’Up_Corn_Class’,1.0)])
image(3,[(’Up_Corn_Class’,1.0)])

I1=[Bull_God(Corn-0,Corn-1,Corn-2,Corn-3)]
I2=[Corn-0, Bull_God(Corn-1,Corn-2,Corn-3)]
I3=[Corn-0,Corn-3,Bull_God(Corn-1, Corn-2)]
I4=[Corn-0,Corn-1,Corn-2,Corn-3)]

Passed

DE, P. 218, F.
186(18)

image(0,[(’Up_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])
image(2,[(’Up_Corn_Class’,1.0)])
image(3,[(’Up_Corn_Class’,1.0)])
image(4,[(’Up_Corn_Class’,1.0)])

I1=[Bull_God(Corn-0,Corn-1,Corn-2,Corn-3, Corn-4)]
I2=[Corn-0,Bull_God(Corn-1, Corn-2,Corn-3,Corn-4)]
I3=[Bull_God(Corn-0, Corn-1,Corn-2),
Bull_God(Corn-3, Corn-4)]
... other 7 interpretations

Passed
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Table A 4. Results of the interpretation of Rain Propitiatory Rite

Final resultResulting InterpretationInput Single ImagesImage

DE, P. 170, F. 132(1)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])

I1=[Rain_Propitiatory_Rite(Dagger-0, Corniform-1)]
I2=[Dagger-0, Corniform-1]

Passed

DE, P. 170, F. 132(2)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])

I1=[Rain_Propitiatory_Rite(Dagger-0, Corniform-1)]
I2=[Dagger-0, Corniform-1]

Passed

DE, P. 170, F. 132(7)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])

I1=[Rain_Propitiatory_Rite(Dagger-0, Corniform-1)]
I2=[Dagger-0, Corniform-1]

Passed
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Table A 5. Results of the interpretation of Agricultural Rite

Final resultResulting InterpretationInput Single ImagesImage

DE, P. 284, F. 268(1)

image(0,[(’Human_Class’,1.0)])
image(1,[(’Human_Class’,1.0)])
image(2,[(’Repository_Class’,1.0)])
image(3,[(’Water_Class’,1.0)])

I1=[Agricultural_Rite(Priest-0, Priest-1,
Repository-2, Water-3)]
I2=[Priest-0,Priest-1,Repository-2,Water-3]

Passed

DE, P. 284, F. 268(4)

image(0,[(’Human_Class’,1.0)])
image(1,[(’Repository_Class’,1.0)])
image(2,[(’Water_Class’,1.0)])

I1=[Agricultural_Rite(Priest-0,
Repository-1, Water-2)]
I2=[Priest-0,Repository-1,Water-2]

Passed

DE, P. 284, F. 268(5)

image(0,[(’Human_Class’,1.0)])
image(1,[(’Repository_Class’,1.0)])
image(2,[(’Water_Class’,1.0)])

I1=[Human-0,Repository-1,Water-2]
Failed
(Human
over repos-
itory)
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Explanation: The rule searches for the two humans, the water and the repository,

checking if the two humans are in diagonal (one on the left and one on the right) below

the repository, and if the water is under the repository. All the images should be close

to each other. Another rule, searching for only one human, is not reported since it is

very similar to one shown here.

Table A 5 reports the results of the three analyzed images: the last one has not been

correctly interpreted because the human is above (not below and in diagonal) the repos-

itory.
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