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In rotating stratified flows including in the atmosphere and ocean, inertia-gravity waves
(IGWs) often coexist with geostrophically balanced turbulent flows. Advection and
refraction by such flows lead to wave scattering, redistributing IGW energy in the
position–wavenumber phase space. We give a detailed description of this process by
deriving a kinetic equation governing the evolution of the IGW phase-space energy
density. The derivation relies on the smallness of the Rossby number characterising the
geostrophic flow, which is treated as a random field with known statistics, makes no
assumption of spatial scale separation, and neglects wave–wave interactions. It extends
previous work restricted to near-inertial waves, barotropic flows or waves much shorter
than the flow scales. The kinetic equation describes energy transfers that are restricted to
IGWs with the same frequency, as a result of the time scale separation between waves
and flow. We formulate the kinetic equation on the constant-frequency surface – a double
cone in wavenumber space – using polar spherical coordinates, and we examine the form
of the two scattering cross-sections involved, which quantify energy transfers between
IGWs with, respectively, the same and opposite directions of vertical propagation. The
kinetic equation captures both the horizontal isotropisation and the cascade of energy
across scales that result from scattering. We focus our attention on the latter to assess
the predictions of the kinetic equation against direct simulations of the three-dimensional
Boussinesq equations, finding good agreement.

Key words: internal waves, ocean processes, waves in rotating fluids

1. Introduction

This paper develops a statistical theory for the impact of a turbulent flow on the
propagation of inertia-gravity waves (IGWs). It is motivated, broadly, by the importance
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Figure 1. Scattering of a plane IGW by a turbulent geostrophic flow: vertical velocity field for z = 0 (a–d),
and representation of the energy distribution in k-space at four successive times (e–g). In panels (e–h),
the constant-frequency cone associated with the plane IGW is shown by the stripes; small-, medium- and
large-sized dots indicate IGW energy density exceeding, respectively, 0.004 %, 0.02 % and 0.2 % of the initial
IGW energy. The geostrophic flow has a velocity-based Rossby number Ro = 0.025 and the ratio of the initial
IGW horizontal wavenumber to the geostrophic-flow peak wavenumber is kh∗/Kh∗ � 4 (see § 4 for details).

of IGWs for the circulation of both the atmosphere and ocean and, specifically, by two
strands of research. The first centres on the interpretation of velocity spectra inferred from
observations, specifically the shallow spectra observed at mesoscales in the atmosphere
(horizontal scales below 500 km) and at submesoscales in the ocean (horizontal scales
below 100 km), which are interpreted as power laws with exponent −5/3 in the atmosphere
(Nastrom & Gage 1985) and −2 in the ocean (e.g. Callies & Ferrari 2013). Recent
analyses of observational (Callies, Ferrari & Bühler 2014; Bühler, Callies & Ferrari 2014;
Callies, Bühler & Ferrari 2016; Rocha et al. 2016; Bühler, Kuang & Tabak 2017) and
simulation (Qiu et al. 2018; Torres et al. 2018) data suggest that IGWs dominate over the
quasigeostrophic flow at these scales. While this remains controversial (Asselin, Bartello
& Straub 2018; Kafiabad & Bartello 2018; Li & Lindborg 2018), the possibility that IGWs
control the spectra at horizontal scales much larger than previously thought raises basic
questions about the processes that control the distribution of their energy.

One key process is the advection and refraction of IGWs by the typically highly
energetic quasigeostrophic flow. This process causes the rapid scattering of the IGW
energy, leading to a decrease of the wave scales and to an approximately isotropic wave
field. This illustrated in figure 1(a–d), which shows the vertical velocity in a numerical
simulation of an initially plane IGW scattered by a turbulent geostrophic flow (see § 4 for
details). The present paper gives a full description of this form of scattering. We achieve
this by applying powerful techniques of the theory of waves in random media (Ryzhik,
Papanicolaou & Keller 1996; Powell & Vanneste 2005; Bal, Komorowski & Ryzhik 2010)
to obtain a kinetic equation governing the evolution of the IGW energy density, denoted by
a(x,k, t), in the position–wavenumber (x,k) phase space. The main assumption is that the
quasigeostrophic flow can be represented as a space- and time-dependent, homogeneous
and stationary random field with known statistics.
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Inertia-gravity-wave scattering

We obtained partial results in this direction in a previous paper (Kafiabad, Savva
& Vanneste 2019) which focuses on the WKBJ regime, where the IGW scales are
asymptotically smaller than the flow scale (see Müller (1976, 1977), Watson (1985) and
Müller et al. (1986) for earlier work). In that case, the Doppler shift of the IGW frequency
resulting from advection by the flow is the sole mechanism of scattering and it acts as a
diffusion in k-space. A remarkable prediction in this diffusive regime is that the energy
spectrum of forced IGWs equilibrates to a k−2 power law for scales smaller than the
forcing scale, similar to the spectra observed in the atmosphere and ocean. The present
paper extends the WKBJ results by relaxing the assumption of separation between wave
and flow scales, treating the distinguished limit when both are similar. The scattering is
then described by an integral operator which reduces to a diffusion only in the WKBJ
limit. Earlier work by Danioux & Vanneste (2016) and Savva & Vanneste (2018) derived
and studied the scattering operator relevant to, respectively, near-inertial waves and IGWs
under the restriction of a barotropic (z-independent) quasigeostrophic flow. The results we
obtain for fully three-dimensional flows are markedly different because vertical shear leads
to a cascade of IGWs to small scales that is absent for barotropic flows.

The second strand of research motivating this paper is concerned with fundamental
aspects of turbulence in rotating stratified flows and specifically with their analysis in
terms of triadic interactions. The interactions between two IGW modes and a geostrophic
(or vortical) mode have been examined by Warn (1986), Lelong & Riley (1991), Bartello
(1995) and more recently by Ward & Dewar (2010) (see Wagner, Ferrando & Young (2017)
for an alternative treatment allowing for non-constant stratification). These interactions
are often termed ‘catalytic’ because they leave the geostrophic mode unaffected, a
property that stems from potential-vorticity conservation. Our results provide a statistical
description of precisely those catalytic interactions, with detailed predictions for the IGW
spectrum that emerges in both initial-value and forced scenarios. A key aspect is that
we confine our predictions to the statistics of the IGWs, regarding the statistics of the
geostrophic modes as given. This is natural: because the feedback of the IGWs on the
geostrophic flow is weak, as the catalytic nature of the wave–flow interactions implies,
the flow is to a good approximation independent of the IGWs, obeying quasigeostrophic
dynamics. (The feedback of IGWs on the geostrophic flow is captured by the theory of
wave–mean flow interactions, in particular the generalised Lagrangian mean theory of
Andrews & McIntyre (1978); see also Bühler (2014), Wagner & Young (2015), Gilbert
& Vanneste (2018) and Kafiabad, Vanneste & Young (2021).) We note that the kinetic
equation that we derive is closely related to the kinetic equations of wave (or weak)
turbulence theory (e.g. Nazarenko 2011): the integral terms with quadratic nonlinearity
obtained in wave turbulence for triadic interactions simplify to linear integrals when the
amplitudes of one type of modes – here the geostrophic modes – remains fixed as we
assume. Wave-turbulence theory provides a useful description of the interactions between
IGWs but usually ignores the effect of the quasigeostrophic flow (e.g. Lvov, Polzin &
Yokoyama (2012) and references therein). Recently Eden, Chouksey & Olbers (2019) have
derived kinetic equations governing the weakly nonlinear interactions between IGWs and
between IGWs and geostrophic modes (or Rossby waves when the β-effect is taken into
account) in the primitive equations. The latter interactions are those on which we focus
and we expect our results could be deduced from theirs under the assumption of spatial
homogeneity, ∇xa = 0 and hydrostatic approximation.

As emphasised above, the statistical theory that we develop makes no assumption of
spatial scale separation between IGWs and the quasigeostrophic flow. As a result, its
central object, namely the phase-space energy density a(x,k, t), cannot be defined using a
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straightforward ray-tracing, WKBJ treatment. Instead, we follow Ryzhik et al. (1996) and
use the Wigner transform to both define a(x,k, t) and obtain an equation governing its
evolution (see Onuki (2020) for other applications of the Wigner transform to IGWs). The
kinetic equation governing the evolution of a(x,k, t) is derived in § 2 and Appendix A and
takes the form

∂ta(x,k, t)+ ∇kω(k) · ∇xa(x,k, t) =
∫

R3
σ(k,k′)a(x,k′, t) dk′ −Σ(k)a(x,k, t).

(1.1)

Here ω(k) is the IGW dispersion relation, σ(k,k′) is the scattering cross-section, which
fully encodes the impact of the geostrophic flow on IGWs and is given explicitly in (2.22),
and Σ(k) = ∫

R3 σ(k,k′) dk′.
A key property of σ(k,k′) is that it is proportional to δ(ω(k)− ω(k′)). This stems

from the slow time dependence of the quasigeostrophic flow and implies that energy
transfers between IGWs are restricted to waves with the same frequency. These waves
have wavevectors lying on a double cone whose two halves, termed nappes, make angles
θ = tan−1(ω2 − f 2)/(N2 − ω2))1/2 and π − θ with the k3-axis ( f and N are the inertial
and buoyancy frequencies), corresponding to upward- and downward-propagating waves.
Figure 1(e–h) illustrates this restriction of the scattering to IGWs with the same frequency.
It displays the distribution of IGW energy in wavevector space for the simulation shown
on the top row, together with a visualisation of the cone corresponding to the frequency
of the initial plane wave. The figure demonstrates how wave energy remains confined to a
good approximation near the constant-frequency cone as it spreads in wavenumber space.

In § 3 we reformulate the kinetic equation (1.1) in spherical coordinates (k, θ, ϕ)
well suited to the geometry of the constant-frequency cone since θ can be regarded
as a fixed parameter. We then separate the energy density a(x,k, t) into upward-
and downward-propagating components and obtain a pair of coupled kinetic equations
governing their evolution. We examine the properties of these equations in some detail
in § 3 and show, in particular, how they predict the isotropisation of the IGW field and
the equipartition of energy between upward- and downward-propagating IGWs in the
long-time limit.

In § 4 we compare the predictions of the kinetic equations with results of high-resolution
numerical simulations of the three-dimensional Boussinesq equations for an initial-value
problem. We focus on homogeneous and horizontally isotropic configurations, when
a(x,k, t) is independent of x and of the azimuthal angle ϕ, and find very good agreement
for different IGW frequencies and geostrophic-flow strengths. We briefly discuss the forced
problem and confirm that the stationary spectrum that emerges has the k−2 power tail
behaviour expected from the WKBJ, diffusive approximation of Kafiabad et al. (2019).

2. Kinetic equation

2.1. Fluid-dynamical model
We model the propagation of IGWs through a turbulent quasigeostrophic eddy field using
the inviscid non-hydrostatic Boussinesq equations linearised about a background flow.
The background flow depends slowly on time, is in geostrophic and hydrostatic balance
and accordingly determined by a stream function ψ . We take ψ to be a random field
with homogeneous and stationary statistics. The background flow velocity and buoyancy
fields are given by U = (U,V, 0) = (−∂yψ, ∂xψ, 0) and B = f ∂zψ , and the linearised
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Boussinesq equations read

∂tu + ∇U · u + U · ∇u + f ẑ × u = −∇p + bẑ, (2.1a)

∂tb + u · ∇B + U · ∇b + N2w = 0, (2.1b)

∇ · u = 0, (2.1c)

where u = (u, v,w) denotes the wave velocity, ∇ = (∂x, ∂y, ∂z) is the full gradient
operator, ẑ is the vertical unit vector, p is the wave pressure normalised by a constant
reference density, b the wave buoyancy, f the Coriolis parameter and N the buoyancy
frequency which is assumed to be constant with N > f . The linearisation adopted for (2.1)
requires |u| � |U | and implies the neglect of wave–wave interactions.

Among the five equations in (2.1), only three are prognostic since two of the five
dependent variables (u, v,w, b, p), e.g. w and p, can be diagnosed from the remaining
three. We make this explicit by reformulating (2.1) using three suitable dependent
variables chosen as the linearised ageostrophic vertical vorticity, horizontal divergence
and linearised potential vorticity

γ = f ζ − ∇2
h∇−2 (∂zb − f ζ ) , δ = ∂xu + ∂yv and q = f ∂zb + N2ζ, (2.2a–c)

with ∇h = (∂x, ∂y, 0) and ζ = ∂xv − ∂yu, following Vanneste (2013). Since the potential
vorticity q describes the dynamics of the balanced flow which, in our formulation, is
captured by the background flow, we set q = 0. This reduces the dynamics to the two
equations

∂tγ +Ω2δ = Nγ , (2.3a)

∂tδ − γ = Nδ, (2.3b)

where Ω is the pseudodifferential operator

Ω(∇) = [(N2∇2
h + f 2∂zz)∇−2]1/2 (2.4)

and Nγ and Nδ groups the terms depending on the background flow. When these are
ignored, the solutions to (2.3) can be written as a superposition of plane IGWs, with
wavevectors k = (kh, k3) and frequencies

ω(k) = ±
√

N2k2
h + f 2k2

3/|k|, (2.5)

with kh = |kh|.
We now make some scaling assumptions. Our main assumption is that the Rossby

number characterising the background flow is small:

Ro = U∗K∗/f � 1, (2.6)

where U∗ and K−1∗ are characteristic velocity and horizontal length scales of the flow. This
assumption is consistent with the assumed geostrophic balance. It ensures that advection
and refraction of the IGWs by the background flow are weak compared with wave
dispersion. We also assume that the background flow evolves on a time scale (Rof )−1 as
is the case for quasigeostrophic dynamics. Crucially we make no assumption of separation
of spatial scales and consider instead the distinguished regime where flow and IGWs have
horizontal scales that are similar, kh/K∗ = O(1).

To make the scaling assumptions explicit while retaining the practical dimensional form
of the equations of motion, we introduce a bookkeeping parameter ε � 1 indicating the
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dependence of the various terms on powers of Ro. A convenient choice takes ε = Ro2

since it turns out that the temporal and spatial variations of the IGW amplitudes then scale
as (εω)−1 and (εK∗)−1. With this choice we rewrite (2.3) in the compact form

∂tφ + L(∇)φ + ε1/2N(x,∇, ε1/2t)φ = 0, (2.7)

where

φ =
(
γ

δ

)
(2.8)

groups the dynamical variables, and

L(∇) =
(

0 Ω2

−1 0

)
. (2.9)

The (matrix) linear operator N collects the background-flow terms. It depends on x and
ε1/2t through the stream functionψ and is given explicitly as (A1) in Appendix A. We next
exploit the smallness of ε to derive a kinetic equation governing the slow energy exchanges
among IGWs resulting from interactions with the background flow.

2.2. Derivation of the kinetic equation
We start by rescaling space and time according to (x, t) �→ (x/ε, t/ε) so that x and t
capture the slow variations of the IGW amplitudes; the IGW phases then vary with x/ε
and t/ε, and the background flow with x/ε and t/

√
ε. The rescaling transforms (2.7) into

ε∂tφ + L(ε∇)φ + ε1/2N(x/ε, ε∇, t/ε1/2)φ = 0. (2.10)

A key ingredient for the systematic derivation of the kinetic equation is the definition
of a phase-space energy (or action) density a(x,k, t) that does not rest on the
WKBJ approximation. The separation between spatial and wavenumber information
required for a phase-space description of the waves is achieved by means of the (scaled)
Wigner transform of φ defined as the 2 × 2 matrix

W (x,k, t) = 1
(2π)3

∫
R3

eik·yφ(x − εy/2, t)φT(x + εy/2, t) dy, (2.11)

where T denotes the transpose. In Appendix A we derive an evolution equation for W
which we simplify using multiscale asymptotics. The derivation starts with the expansion

W = W (0)(x,k, t)+ ε1/2W (1)(x, ξ ,k, t, τ )+ εW (2)(x, ξ ,k, t, τ )+ O(ε3/2), (2.12)

where ξ = x/ε and τ = t/ε1/2 are treated as independent of x and t. The leading-order
equation obtained is

L(ik)W (0) + c.c. = 0, (2.13)

where, from (2.9),

L(ik) =
(

0 ω2(k)

−1 0

)
, (2.14)

with ω(k) the IGW frequency given by (2.5). This matrix has eigenvalues ±iω(k) and
eigenvectors e± solving

L(ik)e±(k) = ±iω(k)e±(k), (2.15)
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where we choose ω(k) > 0 by convention. The eigenvectors encode the polarisation
relations of IGWs. They can be written as

e±(k) = |kh||k3|√
2 |k|

( ±iω(k)
−1

)
(2.16)

and are orthonormal with respect to a weighted inner-product, specifically〈
ei(k), ej(k)

〉
M = e∗

i (k)Mej(k) = δij, (2.17)

where the symmetric matrix M is defined by

M(k) = |k|2
ω2|kh|2|k3|2

(
1 0

0 ω2(k)

)
. (2.18)

Equation (2.13) is solved in terms of the eigenvectors e±(k): defining the matrices

E j(k) = ej(k)e∗
j (k), (2.19)

the solution reads
W (0)(x,k, t) =

∑
j=±

aj(x,k, t)E j(k) (2.20)

for amplitudes aj(x,k, t) to be determined. Because, by definition (2.11), W is
Hermitian, these amplitudes are real. The reality of φ further implies that W (x,−k, t) =
W T(x,k, t) and hence a+(x,−k, t) = a−(x,k, t). We can therefore focus on a single
amplitude, a(x,k, t) = a+(x,k, t), say. This is the desired phase-space energy density.
This interpretation is justified by the fact that its integral over k approximates the energy
density,

E(x, t) = 1
2

(
|u|2 + b2/N2

)
= 1

2

(
M1/2(εi∇)φ

)T (
M1/2(εi∇)φ

)
= 1

2

∫
R3

tr
(

M(k)W (0)(x,k, t)
)

dk + O(ε) =
∫

R3
a(x,k, t) dk + O(ε). (2.21)

An evolution equation for a(x,k, t) is derived by considering higher-order terms in the
expansion (2.12) and imposing a solvability condition as detailed in Appendix A. The
result is the kinetic equation (1.1) with the differential scattering cross-section

σ(k,k′) = π|k3|2|k′
3|2

2ω4|k|2|k′|2|kh|2|k′
h|2

[
|k′

h × kh|2
[
(N2 + ω2)

|kh|2|k′
h|2

|k3||k′
3|

sgn(k3k′
3)

+ ( f 2 + ω2)(2kh · k′
h − |kh||k′

h|sgn(k3k′
3))

]2

+ f 2ω2

(
2|k′

h × kh|2

+
[
|k′

h − kh|2 − (k′
3 − k3)

2 |k′
h||kh|

|k′
3||k3|

]
k′

h · kh

)2
]

× ÊK(k′ − k)
|k′

h − kh|2 δ
(
ω(k′)− ω(k)

)
, (2.22)
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where ÊK(k) is the kinetic energy spectrum of the background geostrophic flow, andΣ(k)
is the total scattering cross-section

Σ(k) =
∫

R3
σ(k,k′) dk′. (2.23)

The cross-section (2.22) is the principal object of interest and first main result of this
paper. It fully quantifies the impact that scattering by a quasigeostrophic turbulent flow has
on the statistics of IGWs. Before analysing this impact in detail, we make six remarks.

(i) The obvious symmetry σ(k,k′) = σ(k′,k) ensures that the scattering is energy
conserving: the energy density

E0(x, t) =
∫

R3
a(x,k, t) dk (2.24)

satisfies the conservation law

∂tE0 + ∇x · F0 = 0, (2.25)

with the flux

F0(x, t) =
∫

R3
∇kω(k) a(x,k, t) dk. (2.26)

Conservation of the volume-integrated energy follows. We emphasise that this
conservation is not trivial. The Boussinesq equations linearised about a background
flow (2.1) do not conserve the perturbation energy, even when the flow is time
independent. The conservation law (2.25) arises from the phase averaging implicit
in the definition of a(x,k, t) and, in this sense, should be interpreted as an action
conservation law. Energy and action are equivalent to the level of accuracy of our
approximation because the Doppler shift is a factor ε1/2 smaller than the intrinsic
frequency of the IGWs. Action can be defined for a broad class of systems in relation
to the pseudoenergy and shown to be conserved provided that the flow be an exact
solution of the inviscid fluid equations (Vanneste & Shepherd 1999); this restriction
is not necessary for (2.25) to apply, however.

(ii) The factor δ(ω(k′)− ω(k)) indicates that the energy exchanges caused by scattering
are restricted to a constant-frequency surface in k-space, that is, the cone k3/kh =
const. This is because the evolution of the background flow is slow enough that the
flow is treated as time independent. Scattering then results from resonant triadic
interactions in which one mode – the catalyst vortical mode – has zero frequency,
and the other two modes – the IGWs – have equal and opposite frequencies.
For a realistic time-dependent geostrophic flow, some energy is transferred off
the constant-frequency cone, but this transfer is weak and the bulk of the energy
remains confined to the cone, as figure 1(e–h) illustrates. The geometry of the
constant-frequency cone is crucial to the nature of the scattering. In the next
section we account for it explicitly by rewriting the kinetic equation on the
constant-frequency cone itself, using spherical polar coordinates.

(iii) We can connect (2.22) to earlier results on the scattering of IGWs by a barotropic (i.e.
z-independent) quasigeostrophic flow (Savva & Vanneste 2018). The assumption of a
barotropic flow amounts to taking ÊK(k) = ÊK,B(kh)δ(k3), which implies that k3 =
k′

3 in (2.22), hence |kh| = |k′
h| and |k| = |k′| in view of the resonance condition
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ω(k) = ω(k′). If we further make the hydrostatic approximation |k| ≈ |k3| (Olbers,
Willebrand & Eden 2012) we obtain

σ(k,k′) = 2π

ω4|kh|4
(

|k′
h × kh|2

(
(ω2 + f 2)kh · k′

h − f 2|kh|2
)2

+ f 2ω2
(
|k′

h × kh|2 + kh · k′
h

(
|kh|2 − kh · k′

h

))2
)

× ÊKK,B(k′
h − kh)

|k′
h − kh|2 δ

(
ω(k′)− ω(k)

)
, (2.27)

which is identical to the cross-section derived for the rotating shallow-water system
in Savva & Vanneste (2018). It is further shown in that paper that the cross-section
reduces to that derived for near-inertial waves by Danioux & Vanneste (2016) when
ω → f .

(iv) The WKBJ limit of the kinetic equation is obtained by assuming that the energy of
the quasigeostrophic flow is concentrated at scales large compared with the wave
scales; formally, ÊK(k) = g(α−1k) for α � 1 and some function g that decreases
rapidly for large argument. In this limit, it can be shown that the scattering terms
in (1.1) reduce to the (wavenumber) diffusion derived by Kafiabad et al. (2019)
taking the WKBJ approximation as a starting point (see Savva (2020) for details).
This makes it clear that the results of the present paper extend those of Kafiabad
et al. (2019) to capture a broad range of wave scales, from scales larger than the
quasigeostrophic-flow scales down to arbitrarily small scales. The mechanism of
interaction in this WKBJ limit is a version of the induced diffusion mechanism
identified by McComas & Bretherton (1977) for interactions between IGWs, with
the small-K geostrophic mode playing the role of the low-frequency IGW.

(v) The assumption of statistical homogeneity and stationarity of the geostrophic flow
can be relaxed to allow the flow energy spectrum ÊK to vary on the slow scales x
and t, leading to an x- and t-dependent cross-section σ(k,k′, x, t).

(vi) In the homogeneous case, ∇xa = 0, the energy density a(k, t) can be defined simply
in terms of Fourier transform without need for the Wigner-transform formulation,
and the cross-section can be obtained through more straightforward computations
than those reported in Appendix A. This is the approach taken by Eden et al. (2019);
we expect their coefficients characterising the catalytic interactions (in their Eq. (21))
to be equivalent to the cross-section (2.22) when the hydrostatic approximation |k| ≈
|k3| is made.

We next rewrite the kinetic equation (1.1) in a form tailored to the geometry of the
constant-frequency cones on which the energy exchanges are restricted, and discuss its
properties.

3. Scattering on the constant-frequency cone

3.1. Kinetic equation in spherical coordinates
We use spherical polar coordinates for the wavevectors, writing

k = k

⎛
⎝ sin θ cosϕ

sin θ sinϕ
cos θ

⎞
⎠ and k′ = k′

⎛
⎝ sin θ ′ cos(ϕ + ϕ′)

sin θ ′ sin(ϕ + ϕ′)
cos θ ′

⎞
⎠ . (3.1a,b)

916 A6-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.205


M.A.C. Savva, H.A. Kafiabad and J. Vanneste

k1

k2

k3

k
k′

kh

k3

kh
′

k3
′

ϕ

ϕ′

θ

K = k′ − k

Figure 2. Constant-frequency cone in wavevector space displaying the spherical coordinates used in the
representation (3.1a,b) of the wavevectors k and k′. Scattering transfers energy between IGWs with the
same frequency; hence their wavevectors k and k′ lie on the same cone. The wavevector K = k′ − k of
the geostrophic mode inducing the scattering is also shown.

Note that we use ϕ′ for the difference between the azimuthal angles of wavevectors k′ and
k rather than the azimuthal angle of k′ itself. See figure 2 for the coordinate geometry. In
these coordinates the dispersion relation (2.5) reads

ω(k) = ω(θ) =
√

N2 sin2 θ + f 2 cos2 θ. (3.2)

The constant-frequency constraint ω(θ ′) = ω(θ) implies that θ and θ ′ are either θω or
π − θω, where

0 ≤ θω = sin−1

√
ω(k)2 − f 2

N2 − f 2 ≤ π/2 (3.3)

is a constant identifying the cone corresponding to a specific IGW frequency ω. We
interpret this as follows: the constant-frequency cone has two nappes, one corresponding
to upward-propagating waves and the other to downward-propagating waves, and a wave
of a certain type, upward-propagating say, exchanges energy with both upward- and
downward-propagating waves. We separate the two types of exchanges by writing the delta
function in (2.22) in the new coordinates (3.1a,b) as

δ(ω(k′)− ω(k)) = 2ω(θ ′)
| sin(2θ ′)|(N2 − f 2)

(
δ(θ ′ − θω)+ δ(θ ′ − (π − θω))

)
(3.4)

and defining the pair of cross-sections σ± by∑
j=±

σj(k, k′, ϕ, ϕ′) =
∫ π

0
σ sin θ ′ dθ ′, (3.5)
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each associated with the contribution of a single δ-function. In this way, σ+ quantifies
the rate of scattering between waves on the same nappe of the constant-frequency cone,
while σ− quantifies the rate of scattering between the two nappes and thus the wave
reflection induced by interactions with the flow. Note that σ± depend parametrically on
θω or, equivalently, on the IGW frequency; for simplicity, we do not make this dependence
explicit from here on. Introducing (3.4) into (2.22) and carrying out the integration in θ ′
gives

σ±(k, k′, ϕ, ϕ′) = πk2k′2

16ω3
sin3(2θω)

sin θω(N2 − f 2)

{
4f 2ω2

[
cosϕ′(cosϕ′ ∓ 1)− sin2 ϕ′

]2

+ sin2 ϕ′
[
(ω2 + f 2)(2 cos ϕ′ ∓ 1)± (N2 + ω2)tan2 θω

]2
}

× ÊK(k′ − k)
(k2 + k′2 − 2k′k cosϕ′)

, (3.6)

where it is understood that k′ in the argument of the spectrum ÊK(k′ − k) is restricted to
represent the set of wavevectors on the same nappe of the constant-frequency cone as k
for σ+ and on the opposite nappe for σ−.

We emphasise that the cross-sections σ± depend on the azimuthal angle ϕ solely through
the background-flow spectrum ÊK . This dependence disappears for horizontally isotropic
flows and the cross-sections are then functions of three variables only: σ± = σ±(k, k′, ϕ′).
We use this to illustrate the form of σ± for a fixed k = k∗ in figure 3. The energy spectrum
ÊK used is obtained by azimuthally averaging the spectrum obtained in a geostrophic
turbulence simulation described in § 4. This spectrum is characterised by a well-defined
peak at a horizontal wavenumber K∗ which we identify with the characteristic wavenumber
used in the definition (2.6) of the Rossby number. The figure indicates that σ+ is localised
around (k′ = k∗, ϕ′ = 0). This implies spectrally local energy transfers and stems from
the concentration of the background-flow energy at large scales. The localisation is
increasingly marked as the ratio k∗/K∗ of the IGW wavenumber to the geostrophic-flow
peak wavenumber increases. This culminates in the WKBJ regime k∗/K∗  1, when
scattering is well described by a fully local diffusion in Kafiabad et al. (2019). The
broader support of σ+ in ϕ′ compared with k′ suggests that scattering leads to a rapid
wave energy spreading in the azimuthal direction, that is, a rapid isotropisation in the
horizontal, followed by a slower radial spreading associated with a cascade towards small
scales. Numerical simulations (not shown) confirm this general tendency.

The corresponding plots of σ− in figure 3 indicate that the transfers between nappes of
the constant-frequency cone are weak, especially for large k∗/K∗. The maximum pointwise
value of σ− exceeds that of σ+ for k∗/K∗ � 1 and k∗/K∗ � 0.1. It is attained for k′ = k,
corresponding to the interactions between two IGWs that are reflections of one another
on each nappe of the cone – a mechanism that can be identified as the elastic scattering
mechanism of McComas & Bretherton (1977). This pointwise value is, however, not an
indication that transfers between the different nappes are stronger than those across the
same nappe since integrated values are more meaningful. We therefore show

Σ±(k) =
∫ ∞

0

∫ π

−π

σ±(k, k′, ϕ′)k′2 dϕ′dk′, (3.7)

in figure 4 to confirm the dominance of σ+ over σ− and hence of energy transfers on
the same nappe of the cone over energy transfers between nappes. The values of σ− and
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Figure 3. Scattering cross-sections σ±(k = k∗, k′, ϕ′) for ω = 3f , Ro = 0.099, N/f = 32, and the
quasigeostrophic-flow energy spectrum described in § 4.1. The ratio of the IGW wavenumber to the
geostrophic-flow peak wavenumber is k∗/K∗ � 4 (WKBJ regime, (a,b)), k∗/K∗ � 1 (c,d) and k∗/K∗ � 0.1
(e, f ). The cross-sections are plotted in a polar representation of the coordinates (k′, ϕ′) corresponding to
on orthogonal projection of the constant-frequency cone on the (k1, k2)-plane. Note that the colour scale is
logarithmic and varies between plots.

Σ− decrease as k∗/K∗ increases, and in the WKBJ limit the transfers between nappes are
completely negligible; in other words, short IGWs do not get reflected.

With the spherical polar coordinates, it is convenient to introduce the two energy
densities b±(x, k, ϕ, t) such that

sin θω k2 a(x, k, ϕ, θ, t) = b+(x, k, ϕ, t) δ(θ − θω)+ b−(x, k, ϕ, t) δ(θ − (π − θω)).

(3.8)
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0 10 20 30 40

10–5

100

105

k/K∗

Σ±

Figure 4. Total cross-sections for same-nappe and across-nappe transfers Σ+(k) (blue line) and Σ−(k) (red
line) defined in (3.7) for ω = 2f , N/f = 32, Ro = 0.099 and the quasigeostrophic-flow energy spectrum
described in § 4.1.

With this definition accounting for the area factor sin θω k2, b+(x, k, ϕ, t) dkdϕ is the
energy in [k, k + dk] × [ϕ, ϕ + dϕ] on the upper nappe of the cone, corresponding to
upward-propagating IGWs, and b−(x, k, ϕ, t) dkdϕ its counterpart for the lower nappe of
the cone, corresponding to downward-propagating IGWs.

We group b± in the vector

b(x, k, ϕ, t) =
(

b+(x, k, ϕ, t)
b−(x, k, ϕ, t)

)
(3.9)

to rewrite the kinetic equation (1.1) as

∂tb(x,k, t)+ ∇kω(k) · ∇xb(x,k, t)

= k2
∫∫

σ (k, k′, ϕ, ϕ′) b(x, k′, ϕ − ϕ′, t)dk′dϕ′ −Σ(k, ϕ) b(x, k, ϕ, t), (3.10a)

where the matrix-valued cross-section

σ =
(
σ+ σ−
σ− σ+

)
(3.10b)

has components defined in (3.6) and Σ = Σ+ +Σ− follows from (3.7). Equation (3.10),
consisting of a pair of coupled kinetic equations in the two-dimensional (k, ϕ)-space,
provides the most useful description of the scattering of IGWs by geostrophic turbulence.
It simplifies further for horizontally isotropic flows since the explicit dependence on ϕ
disappears and Fourier series can be employed. We discuss properties of the scattering
inferred from (3.10) in the next section.

3.2. Properties of the scattering
The sum b+ + b− of the two components of b is the total energy density and is conserved:

E0(x, t) =
∫ ∞

0

∫ π

−π

(b+(x, k, ϕ, t)+ b−(x, k, ϕ, t)) dk dϕ (3.11)
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satisfies the conservation law (2.25). The difference �b = b+ − b−, on the other hand,
can be shown to satisfy

∂t

∫ ∞

0

∫ π

−π

�b(x, k, ϕ, t) dk dϕ = −2
∫ ∞

0

∫ π

−π

Σ−(k, ϕ)�b(x, k, ϕ, t) dk dϕ, (3.12)

using the evenness of σ± in ϕ′ and the reversibility symmetry σ ′±(k, k′, ϕ, ϕ′) =
σ ′±(k′, k, ϕ + ϕ′,−ϕ′). Since Σ− > 0, this shows that

∫∫
�b dk dϕ decays with time at

a rate controlled by the cross-section Σ−, so that the scattering leads to an equipartition
between upward- and downward-propagating IGWs. Note that twice the maximum ofΣ−,
2‖Σ−‖∞, provides a lower bound on the rate at which this equipartition occurs (see Savva
2020).

In common with other kinetic equations, (1.1) or (3.10) satisfy an H-theorem (Villani
2008) showing that the entropy

−
∫

R3
a ln a dk dx (3.13)

increases. This implies that IGW energy spreads on the constant-energy cone in an
irreversible manner. Because the cone is not compact, there is no possibility of reaching
a steady state, so the scattering leads to a continued scale cascade, mostly towards small
scales as a result of the cone geometry, that is only arrested by dissipation. This is in sharp
contrast with the situation in the absence of vertical shear where the constant-frequency
sets are circles (intersections of the cones with the surfaces k3 = const.) and a steady state
is reached, corresponding to an isotropic distribution of IGW energy when the flow is
horizontally isotropic (Savva & Vanneste 2018).

We now focus on the case of an isotropic background flow, when the cross-sections (3.6)
are independent of the azimuthal variable ϕ. Expanding both sides of (3.10) in Fourier
series gives

∂tb̂n(x, k, t)+ ∇kω(k) · ∇xb̂n(x, k, t)

= 2πk2
∫ ∞

0
σ̂ n(k, k′) b̂n(x, k′, t) dk′ −Σ(k) b̂n(x, k, t), (3.14)

where the hats denote the Fourier coefficients defined as

b̂n(x, k, t) = 1
2π

∫ π

−π

einϕ b(x, k, ϕ, t) dϕ. (3.15)

We can show from (3.14) that, for n �= 0,
∫

b̂n dk → 0 as t → ∞. This is seen by
integrating (3.14) with respect to k and summing the ± components of b̂n to obtain

∂t

∫ ∞

0

(
b̂n+(x, k, t)+ b̂n−(x, k, t)

)
dk

= −
∫ ∞

0
(Σ(k)−Λn(k))

(
b̂n+(x, k, t)+ b̂n−(x, k, t)

)
dk, (3.16)

where

Λn(k) = 2π

∫ ∞

0
(σ̂n+(k, k′)+ σ̂n−(k, k′))k′2 dk′. (3.17)
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It follows from (3.17) and the properties of Fourier coefficients that

Λ0(k) = Σ(k) and |Λn(k)| < Λ0(k) for n ≥ 1. (3.18a,b)

Thus the scattering term on the right-hand side of (3.16) vanishes for n = 0 and is negative
for n ≥ 1, so that the amplitudes b̂n± decay for all but the isotropic (n = 0) mode.
Hence the IGW wavefield becomes horizontally isotropic in the long-time limit
irrespective of the initial conditions.

In the remainder of the paper, we test the predictions of the kinetic equation (3.14)
against direct numerical simulations of the Boussinesq equations. We focus on an initial
condition that is approximately spatially homogeneous and horizontally isotropic so that
the transport term ∇kω · ∇xb̂n can be neglected and only the mode n = 0 needs to be
considered.

4. Kinetic equation versus Boussinesq simulations

4.1. Set-up and numerical methods
We carry out a set of Boussinesq simulations similar to those in Kafiabad et al. (2019),
using a code adapted from that in Waite & Bartello (2006) based on a dealiased
pseudospectral method and a third-order Adams–Bashforth scheme with time step
0.015/f . The triply periodic domain, (2π)3 in the scaled coordinates (x, y, z′ = Nz/f ),
is discretised uniformly with 7683 grid points and a hyperdissipation of the form −ν(∂8

x +
∂8

y + ∂8
z′), with ν = 2 × 10−17 is added to the momentum and density equations. We take

N/f = 32, a representative value of mid-depth ocean stratification. The initial condition
is the superposition of a turbulent geostrophic flow and IGWs. The geostrophic flow is
obtained by running the model in an unforced quasigeostrophic configuration (setting
the linear wave modes to zero at each time step) from a random small-scale initial
condition until an approximately statistically stationary state is reached through inverse
energy cascade. The spectrum of this stationary state peaks at Kh∗ � 4 and has an inertial
subrange scaling approximately as K−3

h and K−3
3 . The initial vertical vorticity field on

a horizontal plane and the initial kinetic energy spectrum of the geostrophic flow are
shown in figure 5. The spectrum evolves slowly over the IGW-diffusion time scale, and its
time-average defines ÊK which is used to calculate the cross-sections σ̂ n(k, k′) in (3.14).
Inertia-gravity waves are initialised along a ring in wavenumber space, with random phases
and identical magnitudes, so that the corresponding spectrum is horizontally isotropic,
that is, independent of ϕ. Since this remains (approximately) the case throughout the
simulation, we concentrate on the evolution of the spectrum b̂0(k, t) of the isotropic, n = 0
mode.

Simulations are performed for two Rossby numbers Ro = Kh∗〈|U |2〉1/2/f =
0.049, 0.099 (or 〈ζ 2〉1/2/f = 0.1, 0.2 for the alternative Rossby numbers based on the
vertical vorticity ζ ), which we refer to as ‘low’ and ‘high’ Rossby numbers, and the
two IGW frequencies ω = 2f , 3f . We carry our experiments with two different IGW
horizontal wavenumbers: (i) kh∗ = 16 � 4Kh∗, as used in Kafiabad et al. (2019), which
is large enough to be in the WKBJ regime where the scattering integral in (3.14) reduces
to a diffusion; and (ii) kh∗ = 4 � Kh∗ which requires the full kinetic equation. The IGW
energy spectrum is computed at each step following the normal-mode decomposition of
Bartello (1995). We retain data for (kh, fk3/N) ∈ [0, 254] × [−255, 255], and deduce the
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Figure 5. Vertical vorticity on the horizontal plane z = 0 (a) and kinetic energy spectrum of the initial
geostrophic flow (b). Both horizontal (black line) and vertical spectra (blue line) are shown, with a K−3 power
law (indicted by the dashed line).

two components of

b̂0(k, t) = 1
2π

∫ π

−π

b(k, ϕ, t) dϕ (4.1)

on a one-dimensional uniform grid with k ∈ [−254/ sin θ, 254/ sin θ ] by projection onto
the constant-frequency cone. Conventionally, we take negative values of k for the lower
nappe of the cone (i.e. π/2 < θ < π) so b̂0(k, t) = b̂0+(k, t) for k ≥ 0 and b̂0(k, t) =
b̂0−(−k, t) for k ≤ 0. In what follows, we omit the hat and subscript 0 from b̂0(k, t).

We solve the kinetic equation (3.14) for the horizontally isotropic mode n = 0 on an
evenly spaced grid interpolated to provide twice the resolution of data from the Boussinesq
simulations for a given frequency. We interpolate the geostrophic kinetic-energy spectrum
ÊK to double the resolution in each dimension for computing the cross-sections σ±. We
employ a fast Fourier transform to compute the ϕ-averaged cross-section σ̂ 0. Equation
(3.14) is integrated in time using an Euler scheme with time steps chosen so that �t =
0.5 (maxk Σ(k))−1. The integrals in k′ are discretised as Riemann sums, which respects the
energy conservation property of the kinetic equation. Absorbing layers are used to prevent
cascaded energy from building up. For comparison, the diffusion equation of Kafiabad
et al. (2019) is solved on the upper nappe on the grid k ∈ [0, 254/ sin θ ] with the same
resolution as the kinetic equation, using first-order central-difference differences for the
k-derivatives, and a stiff ordinary differential equation solver for time stepping.

4.2. Initial-value problem
We first analyse an initial-value problem. Upward-propagating horizontally isotropic
IGWs are initialised on the ring kh = kh∗, k3 = cot θ kh∗, with random phases and an initial
kinetic energy 〈|u|2〉/2 = 0.1〈|U |2〉/2. While the linearisation condition |u| � |U | is only
marginally satisfied, we find that the nonlinear wave–wave interactions, neglected in the
theory but included in the Boussinesq simulations, have little impact on the results. Much

916 A6-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.205


Inertia-gravity-wave scattering

–4

1

1.0

0.5

0
0

2

1

1.0

0.5

0
0

2
3
4R

o2
ft

k/k∗ k/k∗

b(
k,

 t j)

0.2

1.0

0.5

0
0

0.4

0.6

0.2

1.0

0.5

0
0

0.4R
o2

ft
b(

k,
 t j)

–2 2 4 6 80 –4 –2 2 4 6 80

–4 –2 2 4 6 80 –4 –2 2 4 6 80

(b)(a)

(c) (d )

Figure 6. Evolution of the spectrum b(k, t) for IGWs with horizontal wavenumber k∗ released in a
quasigeostrophic flow with peak wavenumber K∗ for the parameters: (a) ω = 2f , Ro = 0.049, kh∗/Kh∗ � 4;
(b) ω = 3f , Ro = 0.099, kh∗/Kh∗ � 4; (c) ω = 2f , Ro = 0.049, kh∗/Kh∗ � 1; (d) ω = 3f , Ro = 0.099,
kh∗/Kh∗ � 1. Numerical solutions of the Boussinesq equations (black lines) are compared with solutions of
the kinetic equation (red lines) and of the diffusion equation (blue lines) that approximates it in the WKBJ
limit k∗  K∗.

smaller values of |u| make the linear mode decomposition we use to separate IGWs from
the balanced flow inaccurate (see below).

The spectrum b(k, t) at four successive times is shown in figure 6 for ω = 2f , Ro =
0.049 (a,c) and ω = 3f , Ro = 0.099 (b,d), and for kh∗/Kh∗ � 4 (a,b) and kh∗/Kh∗ � 1
(c,d). The results of the Boussinesq simulations are compared with solutions of the
kinetic equation and of the diffusion equation of Kafiabad et al. (2019). For the latter
two equations, b(k, t) is matched to the spectrum obtained in the Boussinesq simulations
after an adjustment time ta  (K∗|cg|)−1, the time for a wavepacket to traverse typical
eddies at the IGW group speed, required for the kinetic equation to be valid (Besieris 1987;
Müller et al. 1986, § 5). This adjustment time is used as the initial time t = 0 in the figure.
The comparison shows a good agreement between the kinetic equation and Boussinesq
results, demonstrating both the ability of the kinetic equation to model faithfully the energy
scattering induced by the flow, and the dominance of this process over others such as
wave–wave interactions. The diffusion equation provides a good approximation to the
spectrum for kh∗/Kh∗ � 4 but, consistent with its reliance on the assumption k∗  K∗,
is inaccurate kh∗/Kh∗ � 1. For the larger Ro and kh∗/Kh∗ � 1, the match between the
kinetic equation and Boussinesq results is poor at low wavenumbers, which could stem
from two reasons. First, the discretisation in wavenumber space makes projection onto the
constant-frequency cone inaccurate at low wavenumbers, near the cone’s apex, because
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Figure 7. Log–log representation of the IGW spectrum in figure 6(c), i.e. for ω = 2f and Ro = 0.049
obtained from the kinetic equation (red lines) and Boussinesq simulations (black lines); (a) b+(k, t) = b(k, t),
corresponding to the upper nappe of the dispersion-relation cone, (b) b−(k, t) = b(−k, t), corresponding to the
lower nappe. The curves correspond to the times shown in figure 6(c) and are successively shifted downwards
by half a decade for clarity.

only four IGW wavelengths fit in the computational domain (kh∗ = Kh∗ = 1). Second, the
linear wave–vortex decomposition used in this study to extract the wave energy is less
accurate around the peak of the geostrophic energy spectrum when the Rossby number
is not small. As discussed in Kafiabad & Bartello (2016), because of the strength of the
balanced flow at these scales, a substantial part of what we extract as linear wave modes
is in a fact a balanced contribution, ‘slaved’ to the geostrophic modes. A higher-order
decomposition would be needed to better isolate the freely propagating waves but is beyond
the scope of our study.

A different view of the results in given by figure 7 which shows the spectrum of
upward-propagating waves b+(k, t) (panel a) and downward-propagating waves b−(k, t)
for ω = 2f , Ro = 0.049 and kh∗/Kh∗ � 1 in log–log coordinates. This shows an excellent
agreement at most except the extreme wavenumbers (where the dissipation mechanisms,
which differ between the kinetic equation and Boussinesq computations, are felt). Thus the
kinetic equation accurately captures the scale cascade that results from scattering by the
turbulent flow. Similar results (not shown) are obtained in the WKBJ regime kh∗/Kh∗ � 4
where the kinetic equation predicts spectra very close to those obtained in Kafiabad et al.
(2019) using the diffusion equation. Note that the diffusion equation predicts a k−2t−5

dependence of the spectrum which applies for k  K∗, irrespective of whether the initial
wavenumber satisfies the WKBJ condition k∗  K∗ or not.

4.3. Forced problem
We now turn to a forced problem in which IGWs with random phases are continuously
forced along a ring in wavenumber space until they reach a statistically steady state. For the
corresponding problem in the WKBJ limit kh∗  Kh∗, the forced diffusion equation has
an equilibrium power-law solution b±(k) ∝ k−2. In general, when the forcing wavenumber
is of the order of Kh∗, this power law applies only to the tail of the spectrum; at small and
intermediate wavenumbers, the equilibrium spectrum is determined by the steady solution
of forced scattering equation

∂tb̂0 = 2πk2
∫ ∞

0
σ̂ 0(k, k′) b̂0(k′, t)dk′ −Σ(k) b̂0(k, t)+ F , (4.2)
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Figure 8. Equilibrium spectra b+(k) (blue line) and b−(k) (red line) in a forced solution of the kinetic

equation with forcing wavenumber kh∗ � Kh∗ and ω = 2f .

where the forcing term

F =
(

Aδ(k − k∗)
0

)
, (4.3)

with A an arbitrary amplitude, is applied only to upward-propagating waves. We solve
this equation numerically until an approximately steady state is reached and show the
equilibrium spectrum b±(k) obtained in figure 8 The parameters chosen are kh∗ �
Kh∗ = 4 for the forcing wavenumber, ω = 2f and Ro = 0.049 (note that the equilibrium
b±(k) depends only on the shape of the quasigeostrophic-flow spectrum and not on its
amplitude). The energy spectrum follows a k−2 power law for large k, as expected from
the WKBJ results of Kafiabad et al. (2019). While the k−2 spectrum is an exact stationary
solution of the diffusion equation, for the scattering equation it only holds approximately
for k  K∗. In our set-up, the non-diffusive, finite-k effects arise only in a range of
wavenumbers close to the forcing wavenumber. Note that Kafiabad et al. (2019) confirm
the validity of the k−2 prediction against Boussinesq solutions and discuss the implications
for the interpretation of atmosphere and ocean observations.

Figure 8 shows the spectrum on both the upper and lower nappes of the cones and
makes it clear that the stationary spectra of upward- and downward-propagating waves are
identical for all wavenumbers outside the immediate vicinity of the forcing wavenumber
k∗. This is the counterpart for the forced problem to the observation in § 4.2 that
the kinetic equation predicts equipartition of the wave energy between upward- and
downward-propagating IGWs.

4.4. Barotropic flow
It is worth contrasting scattering by a three-dimensional quasigeostrophic flow that is
approximately isotropic in scaled coordinates (x, y,Nz/f ), as considered above, with
scattering by a barotropic (z-independent) flow as considered in Savva & Vanneste (2018).
In a barotropic flow, the energy transfers, governed by the cross-section in (2.27), are
restricted to IGWs with a fixed vertical wavenumber k3. As result, instead of spreading over
the entire constant-frequency cone, energy spreads on a circle, the intersection of the cone
with the plane k3 = const. There is therefore no energy cascade across scales and the effect
of scattering is limited to a directional spreading of the wave energy, leading ultimately to
an isotropic wave field if the geostrophic flow is isotropic (see Savva & Vanneste (2018)
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and Danioux & Vanneste (2016) for numerical results). An initial-value problem leads to
a statistically stationary IGW field, while a constant forcing leads to a growing field in
the absence of dissipation. This contrasts with the dynamics in a three-dimensional flow
with vertical shear where a decaying energy is obtained for the initial-value problem and
a statistically steady state for the forced problem. This highlights the importance of IGWs
having a non-compact constant-frequency surface, unlike many other familiar waves.

5. Discussion

The main result of this paper is the (vector) kinetic equation (3.10) governing the energy
transfers between upward- and downward-propagating IGWs induced by a turbulent
quasigeostrophic flow. The components σ± of the scattering cross-section tensor, which
determine this equation completely, are given in (3.6). They depend (linearly) on a single
statistic of the quasigeostrophic flow, the kinetic energy spectrum ÊK(k). The main
assumption made, that of a small Rossby number, implies that the quasigeostrophic flow
evolves slowly enough to be effectively time independent. Accordingly, energy transfers
are restricted to IGWs with the same frequency and can be interpreted as resulting from
the resonant triadic interactions between two IGWs and a zero-frequency quasigeostrophic
(vortical) mode. In wavenumber space, these interactions cause the spreading of IGWs
energy along the constant-frequency cones, leading to an isotropisation of the wave energy
in the horizontal when the quasigeostrophic flow is horizontally isotropic, and to a cascade
to high wavenumbers, that is, to small scales. In this paper, we focus on the scale cascade
by considering the azimuthally averaged IGW energy spectrum; we leave the study of the
process of isotropisation and, in particular, the comparison between its time scale and that
of the scale cascade, for future work. The behaviour of IGWs in quasigeostrophic flows
with marked anisotropy can also be described by the kinetic equation and is of interest for
its relevance, e.g. to IGWs propagating the Gulf Stream region.

In earlier work (Kafiabad et al. 2019) we examined IGW scattering in the same set-up
as here, but with the additional WKBJ assumption of IGW scales much smaller than
the typical scale of the quasigeostrophic flow. Starting from the familiar phase-space
transport equation, we derived a diffusion equation for the evolution of IGW energy
in wavenumber space. This equation is a limiting form of the kinetic equation derived
here, as can be checked directly (Savva 2020). In a probabilistic interpretation, the kinetic
equation describes a continuous-time random walk, with finite steps in wavenumber space
resulting from catalytic interactions, while the diffusion equation describes its Brownian
approximation, obtained in the limit of small steps corresponding to energy transfers that
are local in wavenumber space. In this interpretation, the random walk has in fact two
states, corresponding the two nappes of the cone or, physically, to IGWs propagating
either upwards or downwards. Transitions between the two states, that is, transfers between
upward- and downward-propagating IGWs are ruled out in the WKBJ limit, but are
captured by the kinetic equation (3.10).

The results of this paper have potential implications for atmosphere and ocean
modelling. As discussed in Kafiabad et al. (2019), the scattering of IGWs by geostrophic
turbulence leads to a k−2 energy spectrum that is reminiscent of the spectra observed
in the atmospheric mesoscale and ocean submesoscale ranges. The results of the present
paper make it possible to examine this more fully, by enabling predictions of the IGW
statistics across all scales including those that overlap with the geostrophic flow scales.
They may also be useful for the parameterisation of IGWs, by providing a quantification
of the forward energy flux that results from scattering by unresolved flow. We note that the
probabilistic interpretation of the kinetic and diffusion equations mentioned above offers
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a straightforward route towards stochastic parameterisations of this scattering, in which
energy is transferred between wavevectors selected at random according to the scattering
cross-section.

We conclude by pointing out three problems worthy of further study. The first is the
relative importance of the scattering by the quasigeostrophic flow and of the nonlinear
wave–wave interactions which we have neglected at the outset by linearising the equations
of motion. The second concerns the weak energy transfers across constant-frequency cones
that stem from the slow time dependence of the flow. Over long time scales, these transfers
combine with the along-cone transfers of this paper to yield in a distribution of energy in
wavenumber space which could be compared with atmosphere–ocean observations. (See
Dong, Bühler & Smith (2020) for recent results for shallow-water waves in the WKBJ
regime.) The third problem concerns the combined effect of scattering with the transport
by the group velocity that arises when the IGW field is not statistically homogeneous,
unlike in the numerical simulations of § 4. The kinetic equation (3.10) captures both
processes but needs to be solved in the (x,k)-phase space, a challenging task even when
symmetry assumptions are made to reduce the dimension of this space (see Savva &
Vanneste (2018) for an application of the kinetic equation to an inhomogeneous IGW field
in the simpler case of a barotropic flow).
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Appendix A. Derivation of the kinetic equation

A.1. Evolution equation for W

We start with the Euler–Boussinesq equations written in the form (2.9), with the linear
operator L defined in (2.10) and the operator N(x,∇x) grouping the background-flow terms
given in terms of its action on φ = (γ, δ)T by the four components

N11γ = (Ω∇)−2∂z

{
f 2∂z

(
[(ψx∂y − ψy∂x)− ((∇2

hψx)∂y − (∇2
hψy)∂x)∇−2

h ]γ
)

+ f 2∇2
h

(
[(ψxz∂y − ψyz∂x)∇−2

h ]γ
)

+ N2∇2
h

(
(ψx∂y − ψy∂x)∂

−1
z γ

)}
, (A1a)

N12δ = ∇−2( f ∂z)
{
∂z

(
[((∇2

hψx)∂x + (∇2
hψy)∂y)∇−2

h + (∇2
hψ)

− (ψxz∂x + ψyz∂y + ∇2
hψz)∂

−1
z ]δ

)
− ∇2

h

(
[(ψxz∂x + ψyz∂y)∇−2

h − ψzz∂
−1
z ]δ

)}
,

(A1b)

N21γ = −2f (Ω∇)−2∂zz

{
[ψyy∂xx − 2ψxy∂xy + ψxx∂yy]∇−2

h γ
}
, (A1c)
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N22 δ = ∇−2
{
∂zz

([
(ψx∂y − ψy∂x)+ 2((ψxx − ψyy)∂xy − ψxy(∂xx − ∂yy))∇−2

h

− (ψxz∂y − ψyz∂x)∂
−1
z

]
δ
)

+ ∇2
h

([
(ψx∂y − ψy∂x)+ (ψxz∂y − ψyz∂x)∂

−1
z

]
δ
)}
,

(A1d)

withΩ = Ω(∇) defined in (2.4). We derive an evolution equation for the (scaled) Wigner
transform of φ differentiating (2.11) with respect to t and substituting (2.10) to obtain

ε∂tW (x,k, t) (A2)

= ε

∫
R3

eik·y (∂tφ
(

t, x − εy
2

)
φT

(
t, x + εy

2

)
+ φ

(
t, x − εy

2

)
∂tφ

T
(

t, x + εy
2

)) dy
(2π)3

= −
∫

R3
eik·y ((L(ε∇x)+ ε1/2N

(x
ε

− y
2
, ε∇x,

t
ε1/2

))
× φ

(
t, x − εy

2

))
φT

(
t, x + εy

2

) dy
(2π)3

+ c.c., (A3)

where c.c. denotes the complex conjugate of the preceding term. This equation can be
closed for W (x,k, t) by introducing the Fourier transform

φ̂(k, t) = 1
(2π)3

∫
R3

eik·xφ(x, t) dx and φ(x, t) =
∫

R3
e−ik·xφ̂(k, t) dk (A4a,b)

and noting that the Fourier representation

W (x,k, t) = ε−3
∫

R3
eip·xφ̂(−k/ε − p/2, t)φ̂∗(−k/ε + p/2, t) dp, (A5)

with ∗ denoting conjugate transpose, can be deduced straightforwardly from (2.11) (Ryzhik
et al. 1996). Rewriting φ in terms of φ̂ and making use of (A5), we rewrite (A3) as

ε∂tW (x,k, t)+
:= QεW︷ ︸︸ ︷(

L
(

ik + ε

2
∇x

)
W (x,k)+ c.c.

)

+ ε1/2

⎛
⎜⎜⎜⎝
∫

R3
e−ip·ξ N̂(p, i

(
k + p

2

)
+ ε

2
∇x, τ )W (x,k + p

2
) dp + c.c.︸ ︷︷ ︸

:= PεW

⎞
⎟⎟⎟⎠ = 0, (A6)

where ξ = x/ε and τ = t/ε1/2. In (A6) we introduced the matrix N̂ , the Fourier
counterpart to the operator N , defined by the equality

N(x,∇x)φ(x) =
∫∫

e−i(q+p)·xN̂(q,−ip)φ̂(p) dq dp (A7)

holding for all φ(x). Some care needs to be exercised in deducing the components of N̂
from those of N in (A1) because spatial derivatives act both on the components of φ(x)
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and on ψ(x). We note that the components of N(x,∇x)φ are sums of the form

Nij(x,∇x)φj(x) =
∑

k

∂α
x

[
Gk

ij(x)∂
β
x φj(x)

]
, (A8)

where α, β are multi-indices (depending on (i, j, k)) and Gk
ij(x) depends linearly on ψ(x).

We then have

Nij(x,∇x)φj =
∑

k

∂α
x

[∫
R3

e−iq·xĜk
ij(q)dq ∂β

x

∫
e−ip·xφ̂j(p) dp

]

=
∑

k

∫∫
R3

e−i(q+p)·x(−i(q + p))α(−ip)βĜk
ij(q)φ̂j(p) dq dp, (A9)

from which we deduce the formula

N̂ij(q,−ip) =
∑

k

(−i(q + p))α(−ip)βĜk
ij(q), (A10)

which makes it possible to compute N̂ from (A1). Since N̂ is a linear function of ψ̂ , we
can define a matrix Û(q, ip) by

N̂(q, ip) = Û(q, ip)ψ̂(q). (A11)

The computation of the cross-section below requires this matrix with arguments q = k′ −
k and ip = ik′. We therefore record the components of Û(k′ − k, ik′), found to be

Û11(k′ − k, ik′)

= k̂3 · k′
h × kh

|k′
h|2

|k3|2
|k|2

[
f 2

ω2 (2kh · k′
h − |kh||k′

h|sgn(k3k′
3))+ N2

ω2

|kh|2|k′
h|2

k3k′
3

]
,

(A12a)

Û22(k′ − k, ik′)

= k̂3 · k′
h × kh

|k′
h|2

|k3|2
|k|2

[
2kh · k′

h − |kh||k′
h|sgn(k3k′

3)+ |kh|2|k′
h|2

k3k′
3

]
, (A12b)

Û12(k′ − k, ik′) = f
|k′

h|2
|k3|2
|k|2

[
(k′

3 − k3)
2 |k′

h||kh|
|k′

3||k3| − |k′
h − kh|2

]
k′

h · kh, (A12c)

Û21(k′ − k, ik′) = 2
f
ω2

|k3|2
|k|2

|k′
h × kh|2
|k′

h|2
, (A12d)

after a lengthy calculation that uses Ω(ik) = ω(k).
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A.2. Multiscale asymptotics
We now derive the asymptotic limit of (A6) using a multiscale expansion. We introduce
the expansion (2.12) into (A6), expanding the differential operators as

∇x �→ ∇x + ε−1∇ξ and ∂t �→ ∂t + ε−1/2∂τ , (A13a,b)

where x and ξ , t and τ are treated as independent variables, leading to the expansion

Qε = Q0 + εQ1 + O(ε2), Pε = P0 + εP1 + O(ε2) (A14a,b)

of the operators in (A6). It turns out that only the leading-order term P0 is required for the
derivation of the kinetic equation.

The operators in (A14a,b) can be written explicitly through their action on an arbitrary
function Z(x, ξ ,k) as follows:

Q̃0Z(x, ξ ,k) = L(ik + 1
2∇ξ )Z(x, ξ ,k)+ c.c. (A15)

Q̃1Z(x, ξ ,k) = 1
2i

[
∇kL(ik + 1

2
∇ξ )

]
· ∇xZ(x, ξ ,k)+ c.c. (A16)

P̃0Z(x, ξ ,k) =
∫

R3
e−ip·ξ N̂

(
p, i

(
k + p

2

)
+ 1

2
∇ξ , τ

)
Z
(

x, ξ ,k + p
2

)
dp + c.c.

(A17)

We have decorated the operators with a tilde to highlight the presence of ∇ξ in their
definition; the tildes will be removed whenever this dependence disappears.

Substituting the operators into (A6) gives us the evolution equation for the Wigner
function as [

1
ε
Q̃0 + 1

ε1/2

(
P̃0 + ∂

∂τ

)
+

(
Q̃1 + ∂

∂t

)]
W ε(x, ξ ,k, t, τ ) = 0. (A18)

Introducing the expansion (2.12) then leads to a hierarchy of equations to be solved at each
order in ε.

The leading-order equation is

Q0W (0) = L(ik)W (0)(x,k, t)+ c.c. = 0 (A19)

whose general solution

W (0)(x,k, t) =
∑
j=±

aj(x,k, t)E j(k), (A20)

is a linear combination of the matrices E j(k) = ej(k)e∗
j (k) constructed from the (right)

eigenvectors ej(k) of L(ik) (see (2.15)). The so-far undetermined amplitudes aj(x,k, t) are
real because the Wigner function is Hermitian.
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Inertia-gravity-wave scattering

At O(ε−1/2), we find

Q̃0W (1)(x, ξ ,k, t, τ ) = −P0W (0)(x,k, t), (A21)

where we have used that ∂τW (0) = 0. To solve (A21), we rewrite W (1) in terms of its
Fourier transform with respect to ξ ,

W (1)(x, ξ ,k, t, τ ) =
∫

R3
e−ip·ξ Ŵ (1)(x, p,k, t, τ ) dp. (A22)

Substituting this into (A21) yields

L
(

i
(

k − p
2

))
Ŵ (1)(p,k)+

[
L
(

i
(

k + p
2

))
Ŵ (1)(−p,k)

]∗ + θŴ (1)(p,k)

= −N̂
(

p, i
(

k + p
2

))
W (0)

(
k + p

2

)
−

[
N̂
(
−p, i

(
k − p

2

))
W (0)

(
k − p

2

)]∗
,

(A23)

where we have suppressed dependencies on x, t and τ for conciseness. Following Ryzhik
et al. (1996), we have introduced a regularisation parameter θ > 0 which will be taken to
zero at a later stage.

We solve (A23) by projection on the left eigenvectors of L(ik), that is, on the row vectors
cj solving

cjL = iωjcj (A24)

and satisfying

cj = e∗
j M and ciej = δij (A25a,b)

as can be shown using that M(k)L(ik) is skew-Hermitian. Premultiplying and
postmultiplying (A23) by cn(k − p/2) and c∗

m(k + p/2) and using that Ŵ (1)(p,k) =
Ŵ (1)∗(−p,k) (because the Wigner transform is Hermitian) gives

−
(

i
(
ωn

(
k − p

2

)
− ωm

(
k + p

2

))
+ θ

)
cn

(
k − p

2

)
Ŵ (1)(p,k)c∗

m

(
k + p

2

)
=

∑
i=±

ai

(
k + p

2

)
cn

(
k − p

2

)
N̂
(

p, i
(

k + p
2

))
ei

(
k + p

2

)
e∗

i

(
k + p

2

)
c∗

m

(
k + p

2

)

+
∑
j=±

aj

(
k − p

2

)
cn

(
k − p

2

)
ej

(
k − p

2

)
e∗

j

(
k − p

2

)

× N̂
∗ (−p, i

(
k − p

2

))
c∗

m

(
k + p

2

)
. (A26)

We now decompose Ŵ (1) using the vectors ei(k), which form a complete basis, as

Ŵ (1)(x, p,k, t, τ ) =
∑

m,n=±
αmn(x, p,k, t, τ )en

(
k − p

2

)
e∗

m

(
k + p

2

)
. (A27)
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Using this along with the orthonormality of the eigenvectors and (A11) we finally write
the solution

Ŵ (1)(x, p,k, t, τ ) =
∑

m,n=±

[
am

(
x,k + p

2
, t
)

cn

(
k − p

2

)
Û
(

p, i
(

k + p
2

))
em

(
k + p

2

)

+ an

(
x,k − p

2
, t
)

e∗
n

(
k − p

2

)
Û

∗ (−p, i
(

k − p
2

))
c∗

m

(
k + p

2

)]

×
en

(
k − p

2

)
e∗

m

(
k + p

2

)
ψ̂(p, τ )

i
(
ωm

(
k + p

2

)
− ωn

(
k − p

2

))
− θ

, (A28)

where we have taken into account that ψ̂(p) = ψ̂∗(−p). We note that this solution shows
W (1) is linear in the random field ψ .

The slow evolution of the leading-order Wigner function W (0) is controlled by the O(1)
term in the expansion of (A18), given by

− Q̃0W (2) = (P̃0 + ∂τ )W
(1) + (Q1 + ∂t)W

(0). (A29)

We assume that the random stream function is a stationary process in τ and homogeneous
in ξ , with zero mean, 〈ψ(ξ , τ )〉 = 0, and covariance

〈ψ(ξ , τ )ψ(ξ ′, τ )〉 = R(ξ − ξ ′), (A30)

where 〈·〉 denotes an ensemble average, or equivalently an average over ξ . In terms of
Fourier transforms, this implies that

〈ψ̂(p)ψ̂(p′)〉 = R̂(p)δ(p + p′), (A31)

where the stream function power spectrum R̂ is the Fourier transform of R. Then since
u = ∇⊥

h ψ , the more familiar kinetic energy spectrum is then

ÊK(k) = |kh|2R̂(k). (A32)

We now take the average of (A29). The slow time derivative term on the right-hand
side disappears since 〈W (1)〉 = 0. Since 〈∂ξW (2)〉 = 0, 〈Q̃0W (2)〉 = Q0〈W (2)〉, where the
removal of the tilde corresponds to setting ∇ξ to 0 in Q0. This leads to

− Q0W (2) = 〈P̃0W (1) + (Q1 + ∂t)W
(0)〉, (A33)

an inhomogeneous version of (A19).
The matrix Q0 has a non-trivial null space, spanned by the matrices E j(k); the

right-hand side of (A33) must therefore satisfy a solvability condition. Since iQ0 = iL(ik)
is self-adjoint with respect to the matrix inner product

⟪X ,Y⟫ := tr(MX∗MY ), (A34)

this condition is obtained by applying ⟪E j(k), ·⟫ to (A33). We deal with the resulting
terms one by one. First, by orthogonality and (A20) we have

⟪E i, ∂tW
(0)⟫ =

∑
j=±
(∂taj) ⟪E i,E j⟫ = ∂tai(x,k, t). (A35)
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Next,

⟪E i,Q1W (0)⟫ =
∑
j=±

1
2i
⟪E i, (∇kL · ∇xaj)E j⟫+ c.c.

=
∑
j=±

1
2i
⟪E i,∇k(LE j)− L∇kE j⟫ · ∇xaj + c.c.

=
∑
j=±

1
2i
⟪E i,∇k(iωj)E j + (iωj − L)∇kE j⟫ · ∇xaj + c.c.

= ∇kωi · ∇xai(x,k, t). (A36)

In order to evaluate the remaining term, we note that, using (A11) and (A31), we have

〈N̂αβ(p, iq)N̂γ δ(p′, iq′)〉 = Ûαβ(p, iq)Ûγ δ(p′, iq′)R̂(p)δ(p + p′), (A37)

where Greek indices are used for matrix elements to make the following derivation clearer,
and summation over repeated Greek indices is implied.

Expanding all terms, and making use of the delta function in (A37), we have

⟪E i, 〈P̃0W (1)〉⟫

=
∫∫

ei(p+p′)·ξ Mνρei
ρ(k)e

i∗
σ (k)Mσλ

〈
N̂λμ

(
p, i

(
k + p − p′

2

))
Ŵ (1)
μν

(
p′,k + p

2

)〉
dpdp′ + c.c.

=
∫ ∑

m,n=±
ci
λ(k)Ûλμ(p, i(k + p))en

μ(k + p)

δim︷ ︸︸ ︷
cm
ρ (k)e

i
ρ(k) R̂(p)

×
am(k)cn

α(k + p)Ûαβ(−p, ik)em
β (k)+ an(k + p)

(
cm
α (k)Ûαβ(p, i(k + p))en

β(k + p)
)∗

i (ωm(k)− ωn(k + p))− θ
dp

+ c.c.

= −2θRe
∫ ∑

n=±
ci
λ(k)Ûλμ(k

′ − k, ik′)en
μ(k

′)R̂(k′ − k)

×
ai(k)cn

α(k
′)Ûαβ(k − k′, ik)ei

β(k)+ an(k′)
(

ci
α(k)Ûαβ(k

′ − k, ik′)en
β(k

′)
)∗

(
ωi(k)− ωn(k′)

)2 + θ2
dk′, (A38)

where we let k′ := k + p. Setting the regularisation parameter θ → 0, we have that
θ/(x2 + θ2) → πδ(x). This leads to a factor δ(ωi(k)− ωn(k′)) which indicates that
scattering is restricted within a single branch of the dispersion relation, and so we may
drop the sum over n and let i = n.

We simplify (A38) by computing

c±
λ (k)Ûλμ(k

′ − k, ik′)b±
μ(k

′) =
〈
e±(k), Û(k′ − k, ik′)e±(k′)

〉
M

(A39a)

= 1
2ω

|k||k′
h||k′

3|
|k′||kh||k3| [ω(Û11 + Û22)± i(Û12 − ω2Û21)]

(A39b)

=: α(k,k′)± iβ(k,k′), (A39c)
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using (2.18) and (A12) and omitting the arguments (k′ − k, ik′) of the functions Ûij. The
last line defines the two real functions α(k,k′) and β(k,k′) which can be written down
using the explicit expressions for Ûij in (A12). The symmetry properties

α(k,k′) = −α(k′,k) and β(k,k′) = β(k′,k) (A40a,b)

can be verified from these expressions. Using (A39)–(A40a,b), the terms in (A38) simplify
as

Re
(

cλ(k)Ûλμ(k′ − k, ik′)eμ(k′)
) (

cα(k′)Ûαβ(k − k′, ik)eβ(k)
)

= −(α2(k,k′)+ β2(k,k′)), (A41)

Re
(

cλ(k)Ûλμ(k′ − k, ik′)eμ(k′)
) (

cα(k)Ûαβ(k′ − k, ik′)eβ(k′)
)∗

= α2(k,k′)+ β2(k,k′), (A42)

and (A38) simplifies to

⟪E i, 〈P̃0W (1)〉⟫ = 2π

∫
R3

(
α2(k,k′)+ β2(k,k′)

)
R̂(k′ − k)

× δ
(
ω(k)− ω(k′)

) [
a(k)− a(k′)

]
dk′. (A43)

Combining this result with (A35) and (A36) reduces the solvability condition for (A33) to
the kinetic equation (1.1), with the cross section

σ(k,k′) := 2π
(
α2(k,k′)+ β2(k,k′)

)
R̂(k′ − k)δ

(
ω(k)− ω(k′)

)
. (A44)

Replacing the stream function spectrum R̂ by the kinetic-energy spectrum ÊK using (A31)
and substituting explicit expressions for α(k,k′) and β(k,k′) gives the full form (2.22) of
the cross-section.
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