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ABSTRACT

In the present paper we introduce and study the twisted 7-filtration on Ky(Gs), where
G is a split simple linear algebraic group over a field k of characteristic prime to
the order of the center of GG;. We apply this filtration to construct nontrivial torsion
elements in y-rings of twisted flag varieties.

1. Introduction

Let X be a smooth projective variety over a field k. Consider the Grothendieck ~-filtration on
Ky(X). It is given by subgroups (see [SGAG6, §2.3] and [Kar98, §2])

7' Ko(X) = (e, (br) -+ - Cnp (bm) [0+ A1 Z 0, b1, by € Ko(X), 020

generated by products of characteristic classes in K. Let v¢(X) be the ith subsequent quotient
and let v*(X) = @D, 7H(X) be the associated graded ring called the y-ring of X.

The ring v*(X) was invented by Grothendieck to approximate the topological filtration
on Ky and, hence, the Chow ring CH*(X) of algebraic cycles modulo rational equivalence.
Indeed, by the Riemann—Roch theorem (see [SGAG, §2]) the ith Chern class ¢; induces an
isomorphism with Q-coefficients, that is, ¢; : 7/(X; Q) = CH!(X; Q). Moreover, in some cases
the ring 7*(X) can be used to compute CH*(X), for example 7' (X) = CH'(X), and there is a
surjection v2(X) — CH?(X) (see [Ful98, Example 15.3.6]).

In the present paper, we provide a uniform lower bound for the torsion part of v*(X), where
X = ¢B is a twisted form of the variety of Borel subgroups B of a split simple linear algebraic
group G by means of a G4-torsor £. Note that the groups v2(X) and CH?(X) had been studied
for Gs = PGL,, in [Kar98] and for strongly inner forms in [GZ10]. In particular, it was shown in
[GZ10, §§3 and 7] that in the strongly inner case the torsion part of v?(X) determines the Rost
invariant.

Our main tool is the twisted ~-filtration on Ky(G5), where Gy is a split simple linear algebraic
group. Roughly speaking, it is defined to be the image (see Definition 4.3) of the ~-filtration on
K of the twisted form X under the composition Ky(X)— Ko(Bs) — Ko(Gs), where the first
map is given by the restriction and the second map is induced by taking the quotient. The
associated graded ring 'yg‘ of the twisted ~-filtration has the following properties.

i) It can be explicitly computed (see Theorem 4.5). Observe that 40 =Z, v} =0 and +¢ is
i) I b licitl ted Th 4.5). Ob that 7¢ = Z, v =0 and ~;
torsion and finitely generated for ¢ > 1.
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(ii) There is a surjective ring homomorphism v*(X) — 7¢ - Hence, ¢ provides a uniform lower
bound for the torsion part of the y-ring of X.

(iii) The assignment & — fyg‘ respects the base change and, therefore, can be viewed as an

invariant of a torsor £.

In the last section, we use these properties to construct nontrivial torsion elements in v?(X)
for some twisted flag varieties X (see Examples 5.2 and 5.4). In particular, we establish the
connection between the indexes of the Tits algebras of £ and the order of the special cycle
0 € v?(X) constructed in [GZ10].

2. Preliminaries

In the present section, we recall several basic facts concerning linear algebraic groups, characters
and the Grothendieck Ky (see [KMRT98, §24]| and [GZ10, § 1B and §6]).

Let G5 be a split simple linear algebraic group of rank n over a field k. We assume that the
characteristic of k is prime to the order of the center of GG;. We fix a split maximal torus 7" and
a Borel subgroup B such that T'C B C G,.

Let A, and A be the root and the weight lattices of the root system of G with respect to
T C B. Let {a1,...,a,} be a set of simple roots (a basis of A,) and let {w1,...,w,} be the
respective set of fundamental weights (a basis of A), that is, o/ (w;) = 6;;. The group of characters
T* of T is an intermediate lattice A, C T C A that determines the isogeny class of G,. If T* = A,
then the group Gy is simply connected and if 7% = A, it is adjoint.

Let Z[T*] be the integral group ring of T*. Its elements are finite linear combinations Y, a;e*:,

Ai € T*. Let B5 denote the variety of Borel subgroups Gs/B of G. Consider the characteristic
map for Ky (see [Dem74, §2.8])

¢: Z[T*] — Ko(Bs)
defined by sending e*, A € T*, to the class of the associated line bundle [£())]. Observe that the

ring Ko(Bs) does not depend on the isogeny class of G while the group of characters 7™ and,
hence, the image of ¢ does.

Since Ko(Bs) is generated by the classes [£L(w;)], i=1,...,n, the characteristic map ¢ is
surjective if G4 is simply connected. If G is adjoint, then the image of ¢ is generated by the
classes [L(«;)], where

;= Z cijw; and therefore L(a;) = ®;L(w;)%,
J
and ¢;; = o) (a;) are the coefficients of the Cartan matrix of Gs.
The Weyl group W of G acts on weights via simple reflections s,, as

Sa;(N) =X —af Ny, AEA.

For each element w € W, we define (cf. [Ste75, §2.1]) the weight p,, € A as
Pw = Z w_l<wi)-

{lel7vn|w71(ab)<0}
In particular, for a simple reflection w = s, we have

puw= > Say (Wi) = S0y (w5) = wj — ay.
{i€l,...;n|sa; (a;)<0}
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Observe that the quotient A/A, coincides with the group of characters of the center of the
simply connected cover of Gg. Since W acts trivially on A/A,, we have

Pw = Z Wi € A/T*7
{1617’n|w71(a1)<0}
where p,, denotes the class of p,, € A modulo T™. In particular, @; = Psa, -

Let Z[A]" denote the subring of W-invariant elements. Then the integral group ring Z[A]
is a free Z[A]"-module with the basis {e”*},cw (see [Ste75, Theorem 2.2]). Now let € : Z[A] —
Z, e — 1 be the augmentation map. By the Chevalley theorem, the kernel of the surjection ¢ is
generated by elements x € Z[A]" such that €(z) = 0. Hence, there is an isomorphism

Z[A] ®Z[A]W 7 ~ Z[A]/ ker(c) ~ Ko(Bs).

So, the elements

{gw = c(e”) = [L{pw)]Fwew
form a Z-basis of Ky(B;) called the Steinberg basis.

Following [Tit71], we associate with each x € A/T* and each cocycle ¢ € Z!(k, G) the central
simple algebra A, ¢ over k called the Tits algebra. This defines a group homomorphism

ﬁg : A/T* — Br(k) with ﬁ&(X) = [Ava]'

Let B = ¢B, denote the twisted form of the variety of Borel subgroups B, by means of &.
Consider the restriction map on Ky over the separable closure kgep:

res: Ko(%) — Ko(% Xk k‘sep) = Ko(%s),

where we identify Ko(B Xy, ksep) with Ko(B,). By [Pan94, Theorem 4.2], the image of the
restriction can be identified with the sublattice

(tw * Guw)wew
where g, = [L(pw)] is an element of the Steinberg basis and 1, = ind(f¢(py)) is the index of the
respective Tits algebra. Observe that if G is simply connected, then all indexes 1,, are trivial
and the restriction map becomes an isomorphism.

3. The Ky of a split simple (adjoint) group

In the present section, we provide an explicit description of the ring Ky(G;) in terms of generators
and relations for every simple split linear algebraic group Gs.

DEFINITION 3.1. Let ¢: Z[A] — Ky(B5) be the characteristic map for the simply connected cover
of Gs. We define the ring &, to be the quotient

&, :=7Z[A/T"]/(ker )

and the surjective ring homomorphism ¢ to be the composite

¢ Ko(B,) ——= Z[A)/ (ker ¢) —> Z[A/T*]/{ker c) = &,

Observe that if G is simply connected, then &4 = Z.
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Remark 3.2. By [Mer05, Corollary 33] applied to X = G and to the simply connected cover
G = G4 of G, there is an isomorphism
Ko(Gs) = Z @y, Ko(Gs, Go),
where R(GS) ~ Z[A]" is the representation ring. By [Mer05, Corollary 5] applied to G = G,
X =Spec k and G/H = G, there is an isomorphism
Ko(Gs, Gs) ~ R(H),
where R(H) ~ Z[A/T*] is the representation ring. Therefore,
Ko(Gs) = Z @gppw ZIN/T™] = &

LEMMA 3.3. The ideal (ker ¢) C Z[A/T*] is generated by the elements

di(1—e*), i=1,...,n,
where d; is the number of elements in the W-orbit of the fundamental weight w;.

Proof. By the Chevalley theorem, the subring of invariants Z[A]" can be identified with the
polynomial ring Z|[p1, . . ., pn|, where
pi= >, €,

)\GW(wi)

where W(w;) denotes the W-orbit of the fundamental weight w;. Since d; =€(p;), we have
ker ¢ = (dy — p1, ..., dn — pn). To finish the proof, note that (d; — p;) = d;(1 — e*?). O

Remark 3.4. Observe that by definition and Lemma 3.3, we have &, @ Q ~ Q.

In the following examples, we compute the ring &4 ~ Ky(Gs) for every simple split linear
algebraic group Gs. We refer to [KMRT98, § 24| for the description of A/T™. Note that in most
of the examples provided below, w; corresponds to a minuscule representation; in this case d; is
the dimension of the respective fundamental representation that can be found in [Bou05, ch. 8,

Table 2].
AT Gs, m>1 Example
Z/mZ, m=>2 | SLpy1/tm (3.5)
727 O} .4, PSpam+2, HSpiny,, 4, E%% | (3.6)
7)2Z ® Z/2Z | PGOY,, 4 (3.7)
Z/3Z Egd (3.8)
7.7, PGOY .5 (3.9)

Ezample 3.5. Consider the case Gg= SLyt1/ptm, m>2. The group G4 has type A, and
A/T* = (o) is cyclic of order m. The quotient map A/A, — A/T* sends w; € A/A,,i=1,...,n,
to (i mod m)o € A/T*. By Definition 3.1 and Lemma 3.3, we have

65 = Z[y]/(l - (1 - y)m’ ay,..., am*lym_l)a
where y=(1—¢?) and a; = ged{ ("ZH) |i=j mod m, i=1,...,n}. In particular, for G5 =
SL,/up = PGL,, where p is a prime, we obtain

& = Zyl/((D)y, B)v* - Py o).
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Ezample 3.6. Assume that A/T™ = () has order two. Then
& = Z[y)/(y* — 2y, dy),

where y = (1 — e?) and d denotes the greatest common divisor (g.c.d.) of the d; corresponding
to the w; with w; = o. The integer d can be determined as follows.

By,. We have A/A, ={0,&,} ~Z/2Z, which corresponds to the adjoint group G5 =03, ;.
Since w; = 0 for each ¢ # n, we have d =d,, = 2".

Cpn. Wehave A/A, ={0,0 =01 =w3=""--}~7/27Z,that is, Gg = PSpa,. Since w; = 0 for even
i, we have d = g.c.d.(dy, ds, . . .).

D,,. If nis odd, then A/A, ={0, wp_1, @1, 0n} ~Z/AZ, where w; = 20,1 = 20,,. Therefore,
A/T* ~7/2Z if it is a quotient of A/A, modulo the subgroup {0,@;}. In this case, A/T* =
{0, 0 = wp—1 = Wy}, which corresponds to the special orthogonal group G5 = O;rn. Since wg = sw;
for 2<s<n—2and @ =0in A/T*, we have d =g.c.d.(d,,_1,d,) =2""1.

If n is even, then A/A, = {0, w1} ® {0, W, } ~Z/2Z & Z/2Z, where &1 = wy,—1 + @y In this
case, we have two cases for A/T™.

(i) It is the quotient of A/A, modulo the diagonal subgroup {0, w,—1 + @p}. Then A/T™* =
{0,0 =w,—1 =w,}, Gs =03, and d is the same as in the odd case, that is, d = 2",

(ii) It is the quotient modulo one of the factors, for example A/T* = {0, 0 = w,_1}, where
wp, =0. Then G4=HSpiny,, wj=w3=---=wy_1 and w; =0 if ¢ is even. Therefore, d=
g.cd.(di,ds, ..., dy1) = 2v2(M+1 \where vy(n) denotes the 2-adic valuation of n.

E7;. We have A/Ar = {0, 0O =Wy =Wy = @2} ~ Z/QZ with @ = w3 = wy = wg = 0. Therefore,
d= g.c.d.(d7, d5, dg) =8.

Ezample 3.7. Assume that A/T* = (01) ® (02), where o1 and oy are of order two. In this case,
Gs=PGO3, is an adjoint group (T* = A,) of type D, with n even. We have o1 = @, and
09 = Wp, Wg = 8w, 2<s<n—2,2w; =0and v =&,_1 + @y,. Then

&5~ Zly1, v2) /(Y — 2u1, ¥3 — 2y2, a1y1, a2y2, a(y1 + Y2 — y12)),

where y; = (1 — e?1) and yo = (1 — €72); a; (respectively ag) is the greatest common divisor of the
d; with @; = 0,1 (respectively ©; = @y,), that is, a; = ay =2""!; and a = ged(dy, ds, . . . , dy_3).
In particular, for G5 = PGO;, we obtain

&, = Z[y1, y2]/ (47 — 291, U3 — 242, 81, 8y2).
Ezample 3.8. Assume that A/T* = (o) has order three. Then
&5 ~Z[yl/(y* — 3y® + 3y, a1y, azy?),

where y = (1 — €7) and a; (respectively as) is the greatest common divisor of the d; with @; = o
(respectively w; = 20). For the adjoint group of type Eg, we have A/A, = {0, 0 = &) = w5, 20 =
w3 = wg} with wy = w4 = 0. Therefore, a; = ay = 27.

Ezample 3.9. Assume that A/T* = (o) has order four. Then

65 = Z[y]/(y4 - 4y3 + 6y2 - 4y7 ary, a2y27 a3y3)7
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where y = (1 —€%). For the group PGOJ where n is odd, we have o=@, 1, 20 =@; and
30 = @,. Therefore, a; = a3 =2""! and ap = g.c.d.(d1, d3, . . ., dp_2).

4. The twisted ~-filtration

In the present section, we introduce and study the twisted ~-filtration.

Let v = ker € denote the augmentation ideal in Z[A]. It is generated by the differences
(1—e M), eA).
Consider the v-adic filtration on Z[A]:
ZIN =" 27292 .
The ith power 4’ is generated by products of at least i differences.

DEFINITION 4.1. We define the filtration on Ko (Bs) (respectively on &;) to be the image of the
~-adic filtration on Z[A] via ¢ (respectively via g), that is,

Y Ko(B,) :=c¢(7)) and ~'®,:=q(y'Ko(B,)), i>0.
So, we have a commutative diagram of surjective group homomorphisms.
v =7 Ko(Bs)
iq
7'®s

LEMMA 4.2. The ~-filtration on Ky(Bs) coincides with the filtration introduced in
Definition 4.1.

Proof. Since Ky(*8;) is generated by the classes of line bundles,
7' Ko(Bs) = (c1([La]) -+ - ci([Lm]) [m =1, L € Ko(Bs)),

where ¢p is the first characteristic class in Ky. Moreover, each line bundle £ is the associated
bundle £=L(\) for some character A€ A. Therefore, ci([£])=1—[LY]=c(l —e™?) (see
[Dem?74, §2.8]). O

DEFINITION 4.3. Given a G4-torsor £ € H!(k, G) and the respective twisted form B = ¢Bs, we
define the twisted filtration on &4 to be the image of the y-filtration on Ky(*B8) via the composite
res oq, that is,

V6, = q(res(y' Ko(B))), i=0.

Let vé/ e

@go 'yg/ g s will be called the y-invariant of the torsor £ and will be denoted simply as 'yg.

s = 72@53 /72“@53 denote the ith subsequent quotient. The associated graded ring

Remark 4.4. Note that the Chern classes commute with restrictions; therefore, the restriction
map res: V' Ko(B) — v Ko(Bs) is well defined. By definition, there is a surjective ring
homomorphism

7(B) = -
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THEOREM 4.5. The twisted filtration 72955 can be computed as follows:

e, — <ﬁ (ind(ﬁg(%ﬂ))u _ Py

s
j=1 J

n1+---+nm>i,wj€W>.

Proof. Since the characteristic classes commute with restrictions, the image of the restriction
res : v Ko(B) — 7' Ko(B,) is generated by the products
(Cny (twy Gy ) -+ -+ - Cri (g G ) [ 71+ 1 Z 0, w01, Wi € W),

where {1%.} are the indexes of the respective Tits algebras. Applying the Whitney formula for
the characteristic classes [Ful98, §3.2], we obtain

i (tg) = (W> (0u)’.

J

Therefore, q((Z;”)cl (gw)?) = (’;“)(1 — e Pw)I | where 1, = ind(B¢(pw)). O

Example 4.6. Since 7°(X) ~Z and 7' (X) = Pic(X) is torsion free for every smooth projective
X, we obtain that ’yg ~ 7 and 'ysl =0 for any &.

Example 4.7 (Strongly inner case). If B¢ =0, then (Z;L”J') =1 and 7263 = 7'B,.
J

Example 4.8 (Z/2Z-case). As in Example 3.6, assume that A /7™ = (o) has order two and ¢ # 0.
Then there is only one non-split Tits algebra A = A, ¢ and it has exponent 2. Let i4 = v2(ind(A))
denote the 2-adic valuation of the index of A. By definition, we have

fyéqﬁs _ <<2|A> o <2|A>2n1++nm1y
ni Nm

in Z[y]/(y? — 2y, dy), where y = 1 — € and d is given in Example 3.6. Observe that modulo the
relation 32 = 2y these ideals are generated by (for j > 1)

n1+~-+nm>z’>

7 TG =18, = (2271 ifig=1,
e s = e = (297%y), 4 T, = 8, = (297y) if iy =2,
VB =765 = (21y), 126, = {6, = (24T1y) B, = (2aTy) L ifig>2.

Taking these generators modulo the relation dy =0, we obtain the following formulas for the
second quotient fyg:

0 if ’Ug(d) < 1,
ifig=1, then 77 = Z/2Z if vo(d) =2,
ZJAZ  if vy(d) > 3,
0 if vo(d) <ig,
ifig > 1, then 752: if v3(d) !A
7)27  if va(d) >iq.

Ezample 4.9 (Z/27 @® 7./27 case). Following Example 3.7, we assume that A/T* = (o1) @ (02),
where o1, 09 have order two. This is the case for the adjoint group PGO;n where n is even
[KMRT98, §25]. Assume that n =4, which corresponds to the group of type Dy, that is, PGO;.
Let Ct and C~ denote the Tits algebras corresponding to the generators o1 = w3 and o9 = @y.
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Let A denote the Tits algebra corresponding to the sum oy + o3. (Note that C* x C~ is the even
part of the Clifford algebra of the algebra with involution A and [4] = [CT ® C7] in Br(k).)

By definition, we have in Z[y, y2] that
) ind C ind C_ ind A .
7§®s=<< +>y?1'< >y§‘2- ( >(y1+y2—y1y2)"3 n1+n2+n322>.
ny ny n3
Modulo the relations (y3 — 2y1, y5 — 2y2, 8y1, 8y2), we obtain that
(ind C4)Z e (ind C_)Z e (ind A)Z
87 8Z 8Z

7EGs =

5. Torsion in the ~v-filtration

In the present section, we show how the twisted ~-filtration can be used to construct nontrivial
torsion elements in the y-ring of the twisted form 9 of a variety of Borel subgroups. For simplicity,
we consider only the case of G (see Examples 3.6 and 4.8) with A/T* = (o) of order two.

Let d denote the greatest common divisor of dimensions of fundamental representations
corresponding to o. Given a Gy-torsor ¢ € H'(k, Gy), let i4 denote the 2-adic valuation of the
index of the Tits algebra A = A, ¢. Let B = ¢B, denote the twisted form of the variety of Borel
subgroups of G5 by means of £. Consider the respective twisted filtration ’yé(’ﬁ s on .

PROPOSITION 5.1. Assume that ve(d) >ia > 3. Then, for each A € A such that A\ = o, there
exists a nontrivial torsion element of order two in v%(8). Moreover, its image in 752 =17/2 (viaq)
is nontrivial and in v?(Bs) (via res) is trivial.

Proof. The proof of this result was inspired by the proof of [Kar98, Proposition 4.13].

Let g =[£(\)] denote the class of the associated line bundle. Using the formula for the first
Chern class of a tensor product of line bundles for K\, we obtain

c1(g9)® = 2e1(g) — e1(g?).
Hence,
c1(9)* = (2e1(9) — e1(9%))? = 4e1(g)” — der(g9)ea () + ea (7).
Therefore,
n=4c1(9)° —c1(9)" = 4e1(9)* — e1(9%)? € 7° Ko(By).-
We claim that the class of 21473y gives the desired torsion element.

Indeed, c1(g?) =c1([£(2))]). Since 2\ € T*, [L(2\)] € ¢«(T*) and, therefore, by [GZ12,
Corollary 3.1], ¢1(g?) € v Ko(B). Moreover, we have 2147 1¢1(g)? = c2(2!4g), where 214 g € K (B).
Hence, 247 1¢1(g)? € ¥2Ko(9B). Combining these together, we obtain that 2'43n € 42 Ko (B).

Now, since 21473y € 42K (B), its image in fngSS can be computed as

q(247%) = 247g(n) =24 g(er(9)?) = 24T (1 - e77) =2y,
But ¢(2'473n) ¢ ’yg’Qﬁs = (21at1y). Therefore, 214737 ¢ 43 Ko(B).

Since 21472y = 2l4¢;(g)3 + 21472¢1(g)* is in Y3 K (B), the class of 21473y gives the desired
torsion element of order two. O

Example 5.2. Let G4 = HSpin,, be a half-spin group of rank n >4. So, G5 is of type Dy,
where n is even, A/T* = (0 = &) ~ Z/2Z and, according to Example 3.6, we have d = 2v2(")+1,
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Let £ € H'(k, Gs) be a nontrivial torsor. Then there is only one Tits algebra A = A,¢; it has
exponent 2 and index 2'4 such that ig < v2(n) + 1.

Recall that each such torsor corresponds to an algebra with orthogonal involution (A, ¢) with
trivial discriminant and trivial component of the Clifford algebra. The respective twisted form
B = ¢B; then corresponds to the variety of Borel subgroups of the group PGO™ (A4, §). Applying
Proposition 5.1 to this situation, we obtain that for any such algebra (A, §) where 8 | ind(A) and
A is non-division, there exists a nontrivial torsion element of order two in 72?(2B) that vanishes
over a splitting field of (A4, 9).

LEMMA 5.3. The v-filtration on Ky(Bs) is generated by the first Chern classes c1([L(w;)]),
1=1,...,n, that is,

Y Ko(Bs) = < H c1([L(wj)]) ‘ the number of elements in the product > z>

j€E€l,...,n

In particular, the second quotient v?(8,) is additively generated by the products
7 (Bs) = (e ([Cw))er (L)) [, 5 €L, ..., n).

Proof. Each b € Ko(Bs) can be written as a linear combination b= ;s @wgw. Therefore, any
Chern class of b can be expressed in terms of ¢1(gy)-

Each p, can be written uniquely as a linear combination of fundamental weights
{wi,...,wpn}. Therefore, by the formula for the Chern class of the tensor product of line bundles
[CPZ10, 8.2], each ¢;1(gw) can be expressed in terms of ¢ ([L(w;)]). O

Example 5.4. Let G be an adjoint group of type E; and let ¢ € H!(k, G) be a nontrivial G-
torsor. Then there is only one non-split Tits algebra A = A, ¢ of exponent 2 and iy <3. Let
B =B, be the respective twisted flag variety.

By Lemma 5.3, any element of 42(8) can be written as

=Y ager([Llw)])er([L(wy)]) € 42 (B)
i

for certain coefficients a;; € Z. Since 0 = W7 = W5 = W and Wy = W3 = Wy = we = 0, we obtain that
q(z)=C-2y€e~i, where C =ags+ asr + ast + az + ass + arr.

Therefore, ¢(z) # 0 in 7? if and only if 44 C and iz < 2.

Consider the class ¢(6) € Y2 Ko(Bs) of the special cycle  constructed in [GZ10, Definition 3.3].
Note that the image of # in CH?(8) can be viewed as a generalization of the Rost invariant for
split adjoint groups (see [GZ10, §6]).

If ig=1, then, by [GZ10, Proposition 6.5], we know that c(f) € ?(B) is a nontrivial
torsion element. If iy =2, then, following the proof of [GZ10, Proposition 6.5], we obtain that
2¢(6) € v2(B).

We claim that if i4 < 2, then = 2¢(f) is nontrivial. Indeed, in this case 41 C = ags + ass +
a7y = 6; therefore, we have q(z) # 0, and x # 0 in 4?(8). In particular, this shows that for is = 1
the order of the special cycle @ in v2(8) is divisible by 4.

Example 5.5. Let &€ H'(k, PGO;{). Applying the same arguments as in Example 5.4 to
Example 4.9, we obtain that if ind(A), ind(C.), ind(C_) < 4, then 2¢(#) € v2(B) is nontrivial.
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