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We propose an automatable data-driven methodology for robust nonlinear reduced-order
modelling from time-resolved snapshot data. In the kinematical coarse-graining, the
snapshots are clustered into a few centroids representing the whole ensemble. The
dynamics is conceptualized as a directed network, where the centroids represent nodes
and the directed edges denote possible finite-time transitions. The transition probabilities
and times are inferred from the snapshot data. The resulting cluster-based network model
constitutes a deterministic—stochastic grey-box model resolving the coherent-structure
evolution. This model is motivated by limit-cycle dynamics, illustrated for the chaotic
Lorenz attractor and successfully demonstrated for the laminar two-dimensional mixing
layer featuring Kelvin—Helmholtz vortices and vortex pairing, and for an actuated
turbulent boundary layer with complex dynamics. Cluster-based network modelling opens
a promising new avenue with unique advantages over other model-order reductions based
on clustering or proper orthogonal decomposition.

Key words: low-dimensional models, shear layers, turbulent boundary layers

1. Introduction

We propose a cluster-based network model (CNM) from time-resolved snapshot data
exemplified for a laminar mixing layer and an actuated turbulent boundary layer. The
goal is purely data-driven reduced-order modelling trading the physical insights from
first principles, e.g. the Galerkin method (see e.g. Holmes et al. 2012), with simplicity,
robustness and closeness to the original data.
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The mixing layer is an archetypical flow configuration associated with many academic
and industrial applications. The flow is discussed virtually in any textbook of fluid
mechanics. In the early stage, the laminar mixing layer gives rise to periodic, spatially
growing Kelvin—Helmholtz vortices as described in stability theory (Michalke 1964), by
vortex models (Hama 1962) or by a proper orthogonal decomposition (POD) Galerkin
model (Noack, Papas & Monkewitz 2005). At later stages, multiple vortex pairings induce
the inverse cascade at lower wavenumbers and frequencies (Coats 1997). In addition,
three-dimensional instabilities enrich the coherent structures by rib vortices and spanwise
waviness (see e.g. Liu 1989). These mixing-layer structures may be seen in the near-field
region of wakes and jets. Moreover, control of most shear flows, including bluff-body
wakes and jets, is based on an effective manipulation of the mixing layer (Fiedler &
Fernholz 1990).

Another fundamental flow configuration is the turbulent boundary layer. Since Prandtl’s
(1904) discovery of the boundary layer theory, this flow is the cornerstone of practically
every fluid and aerodynamic problem. In particular, skin-friction reduction through
passive or active means has been the subject of research for many decades (Gad-el-Hak
2000; Fan & Dong 2016). Promising strategies include riblets (Walsh & Lindemann
1984), compliant surfaces (Luhar, Sharma & McKeon 2016), spanwise wall oscillations
(Jung, Mangiavacchi & Akhavan 1992; Quadrio, Ricco & Viotti 2009) and spanwise
travelling waves with a Lorentz force (Du & Karniadakis 2000) or wall-normal deflection
(Klumpp, Meinke & Schroder 2011; Albers et al. 2020). In this study, a spatio-temporal
surface deformation with transverse travelling waves is chosen targeting aerodynamic
applications. Thus, a drag reduction of 4.5 % was experimentally achieved for a turbulent
boundary layer (Li et al. 2015). In a numerical partner study, the actuation parameters
were improved, yielding 31 % drag reduction (Albers et al. 2020; Fernex et al. 2020). The
actuation was also applied over a wing section (Albers, Meysonnat & Schroder 2019),
where the pressure varies in the streamwise direction. Thus, the total drag was reduced by
7.5 % accompanied by a slight lift increase.

For many decades, the mixing layer and the turbulent boundary layer have been
long-standing benchmarks for reduced-order modelling. For the mixing layer, employed
methods include input—output transfer functions (Sasaki et al. 2017), parabolized stability
equations (Sasaki et al. 2018), vortex filament models (Ashurst & Meiburg 1988), POD
models (Delville et al. 1999; Ukeiley et al. 2001; Wei & Rowley 2009) and cluster-based
reduced-order models (Kaiser et al. 2014). Already the laminar two-dimensional shear
layer can give rise to multiple frequencies (Kasten et al. 2016). The early stages of
the convectively unstable and nearly linear dynamics of mixing layers and jets are well
resolved by parabolized stability equations requiring little empirical input (Jordan &
Colonius 2013). After the three-dimensional transition, the accuracy of stability-based
methods rapidly deteriorates or describes only a narrow frequency spectrum of the
fluid dynamics. Stability methods combined with eddy-viscosity closure models may
significantly extend the application range (Liu 1989). Alternatively, data-driven grey-box
models from snapshot data distilling the coherent-structure dynamics become an attractive
avenue (Taira et al. 2018).

Since the pioneering POD model of Aubry et al. (1988) for the unforced turbulent
boundary layer, numerous advances of data-driven Galerkin models have been proposed.
Podvin & Lumley (1998) proposed a low-dimensional model for the minimal channel flow
unit for the purpose of physical understanding. Later, Podvin (2009) has developed an
accurate high-dimensional POD model for the wall region of a turbulent channel flow.
The drag-reducing effect of compliant walls has been included in POD models by Lumley,
Rempfer & Blossey (1999, p. 147).
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The POD Galerkin methods arguably constitute the most popular and best-investigated
data-driven grey-box modelling methods; POD Galerkin methods are intimately tied with
the Navier—Stokes equations. While the kinematics, the modal expansion, is distilled
from data, the temporal dynamics may be derived from first principles. Yet, the modal
expansion encapsulates a convection dominated dynamics in an elliptic approach. This
mismatch between the modelling approach and dynamics is the root cause of the fragility
of data-driven Galerkin models (Noack 2016). For the mixing layer, the lack of robustness
is particularly pronounced as exhibited by modelled transients which are orders of
magnitudes too large (Noack et al. 2005). Moreover, the time integration of the Galerkin
model may easily lead to states far away from the training data, i.e. outside the region
of model validity. This problem persists for other data-driven modal expansions, such as
dynamic mode decomposition (Rowley et al. 2009; Schmid 2010).

This robustness challenge of elliptical approaches is avoided by -cluster-based
reduced-order models pioneered by Burkardt, Gunzburger & Lee (2006). Here, the state
is coarse-grained to a small number of centroids representative of the whole ensemble of
snapshots. Hence, modelled states will be close to the training data by construction. The
potential of an extrapolation, e.g. predicting larger fluctuation amplitudes, is traded for
robustness, i.e. staying close to the snapshot data.

In the cluster-based Markov model (CMM) for the mixing layer (Kaiser et al. 2014; Li
& Tan 2020), the temporal evolution is modelled as a probabilistic Markov model of the
transition dynamics. The state vector of cluster probabilities may initially start in a single
centroid but eventually diffuses to a fixed point representing the post-transient attractor.
This fixed point is well reproduced by CMM. In addition, CMM has provided valuable
physical insights for the mixing layer and Ahmed body wake (Kaiser et al. 2014), for the
turbulent boundary layer (Ishar ef al. 2019), for combustion related mixing (Cao et al.
2014) and for control design (Kaiser ef al. 2017; Nair et al. 2019).

A challenge for CMM is the temporal evolution: the state may quickly diffuse over the
whole attractor, often within one typical time period. This study aims at a cluster-based
network model (CNM) with improved dynamics resolution following Fernex et al. (2019).
The dynamics is modelled by ‘constant velocity flights’ between the centroids as ‘airports’.
The transition probabilities and times are consistent with the snapshot data. The dynamics
is thus restricted to a sparse network of routes between the centroids. Network models
are enjoying increasing popularity in all mathematical modelling fields including biology,
sociology and the computer sciences. Network models have also been employed to explain
vortex dynamics (Nair & Taira 2015; Taira, Nair & Brunton 2016). Newman (2010)
provides an excellent introduction to networks.

On the surface, the CNM, CMM and POD models look like similar data-driven
reduced-order models from snapshot data. Yet, there are fundamental application
differences which may be elucidated by an analogy to computational fluid mechanics.
The traditional CMM might be compared with unsteady Reynolds-averaged Navier—Stokes
simulations converging to the mean flow while resolving some dynamic features during
the transient. In contrast, the proposed CNM mimics a large-eddy simulation designed to
resolve unsteady coherent-structure dynamics. The applications of CNM are comparable
with POD models. The POD model can be conceptualized as a data-driven version of the
spectral method being routed in the traditional Galerkin methodology. In contrast, CNM is
closer to a collocation method using the centroids as ‘lighthouses’ for the corresponding
Voronoi cells.

The paper is organized as follows. Section 2 elaborates the methodology of the
cluster-based network model. The limit-cycle dynamics and Lorenz attractor are employed
as illustrating examples. Two flow configurations are chosen for the numerical analysis, an
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FIGURE 1. Principle sketch of cluster-based modelling. The time-resolved snapshots are
partitioned into a predetermined number of clusters represented by centroids in an unsupervised
manner. Thereafter, each snapshot has a cluster affiliation k(#"*), being the index of the closest
centroid. The cluster-based Markov model describes the evolution of the population of these
clusters. The solution of CMM quickly converges against the asymptotic probability distribution.
The proposed cluster-based network model resolves the dynamic transitions between the clusters
by a deterministic—stochastic network.

incompressible laminar mixing layer and a turbulent boundary layer. For the mixing layer
(§ 3), the proposed CNM is benchmarked against the cluster-based Markov model. In § 4,
CNM is performed for the three-dimensional actuated turbulent boundary layer featuring
a more complex dynamics and § 5 summarizes this study and outlines future directions of
research.

2. Cluster-based modelling

In this section, we propose a novel cluster-based reduced-order model (ROM) for the
coherent structure dynamics starting at the time-resolved snapshots. In §§2.1 and 2.2
clustering and the cluster-based Markov model is recapitulated. Section 2.3 proposes a
novel data-driven dynamic network resolving the transition dynamics between the clusters.
In § 2.4, the time-discrete cluster-based ROM is enhanced for a continuous-time velocity
prediction. The model validation includes the autocorrelation function of the flow as
discussed in § 2.5. Figure 1 previews the methodology and will be explained later in the
section. The relative advantages of CMM and CNM are illustrated for the Lorenz attractor
in § 2.6.

2.1. Clustering as coarse-graining

We consider velocity fields in a steady domain {2 which may be obtained from
experiments or from numerical simulations. Starting point is an ensemble of M statistically
representative, time-resolved snapshots as employed for cluster-based models (Kaiser et al.
2014), Dynamic mode decomposition (DMD) (Rowley et al. 2009; Schmid 2010) or POD
(see e.g. Holmes ez al. 2012). The velocity field is equidistantly sampled with time step Az,
i.e. the mth instant reads " = mAt. The corresponding snapshot velocity field is denoted
by u"(x) ;= ux,"),m=1,..., M.
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FIGURE 2. Clustering exemplified in a two-dimensional state space. The snapshots {um}%=1
are coarse-grained into three clusters. Each centroid ¢, k = 1, 2, 3, is the averaged field of all
snapshots belonging to this cluster. Every centroid ¢ is associated with a Voronoi cell C, i.e.
a region in which the points are closer to ¢ than any other centroid. The cluster affiliation for
a snapshot is the cluster index of the closest centroid which has been indicated by an arrow. By
definition, the cluster affiliation is the index of the corresponding Voronoi cell.

Cluster analysis lumps similar objects into clusters as illustrated in figure 2. This
lumping of data is performed in an unsupervised manner, i.e. no advance labelling or
grouping of the data has been performed. In cluster-based models, the M snapshots u" (x)
are coarse-grained into K clusters represented by the centroids ¢, (x), k =1, ..., K, using
the unsupervised k-means++ algorithm (Steinhaus 1956; MacQueen 1967; Lloyd 1982).
The centroids characterize the typical flow patterns of each cluster, also called modes in
the ROM community. The corresponding cluster-affiliation function maps a velocity field
u to the index of the closest centroid,

k(u) = argmin [|u — ¢il|q, 2.1)

where || - ||; denotes the standard Hilbert space norm in the domain 2 (see appendix A).
This function defines cluster regions as Voronoi cells around the centroids

Ci={uel*R): k) =i}. (2.2)

This function can also be employed to map the snapshot index m to the representative
cluster index k(m) := k(u™). Alternatively, the characteristic function

m._{ 1, ifi = k(m),

. 2.3
Xi 0, otherwise, (2.3)

describes whether the mth snapshot is affiliated with the Ith centroid. The latter two
quantities are equivalent.
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The performance of a set of centroids {¢;}5_, with respect to a given set of snapshots
{u}¥_, is measured by the average variance of the snapshots with respect to their closest

centroid. The corresponding inner-cluster variance reads

1 M
J(Cl,...,CK):A—lznum—ck(m)”iz. (24)
m=1

The optimal centroids {¢;}5_, minimize this inner-cluster variance:

(c‘{, e, c’,}) =argminJ (¢, ..., cx) . (2.5)

The argument is indeterminate with respect to a re-ordering. For CMM, we chose the
first cluster as the one with the highest population, i.e. the largest number of associated
snapshots. The (k 4+ 1)th cluster, kK > 1, has the largest transition probability from the kth
one.

The optimization problem (2.5) is solved by the k-means++ algorithm. The K centroids
are initialized randomly and then iterated until convergence is reached or when the
variance J is small enough; k-means++ repeats the clustering process 30 times and take
the best set of centroids.

The number of snapshots n; in cluster k is given by

M
me=3 X" (2.6)
m=1

The centroids are the mean velocity field of all snapshots in the corresponding cluster. In
other words,

1 1 <
= — Z u" = n—k Z X u". 2.7)

n
k umeCy m=1

In the following centroid visualizations, we accentuate the vortical structures by displaying
the fluctuations ¢, — u around the snapshot mean u and not the full velocity field ¢;.

2.2. Cluster-based Markov model

We briefly recapitulate CMM by Kaiser et al. (2014) as our benchmark cluster-based
reduced-order model. In CMM, the state variable is the cluster population p =
[p1, ..., px]T, where p; represents the probability of being in cluster i and the superscript T
denotes the transpose. The transition between clusters in a given time step Az“ is described
by the transition matrix P = (P;) € R¥*X. The superscript ‘c’ refers to cluster-based
model. Here, P; is the transition probability of moving from cluster j to cluster i. Let
P’ be the probability vector at time #/ = [A#, then the change in one time step is described
by

Pt =pPp. (2.8)

With increasing iterations, the iteration (2.8) converges to the asymptotic probability
p> :=1lim;_,, p'. In a typical case, (2.8) has a single fixed point p>. For completeness,
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a continuous form of Markov models with a new transition matrix P¢ is mentioned

dp .
i Pp. (2.9)
From the time-continuous form (2.9), the time-discrete one (2.8) can be derived. The
opposite is not generally true. In the following, no continuous Markov models are
employed.

A CMM of the time-resolved snapshots starts with cluster affiliation (2.1) which can also
be considered function of time k(). We refer to the original paper for the determination of
Pj; from k(t). The time step Az is a critical design parameter for CMM. A good choice is a
value where the transition from one cluster to the next is likely. If the time step is too small,
the Markov model idles many times in each cluster for a stochastic number of times before
transitioning to the next cluster. The model-based transition time may thus significantly
deviate from the deterministic data-driven trajectories through the clusters. If the time
step is too large, one may miss intermediate clusters. We choose At° = T'/10, where T is
the characteristic period of the flow. On a circular limit cycle with uniform rotation, this
value is optimal for K = 10 clusters, enforcing the transition from one cluster to the next
in each time step.

In figure 3(a,c,e), the effect of the suboptimal time step is illustrated for the CMM
of a uniform rotation u; = cos(2mnt), u, = sin(2nt). Here, four clusters and a time step
At = 1/16 are chosen. The probability of staying in the cluster during one time step is
Py = Py = P33 = P4y = 3/4 and the transition probability to the next counter-clockwise
neighbour is Py = P, = P3;, = P43 = 1/4. Thus, the probability of staying in one cluster
for [ steps exponentially decays, P},. In contrast, the uniform rotation commands that
the state is exactly three time steps in one cluster before it leaves in the fourth step.
This example motivates the proposed cluster-based reduced-order model, foreshadowed
in figure 3(b.,d, f) and explained in the following section.

2.3. Cluster-based network model

For CMM, the time step A¢“ is, as mentioned, an important design parameter. This design
parameter can be avoided by the new proposed CNM. The key idea is to abandon the
‘stroboscopic’ view of CMM and focus on non-trivial transitions from cluster j to cluster i.
These transitions are characterized by two parameters: the probability Q; and a time scale
T};. Evidently, no time step is needed for the description and the assumption of a constant
transition time is found to be much more aligned with shear flow modes than assuming
an exponential decay of residence time. Moreover, it could be relaxed by assuming a
probability distribution of transition times.

In the following, the transition probability and transition time are inferred from the
cluster affiliation function k(#). The continuous form is convenient for discussion. The
time-discrete affiliation function k(m) can be made continuous by taking the cluster of the
snapshot which is closest in time:

k(1) = k (arg min |7 — t,,1|) . (2.10)

The nth transition time 7, of the cluster affiliation is recursively defined as the first
discontinuity of k(¢) for t > ¢,_,. Here, t, = 0. The transition time ¢, satisfies

k(t, — &) =k (t, +¢) @2.11)
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FIGURE 3. Introduction of cluster-based models for a limit-cycle example. The CMM and
CNM are displayed in (a,c,e) and (b.d,f), respectively. The uniform rotation u; = cos(2mn?),
up = sin(2m¢) in a two-dimensional plane is discretized by four centroids ¢, k =1, ..., 4. (a)
Phase portrait of CMM with time step Az = 1/16. The centroids are near the limit cycle (red
dashed line). The state vector residing in centroid ¢; has the probability P;; of staying in its
state and Pj; of transitioning to centroid ¢; in the considered time step. (b) Phase portrait of
the CNM. The state in centroid ¢; moves uniformly to its counter-clockwise neighbour taking a
quarter period T4 = To1 = T3 = Ty3 = 1/4. Here, Q14 = 021 = Q030 =043 =1 and Q;; =0
otherwise. The estimated probability evolution starting in cluster i = 1 at t = 0 is illustrated
for CMM (c¢) and CNM (d). Panels (e) and (f) present the model-based evolution of the first
coordinate u; for CMM and CNM, respectively. In (c—f), the solid black lines correspond to the
uniform rotation and the dashed red line to the model.
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FIGURE 4. Sketch of times and periods employed in the cluster-based network model;
x marks the centre of the cluster residence time, while e denotes the transition between clusters.

for any sufficiently small positive ¢. For ¢ € (¢,, #,+1), the data-based trajectory is assumed
to stay in cluster k at the averaged time (¢,.; + 1,)/2 (see figure 4). The residence time in
this cluster is defined by

Ty = lyy1 — Iy, (212)

Let j and i be the indices of the clusters after ¢, and #,,, respectively. Then the transition
time from j to 7 is defined as half of the residence time of both clusters:

Ty + Toti . thyo — 1y

22

(2.13)

Tjj =

This definition may appear arbitrary but is the least-biased guess consistent with the
available data. The sum of all residence times from a given data set add up to the total
investigated time period 7.

The direct transition probability Q; and transition time 7} can be inferred from the data.
Then,

" i=1,... K, (2.14)
nj

0;=

where n; is the number of transitions from ¢; to ¢; and n; the number of transitions
departing from ¢; regardless of the destination point

K
=Y ny ij=1,....K. (2.15)
i=1

We emphasize that n; =0 fori =1, ..., K by very definition of a direct transition. The
direct transition matrix (DTM) Q = (Q;) € RXK Tumps these probabilities into a single
entity.

Similarly, the direct transition time T}; from cluster j to cluster i is taken to be the average
of all values. This average is symbolically denoted by

T; = (13). (2.16)
These values are lumped into the matrix T = (Tj) € R¥*K,

It should be noted that a given trajectory may repeatedly pass through the same clusters
(Voronoi cells) with different residence and transition times. With enough data, this
variability may be incorporated into the model. Our goal is to compare the Markov
model with the most simple network model where constant (averaged) transition times
are assumed.
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The CNM predicts the asymptotic cluster probability p° in cluster i. Let [0, Tp] be a
sufficiently long time horizon simulated by the model. Then, the probability of staying in
cluster i is the cumulative residence time normalized by the simulation time

§ T
= 2.17
=5 2.17)

We return to the introductory example depicted in figure 3. The CNM is seen to
accurately describe the uniform rotation (figure 3f) and correctly yields the asymptotic
cluster probability p®* =1/4, i =1,...,4. In contrast, the prediction horizon of the
CMM is limited to approximately one period. After this time, the initial condition is
forgotten and the asymptotic distribution is reached — rendering CMM unsuitable for
dynamic prediction. However, CMM predicts the asymptotic state faster than the CNM.
For this particular example, the CMM could be made equivalent to the CNM by choosing
At° = 1/4. However, the Markov model will inevitably diffuse the state with a range of
cluster transition times, e.g. for non-uniform rotation or more complex dynamics.

2.4. Velocity fields associated with the cluster-based reduced-order models

The CMM describes the cluster population

p=[p. k] (2.18)

at discrete times r = [At¢. In the following, this population is considered to be continuous
in time, e.g. by using linear or higher-order interpolation. The corresponding velocity field
u(x, ) at time ¢ is defined as the expectation value,

K
u(x, 0 =) piHe(x), (2.19)

i=1

where ¢; is the ith centroid.
The CNM is based on centroid visits at discrete times. The clusters ko, ki, k», ... are
visited at times

th = O, = Tklk07 h =1+ Tkzkl’ N (220)

consistent with the direct transition matrix (Q;) and the transition times 7};. A uniform
motion is assumed between these visits. In other words, for ¢ € [t,, t,.1] the velocity field
reads

by — 1

ux, 1) = ay (e, (x) + [1 —an(l e, (%), o, = (2.21)

tn-H — 1
We note that a smoother motion may be achieved with splines.

The actual flow computations are based on a lossless POD, as elaborated in appendix A.
The interpolations are performed with the mode amplitudes a = [ay, ..., ay]" before
being transcribed into velocity fields via the POD expansion.

Figure 5 compares the classical CMM with stroboscopic temporal prediction of discrete
states and the proposed CNM with time-continuous uniform motion on a network of routes
between two centroids. In the top row, the possible states are illustrated. In case of the
CMM, the states (2.19), denoted by red dots, quickly converge to the mean flow, like
Reynolds-averaged Navier—Stokes simulations. The CNM-predicted state (2.21) moves on
the directed network, marked by red arrows, and is reminiscent of large-eddy simulations.
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FIGURE 5. Comparison of the CMM and CNM. For reasons of simplicity, an example with four
centroids i, j, k and [ is shown. The CNM exemplifies the evolution of the weight of centroid k.
For the CMM, the transition from cluster & to j is shown. The predicted state (2.21) is determined
by the weights w(f) = a(f) and w; = 1 — a(t), o = (f+1 — 1)/Tjx in the time interval [#,;, £, 11].
For details, see text.

As displayed in the middle row, the CMM is discrete in time while the CNM dynamics is
time continuous with cluster visits after pre-specified transition times 7. The bottom row
shows another difference: CMM describes averages over all centroids while the CNM only
allows for linear interpolations between two neighbouring centroids. This interpolation
is consistent with the purpose of accurately resolving evolving coherent structures.
Averaging over many centroids acts like a low-pass filter mitigating the fluctuation level
and thus underresolving the coherent structures.
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2.5. Validation of the cluster-based reduced-order models

Following Protas, Noack & Osth (2015), the cluster-based model is validated based on
the computed and predicted autocorrelation function of the velocity field. The unbiased
autocorrelation function reads

T
R(7) := %/ / ux,t—1) ulx,t)dxdr, te€l0,7). (2.22)
- T 2

This function reveals the turbulent fluctuation level R(0) and the frequency spectrum.
Moreover, the problem of comparing two trajectories with finite dynamic prediction
horizons due to the increasing phase mismatch is avoided (Pastoor et al. 2005).

In case of the CNM, the modelled autocorrelation function R is based on the modelled
velocity field (2.21). In case of the CMM, the time integration quickly leads to the
average flow and is not indicative of the range of possible initial conditions. Hence,
K trajectories are considered starting with p, = 1 for each cluster k, or, equivalently,
p*(t=0) =[S, ..., k" These cluster-specific autocorrelation functions are weighted
with the cluster probability p?*

K T
R(t) := Z‘pfo/ / ub e, t) - ut(x, t+r)ded, T e[0,7), (2.23)
1 0o Jeo
where u°* denotes the CMM-predicted velocity field starting in cluster .

2.6. Lorenz system as an illustrating example

Following the original CMM paper by Kaiser et al. (2014), the CNM is illustrated for the
celebrated Lorenz (1963) system, arguably the first demonstration of a chaotic dynamics in
low-dimensional dynamics. The Lorenz system is a three-dimensional autonomous system
of nonlinear ordinary differential equations. The derivation was inspired by a Galerkin
model of Rayleigh—Bénard convection, but typically selected parameters clearly exceed the
range of model validity (Sparrow 1982). The system features non-periodic, deterministic,
dissipative dynamics associated with exponential divergence and convergence to a fractal
strange attractor. The three coupled nonlinear differential equations read

dx
& oy -, (2.24q)
dr
d
d_i’ —x(r—2) -y, (2.24b)
d
2y — by, (2.24¢)
dr

with the system parameters o = 10, b = 8/3 and r = 28. For these parameters, there are
three unstable fixed points at (0, 0, 0) and (:l:«/ﬁ, :l:\/ﬁ, 27), denoted by F* and F~,
respectively. The attractor of the Lorenz system resembles two butterfly wings around
F* and F~ in phase space. The trajectory typically oscillates for several periods with
increasing amplitude around a fixed point (F* or F~) before it moves to the other wing.
The number of revolutions made on either side varies unpredictably from one cycle to the
next.

The Lorenz equations (2.24) are solved employing an explicit fourth-order Runge—Kutta
scheme with an initial condition on the attractor. The time-resolved snapshot data x(z,,)
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FIGURE 6. Cluster-based network model for the Lorenz attractor. (a) Cluster partitioning: the
centroids are displayed as coloured solid circles. A trajectory is illustrated by a black curve.
The dots on this trajectory are coloured according to their cluster affiliation. The clusters & =
3,4, 5, 6 oscillate around the fixed point F~ and clusters k = 7, 8, 9, 10 around F +. The clusters
k =1, 2 connect both ‘ears’ of the Lorenz attractor. (b) The trajectory of the CNM (red dashed
line). The centroids represent the network nodes and edges represent possible transitions. Here,
trajectory of CNM is obtained by a spline interpolation through the visited centroids.

with x =[x, y,z]' are collected at a sampling time step Az = 0.005 corresponding

roughly to one thousandth of a typical oscillation period. The k-means++ algorithm
partitions M = 1000000 snapshots into K = 10 clusters. Figure 6(a) displays a phase
portrait of the corresponding clusters. The snapshots associated with one cluster are
highlighted by the same colour. The 10 clusters feature three different subsets: the
transition clusters kK = 1,2 between two butterfly wings, the F~ wing related cluster
k=13,4,5,6 and clusters k = 7, 8, 9, 10 associated with the F™ wing. The wing-related
cluster groups represent approximately 90° phase bins and do not resolve the amplitude.
Evidently, the 10 clusters are coarse representations of the state.

In the following, the dynamics is resolved by the network model of §2.3. The 10
centroids are considered as nodes in the network. The transition between these centroids
define directed edges characterized by direct transition matrix @Q and the flight times T. The
connectivity is described by the adjacency matrix H(Q) where H denotes the Heaviside
function: non-vanishing elements of Q are replaced by unity (Newman 2010). Figure 7,
displays the DTM Q (figure 7a) and associated transition time matrix T (figure 7b). The
matrices reveal three distinct cluster groups consistent with the phase diagram of figure 6.
Clusters 1 and 2 allow transitions to 3 and 10, i.e. the F~ and F" wing, respectively, and
have been called flipper clusters by Kaiser ef al. (2014). The cluster transition sequence
3—-4—-5—-6—>1—2— 3 is the dominant cyclic group associated with the F~
wing. Another cyclic group skips cluster 2: 3 - 4 — 5 — 6 — 1 — 3. A cyclic group
through the F* wing reads 10 - 9 — 8 — 7 — 1 — 10. A longer sequence includes
the second cluster: 10 - 9 — 8 — 7 — 1 — 2 — 10. The transition times in the wing
centroids are noticeably smaller than the passage through the flipper clusters.

Figure 8 compares the asymptotic population p* predicted by CNM with the population
from a long-term simulation. The CNM statistics are based on 20 000 transitions while
the integration of the Lorenz equations is performed over 5000 time units. Both statistics
correspond to the roughly 800 periods found to be sufficient for an accurate statistics.
The relative error of the CNM is no more than approximately 10 %. This error does not
decrease with much larger integration times, but is linked to the coarse-graining of the
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FIGURE 7. Cluster-based network model of the Lorenz attractor. (a) Direct transition matrix
(Qjj)- (b) Transition time (7T7).
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FIGURE 8. Cluster probability distribution of the Lorenz system (solid rectangles) and the
corresponding cluster-based network model (open rectangles). The model results are based on
20000 transitions.

state to Voronoi cells around the centroids. The assumed constant transition time t; for all
trajectories from cluster j to cluster i is a crude assumption. In fact, the transition times
can vary by a large factor and can thus give rise to significant systematic errors. A more
accurate transition model may, for instance, include earlier transitions for a more realistic
representation of the trajectory. Intriguingly, the CMM has an error of only 0.5 % which
is one order of magnitude lower. Due to the stroboscopic monitoring of the CMM states,
no estimates of the transition times are required and one source of systematic errors is
excluded by construction.

A distinguishing feature of the CNM is the resolution of the temporal dynamics
illustrated in figure 9. The evolution of the model-based trajectory is hardly distinguishable
from the one obtained by numerical integration. Smoothness of the CNM trajectory has
been achieved by splines connecting the states between two consecutive centroid visits.
Yet, the oscillatory amplitude growth in both wings cannot be resolved with this low
cluster-based resolution. The CNM can only follow the simulations for a short time
period, as nearby trajectories exponentially diverge with Lyapunov exponent 2.16 (Wolf
et al. 1985) and the initial separation in each cluster is already large. Yet, the fluctuation
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FIGURE 9. Evolution of the Lorenz system x, y, z, t € [0, 20] from integrating the dynamical
system (black solid line) and from the prediction of the cluster-based network model (red dashed
line).
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FIGURE 10. Autocorrelation function of the Lorenz system (black solid line) and the
cluster-based network model (red dashed line).

amplitude, frequency content and bi-modality are well reproduced. A CNM with K = 100
clusters yields more realistic dynamics but require orders of magnitude more simulation
data. At the least-order extreme, a CNM with two or three clusters only coarsely resolves
the transitions between both ears of the Lorenz attractor, not the growing oscillations in
each ear.

Finally, the autocorrelation of the simulation (black solid curve) and the CNM (red
dashed curve) are presented for aggregate comparison in figure 10. CNM roughly
reproduces the fast oscillatory decay of the autocorrelation function in the first five periods.

3. Cluster-based reduced-order modelling of the mixing layer

In this section, the -cluster-based models are applied to a two-dimensional
incompressible mixing layer with Kelvin—Helmholtz vortices undergoing vortex pairing.
The flow configuration of the mixing layer and the employed direct Navier—Stokes
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solver is presented in § 3.1. In § 3.2, the dominant flow features of the mixing layer are
presented. Then (§ 3.3), the snapshots of incompressible mixing layer are coarse-grained
into centroids. Following Kaiser et al. (2014), a cluster-based Markov model (CMM, § 3.4)
is developed as a benchmark for the proposed network model (CNM, § 3.5).

3.1. Flow configuration and direct numerical simulation

The two-dimensional incompressible mixing layer and a velocity ratio of 3:1 is
considered as the test plant in this paper. The velocity ratio is a common choice in the
literature (Comte, Silvestrini & Bégou 1998; Noack et al. 2005; Kaiser et al. 2014). The
high- and low-speed streams have velocities U, and U,, respectively. The convection
velocity U, of coherent structure is well approximated by the average velocity (Monkewitz
1988)

U. = M (3.1)

2

The initial vorticity thickness is denoted by §,. The Newtonian fluid is characterized by the
density p and kinematic viscosity v. The flow characteristics are described by the Reynolds
number based on the convection velocity Re = U.§y/v and velocity ratio. In the sequel,
all quantities are assumed to be non-dimensionalized with the initial vorticity thickness
8o, the high-speed velocity U, and the density p. The Reynolds number is set to 200.

The flow is described in a Cartesian coordinate system (x, y) with the origin at the
maximum gradient location of the inlet profile. The x-axis points in the streamwise
direction and the y-axis points in the direction of the high-speed stream. The velocity
components in the x- and y-directions are denoted by u and v, respectively.

Figure 11 illustrates the rectangular computational domain

Q2:={(x,y) eR*:0<x <80A |yl <15) 3.2)

with 10237 nodes and 2248 triangular elements. The location vector is denoted by x =
(x, y). Similarly, the velocity vector is denoted by u = (u, v). The inlet velocity profile
reads

2y

u=2—|—tanh(5), v=0, wheredy,=1. (3.3)

0
The Kelvin—Helmholtz vortices are triggered at the inlet by a stochastic perturbation of the
u-component for y € [—2, 2] with a standard deviation of 0.01U..

The streamwise extent of the domain is 80. This corresponds to a downwash time of
40 given the convection velocity of 2. This is the minimum time for the transient time
as all initial interior vortices will leave the domain. A simulation over 400 convective
units corresponds to 10 downwash times. This period is found to be sufficient for a
good statistics of the mean value and fluctuation level. One simulation yields M = 10 000
velocity snapshots #"(x) = u(x, "), where the sampling times " = 0.04 m start with
t = 0 in the converged post-transient phase. The sampling frequency 25 is two orders of
magnitude larger than the dominant shear-layer frequency of f = 0.1075 in the most active
downstream region.

An in-house direct numerical simulation solver was employed to simulate the
incompressible mixing layer. This solver is based on the finite-element method with
third-order Taylor—Hood elements and implicit third-order time integration. The solver
has been used for numerous configurations, like the cylinder wake (Noack et al. 2016),
the mixing layer (Shaqarin, Noack & Morzyniski 2018) and the fluidic pinball (Ishar ez al.
2019), to name only a few.
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FIGURE 11. Numerical simulation sketch of incompressible mixing layer. An unperturbed
tanh velocity profile u(y) = 2 4 tanh(2y) is patched in the inlet of a rectangular domain.
Time-averaged streamwise velocity profiles separated by Ax=10 are visualized by blue lines.
The red dashed curves mark the mixing-layer thickness. We chose the 90 % thickness of the
profile starting with the average velocity, i.e. u = 2.9 and u = 1.1.
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FIGURE 12. Mixing-layer simulation. (@) Energy fluctuation over time with the maximum
marked by a blue square and minimum by a red square. (b) Vorticity fields associated with the
maximum and minimum fluctuation energies. The minimum (b 1) corresponds to a K—H vortex
at t = 167.60, The maximum (b ii) features vortex pairing at = 195.92. The curves represent
the isolines of vorticity. Higher values corresponds to darker green areas.

3.2. Flow features

The incompressible mixing layer exhibits two typical behaviours. First, the initial
dynamics is characterized by the roll-up of vorticity originating from the Kelvin—Helmholtz
(K-H) instability (see figure 12b1). Second, these vortices pair further downstream, as can
be seen at the outlet region of figure 12(bii). This vortex pairing contributes to the mixing
layer growth. The location of vortex pairing may change significantly in time. Upstream
(downstream) vortex pairing is associated with high (low) fluctuation energy.
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FIGURE 13. Autocorrelation matrix (3.4) of the mixing layer for 7,7 € [0, 400]. The value is
presented in the colour bar. The plot is based on 401 snapshots collected at uniform time steps
At =1.

The time-averaged velocity field in figure 11 shows the mixing layer growth. The
velocity thickness is visualized by a red dashed line and is defined as the distance between
transverse locations where the mean streamwise velocity was equal to U; — 0.05AU and
U, + 0.05AU. The mixing-layer thickness increases significantly between x = 30 and
x = 60. Here, vortex pairing leads to this thickness increase.

The temporal dynamics may be inferred from the evolution of the fluctuation energy
in figure 12(a). The fluctuations indicate narrow bandwidth oscillatory behaviour. More
refined insights may be gained from the correlation function between the flows at time ¢
and 7,

cit) = / u (x,0)-u (x,1) dx. (3.4)
2

Figure 13 illustrates the autocorrelation matrix for ¢, € [0, 400]. The fluctuation
energy of figure 12(a) is quantified in the diagonal, /C(f) = C(¢, 1)/2. The wavy pattern
indicates oscillatory coherent structures. The changes from pure periodicity are caused by
vortex pairing at a large range of streamwise locations.

3.3. Clustering

Both considered reduced-order models are based on the direct numerical simulation of
the two-dimensional incompressible mixing layer described in § 3.1; M = 10000 velocity
field snapshots of the post-transient phase are sampled with a time step At = 0.04.

The computational load of clustering is significantly reduced by an effectively lossless
POD compression detailed in appendix A. In fact, all operations are performed on the
POD amplitude vector @ = [ay, a, . . ., ay]" instead of the snapshots.

The M snapshots are clustered with the k-means++ algorithm into K = 10 centroids.
This number is small enough to allow for the physical interpretation of all centroids
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fluctuation is depicted with contour lines. Red and blue regions mark positive and negative
values.

and all transitions but large enough for a meaningful reduced-order model. Figure 14
illustrates the transverse velocity fluctuation of the centroids. The first six centroids show
the streamwise convection of K—H vortices, while the next four centroids resolve a vortex
pairing (VP) event. In centroid 7, two vortices merge at the beginning of the vortex chain.
In the following three centroids, the merging is completed and leads to a large vortex.
Note that the VP centroids k = 7, 8, 9, 10 have pronounced vortices at a similar position
as the K—H centroids k = 4, 5, 6, respectively. The structures of the K—H and VP centroids
are noticeably different. The main vortices of the K—H centroids are elliptical and the
major axis is rotated in clockwise direction, i.e. the upper part of the vortices follow
the faster stream. In contrast, the main elliptical vortices of VP centroids are rotated in
mathematically positive direction, i.e. the upper part of these vortices move upstream with
respect to their centre.

The centroids represent characteristic stages in the mixing-layer dynamics as can be
elucidated in a proximity map. This map reflects the configuration matrix D = (Dy) €
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FIGURE 15. Cluster-based Markov model of the mixing layer. (a) Proximity map of centroids.
Each centroid is marked by a solid coloured circle. The colour denotes the relative energy content
(see colour bar on top). Unity corresponds to the average value. (b) Transition matrix. The
probability value is displayed by the background colour and the radius of the corresponding
circle.

RE*K comprising the distance between two centroids
D= |ei—¢|,. ij=12,....K 3.5)

Following Kaiser et al. (2014), the proximity map is used to represent the configuration
matrix D in a two-dimensional feature space y € R?* optimally preserving the relative
distances. The proximity map employs classical multidimensional scaling (Mardia, Kent
& Bibby 1979). Figure 15(a) displays centroids close to a circle which is characteristic of
vortex shedding.

3.4. Markov model

The temporal mixing-layer evolution is characterized by the cluster transition matrix P
illustrated in figure 15(b); P; represents the probability of moving from cluster j to i in one
forward time step. Here, we choose a time step At = T/10 = 1 where the T = 10 is the
dominant period of the evolved mixing layer.

The cluster transition matrix reveals two cyclic groups. The first group 1 — 2 —
3—-4—5— 6—7— 1is consistent with the convection process of the K-H vortex
shedding observed in the centroid visualization. This periodic process corresponds to
a nearly uniform clockwise rotation in the proximity map. The second cyclic group
8—>9—10—7—1—2— 8 comprises VP centroids k = 8,9, 10 and shares two
centroids with the K—H regime. This dynamics also leads to a nearly uniform clockwise
rotation in the feature space. There are also transitions from the VP to K-H regime, e.g.
8 —>4,9— 5,10 — 6 and 10 — 7 and in the opposite direction. All these transitions
are between similar centroids of both groups. From the cluster index the orientation of the
main elliptical vortices can be inferred. For k < 6 (k > 7), the upper part of the vortices
are displaced in (against) the direction of the flow with respect to their centres.

The evolution of the cluster population vector p' at t = [Af° is investigated by iterating
equation (2.8). Figure 16 compares the probability distribution of DNS data and the
model-based asymptotic vector p>*. The agreement is astonishingly good for such a
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FIGURE 16. Cluster probability distribution of the mixing layer from the DNS data and the
cluster-based Markov model. Solid rectangles denote the probability gx from the DNS data.
Open rectangles represent asymptotic values from the CMM after / = 35 iterations.

low-order model. The probability vector converges quickly to a unique, stationary
probability distribution near t = 20.

In figure 17, the dynamics of CMM is illustrated for the first cluster probability p; and
the first POD mode amplitude a; inferred from the flow state (2.19). Starting point is
direct numerical simulation starting at ¢ = 0 close to the first cluster ¢; which corresponds
to the probability vector p = [1, 0, 0,0, 0, 0, 0, 0, 0, 0]*. The probability and POD mode
amplitude of CMM show a convergence after around / = 35 iterations or, equivalently,
t = 35. The solid horizon line denotes g, i.e. the population of the first cluster from DNS
data. The POD mode amplitude a; performs three strongly damped oscillations before
vanishing.

Figure 17(c) shows an oscillating quickly decaying autocorrelation function of CMM
which is consistent with the observations for a; and p;. In contrast, the autocorrelation
function associated with the DNS keeps oscillating around with an amplitude around 50 %
of the average fluctuation level. This level indicates that half of the fluctuation energy
resides in repeating oscillatory flow structures while the other half is of non-repeating
stochastic nature.

3.5. Network model

In this section, a CNM is developed using the same snapshot data and same centroids.
Starting point for the dynamic network is the cluster-affiliation function k(#). Following
§ 2.3, the direct cluster transition matrix Q with associated average transition times T are
derived. Figure 18 illustrates both matrices. These matrices have the almost same structure
as the Markov model except for the diagonal elements which are vanishing by design. In
other words,

Q,‘,‘ZT,‘,‘IO, Vi e {1,...,K}, (360)
HIP;l = H[Q;] = HITyl, Yije(l,....K}ni#] (3.6b)

with H being again the Heaviside function. Vanishing diagonal elements (3.6a) arise from
the requirement of non-trivial transitions. Theoretically, the trajectory may terminate in a
cluster, like in a stable fixed point of a linear dynamical system. This case is not compatible
with the goal to model a well-resolved non-trivial attractor and shall be ignored in this
study. Equation (3.6b) requires a sufficiently small time step of the CMM. Otherwise, the
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FIGURE 17. Dynamics of the mixing layer from DNS and the cluster-based Markov model.
(a) Probability evolution for DNS (black solid line) and for CMM (red dashed line). The
probability of the first cluster p1 quickly converges to p?° around ¢ = 35. The corresponding DNS
value is 0.1325 and is represented by a horizontal line. (b) The evolution of the first POD mode
amplitude a; for DNS (black solid line) and CMM (red dashed line). (¢) The autocorrelation
function for DNS (black solid line) and for CMM (red dashed line).

stroboscopic view on the trajectory may miss a crossing of an intermediate cluster. This
happens with the transition from 1 — 2 — 3 in one CMM time step A#‘. Hence, P53 # 0
while Q3 = 0. However, this is a rare event, as indicated by the small value of P5;.

An inspection of T reveals that the transition time between K—H and VP centroids is
relatively small. This is consistent with the closeness of the corresponding centroids in
the proximity map (figure 15a). An exception is the transition between K—H centroid 2 to
VP centroid 8 which are well separated in the proximity map. Intriguingly, the transitions
within the K—H and VP regimes are also strongly correlated with the distances depicted
in the proximity map. For instance, the smallest (largest) inner-regime transition from
centroid 6 to 7 (8 to 9) is associated with a small (large) distance in the proximity map.
The physical interpretation of the cycle-to-cycle variations of the CMM persist for CNM.

In the following, the temporal dynamics of CNM is investigated based on the identified
centroids ¢, the description of their connectivity DTM Q@ and their flight times T. Like a
POD model, CNM is a grey-box model resolving the temporal dynamics and the associated
coherent structures. We choose cluster k = 1 as initial condition for DNS and for the CNM
and integrate over [ = 20000 transitions. In figure 19, the asymptotic cluster population
p> from (2.17) is compared with g from the DNS. The discrepancies of few per cent seem
expectable and tolerable for a 10-cluster model. This difference is not cured by increasing
the amount of transition data in CNM. Intriguingly, the probability distribution of the
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FIGURE 18. Dynamics of the cluster-based network model for the mixing layer. (a) Direct
transition matrix. (b) Averaged transition time. The non-vanishing values are denoted by the
circle radius and the colour code from the bottom caption.
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FIGURE 19. Cluster probability distribution of the mixing layer from DNS (solid rectangles)
and cluster-based network model (open rectangles). The modelled values are obtained from
simulating 20 000 clusters transitions.

CMM displayed in figure 16 is significantly more accurate. This behaviour can be linked
to the simple transition time estimate which employs one single average value for a large
range of observed transition times. We have developed more refined and more accurate
transition time estimates leading to much better agreements of the cluster probability
distributions. The price is increased complexity of the CNM which we deemed not helpful
for our first publication.

Figure 20 shows the evolution of the first two POD mode amplitudes (red dashed curve).
The CNM tracks well the amplitude and phase of the DNS over 100 time units. As for
the Lorenz system, the temporal evolution is smoothed by a spline and does not use the
non-smooth uniform motion between two consecutive centroid visits.

Figure 21 compares the autocorrelation function of the CNM and the DNS. We
intentionally do not normalize this function to reveal the resolved fluctuation level at
vanishing time delay. As expected, the model-based fluctuation level is significantly lower
than the DNS value. This difference is quantified by the unresolved inner-cluster variance.
Intriguingly, CNM and DNS functions become already similar after half a period. The
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FIGURE 20. Evolution of mode amplitudes ay, as for the mixing layer ¢ € [0, 100]. The curves
correspond to DNS (black solid line) and the cluster-based network model (red dashed line).
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FIGURE 21. Autocorrelation function of the mixing layer for DNS (black solid line) and
cluster-based network model (red dashed line).

asymptotic fluctuation level represents coherent structures which are well resolved by the
chosen centroids and serve as coarse-grained recurrence points of the DNS. Due to the
dominant oscillatory dynamics, the autocorrelation does not vanish with increasing time.
The good reproduction autocorrelation function is a posteriori justification for the chosen
cluster number.

4. Cluster-based network modelling of the actuated turbulent boundary layer

In this section, the cluster-based network modelling is implemented on a
three-dimensional actuated turbulent boundary layer. First (§ 4.1), the flow configuration
and the large-eddy simulation is described. The clustering results, which follow the same
coarse-graining approach as for the shear layer, are presented in §4.2. A cluster-based
network model is developed and assessed in § 4.3.


https://doi.org/10.1017/jfm.2020.785

https://doi.org/10.1017/jfm.2020.785 Published online by Cambridge University Press

Cluster-based network model 906 A21-25

Inflow

FIGURE 22. Overview of the physical domain of the actuated turbulent boundary layer flow,
where Ly, Ly, and L, are the domain dimensions in the Cartesian directions, A is the wavelength
of the spanwise travelling wave and xo marks the actuation onset. The shaded red surface Ay,r
marks the integration area of the wall-shear stress 7.

4.1. Flow configuration and large-eddy simulation

In this section, the actuated turbulent boundary layer configuration for skin-friction
reduction is detailed. In particular, the actuation mechanism is presented, and the
numerical set-up is described. For more details, the reader is referred to Albers et al.
(2019) and Fernex et al. (2020). The fluid flow is described in a Cartesian frame of
reference where the streamwise, wall-normal and spanwise coordinates are denoted by
x = (x, v, z) and the velocity components by # = (u, v, w). The Mach number is set to
Ma= 0.1 corresponding to a nearly incompressible flow. An illustration of the rectangular
physical domain is shown in figure 22. A momentum thickness of & = 1 at x is achieved
such that the momentum thickness based Reynolds number is Rey = 1000 at x,. The
domain length and height in the streamwise and wall-normal directions are L, = 1906 and
L, =1056. In the spanwise direction, different domain widths L. € [21.656, 108.256]
are used to simulate different actuation wavelengths.

At the domain inlet, a synthetic turbulence generation method is applied to generate
a natural turbulent boundary layer flow after a transition length of 2—4 boundary layer
thicknesses (Roidl, Meinke & Schroder 2013). Characteristic boundary conditions are used
at the domain exit and a no-slip wall boundary condition is enforced at the lower domain
boundary for the unactuated and actuated wall.

The actuation is performed by a transverse travelling wave on the surface. The
corresponding wall motion is prescribed by the space- and time-dependent function

yia@h ") = A" cos (i—fﬁ — %ﬁ) : 4.1)
in the interval —5 < x/6 < 140. The quantities A", 7" and A™ denote the wavelength,
period and amplitude in inner coordinates, i.e. the parameters are scaled by the viscosity v
and the friction velocity of the unactuated reference case u”. In the area just upstream and
downstream of the wave actuation region, a spatial transition is used from a flat plate to an
actuated plate and vice versa (Albers et al. 2019). In total, 38 actuation configurations with
wavelength AT € [200, 500, 3000], period Tt € [20, 120] and amplitude A* € [10, 78] are
simulated. In the current study, we model one test case with AT = 1000, 7 = 120 and
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FIGURE 23. Contours of the random streamwise velocity fluctuations in the near-wall region
of (a) a non-actuated reference case and (b) the actuated case. The actuation diminishes the
near-wall streak intensity. The surface deformation is indicated at the bottom.

AT = 40 which yields the largest drag reduction of 3 % found at that wavelength. These
actuation parameters correspond to case N36 in table 3 of Ishar er al. (2019) and in table
2 of Albers et al. (2020).

The physical domain is discretized by a structured block-type mesh with a resolution
of Ax™ =12.0 in the streamwise and Az" =4.0 in the spanwise direction. In the
wall-normal direction, a resolution of A;_lwull = 1.0 at the wall is used with gradual
coarsening away from the wall. Depending on the domain width, the meshes consist of
24-120 million cells.

The actuated flat plate turbulent boundary layer flow is governed by the unsteady
compressible Navier—Stokes equations in the arbitrary Lagrangian—Eulerian formulation
for time-dependent domains. A second-order accurate finite-volume approximation of
the governing equations is used in which the convective fluxes are computed by the
advection upstream splitting method (AUSM) and time integration is performed via a
5-stage Runge—Kutta scheme. The smallest dissipative scales are implicitly modelled
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through the numerical dissipation of the AUSM scheme. This monotonically integrated
large-eddy simulation approach (Boris et al. 1992) is capable of accurately capturing all
physics of the resolved scales (Meinke et al. 2002).

The actuated simulations are initialized by the solution from the unactuated reference
case and the temporal transition from the flat plate to the actuated wall is initiated. When a
converged state of the friction drag is obtained, statistics are collected for tUy,/0 = 1250
convective times.

The actuation effects on the near-wall flow features are illustrated in figure 23, which
shows contours of the streamwise velocity fluctuation of a reference natural (figure 23a)
and the actuated case (figure 23b). The intensity of the near-wall streaks, which are known
to contribute to skin friction, are observed to diminish with the actuation.

4.2. Clustering

Similar to the mixing layer, the clustering of the actuated boundary layer large-eddy
simulation (LES) snapshots is performed using a lossless POD compression. Again, this
compression dramatically reduces the computational load of clustering. Here, we perform
the POD and the clustering on all 38 test cases simultaneously. Employing this enlarged
set of POD modes yields a richer, and thus more accurate, dynamical representation of
the individual test cases and allows for a direct comparison of different actuations (Ishar
et al. 2019). Concatenating all configurations results in M = 15 873 snapshots sampled at
At = 0.94 time units.

Following Ishar et al. (2019), the M snapshots are clustered with the k-means++
algorithm into 50 centroids, corresponding to K = 10 centroids populated by the
investigated actuation. It is worth noting that increasing K significantly, say K =
100, uncovers centroids with smaller length scale features associated with broadband
turbulence of the boundary layer. In this study, we purposely choose to focus on the
main energy-containing dynamics and thus limit the number of centroids to K = 10.
Figure 24 presents four centroid distributions of the test case with A7 = 1000, 7™ = 120
and AT = 40. As the figure shows, the centroids have similar spatial distributions and are
phase shifted with respect to one another. Such behaviour is consistent with a limit-cycle
dynamics, indicating partial lock-on of the boundary layer dynamics to the periodic surface
actuation. This lock-on phenomenon is sometimes associated with aerodynamic gains or
losses depending on the targeted flow instability. It is synonymous with synchronization,
and has been repeatedly investigated for drag reduction problems (Barros et al. 2016; Taira
& Nakao 2018; Herrmann ef al. 2020). Similar to these studies, a lower actuation threshold
with sufficient authority is required to synchronize the flow.

The dynamics is well represented in the state space illustrated in figure 25, which is
spanned by the first three POD mode coefficients. The cluster centroids are displayed as
black solid circles and their indices are labelled. The snapshots are coloured according to
their cluster affiliation. Similar to the shear layer, the dynamics of the actuated boundary
layer appears to be driven by two physical phenomena: a cyclic behaviour synchronized
with the surface actuation, and a quasi-stochastic component that forces the limit cycle to
experience cycle-to-cycle variations (Cao et al. 2014). The latter phenomenon is associated
with broadband turbulence of the boundary layer.

4.3. Network model

The CNM is generated based on the direct transition matrix and the averaged transition
time matrix, which are illustrated in figure 26. We reiterate the vanishing diagonal
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FIGURE 24. The cluster centroids ¢, k = 2, 4, 9, 10 of the actuated boundary layer. The cluster
numbers are denoted in the state space of figure 25. The iso-surfaces correspond to constant

wall-normal velocity of V* = £0.04. Red and blue regions mark positive and negative values.

elements of both matrices, i.e. Q; = T; = 0, which are a result of enforcing non-trivial
transitions. The direct transition matrix (cf. figure 26a) shows both the dominant transition
probability of subsequent centroids being associated with the limit-cycle behaviour, and
the wandering dynamics from the remaining transitions. The transition time matrix
between the centroids (cf. figure 26b) reflects the same behaviour, and exhibits a
quasi-constant transition time for limit-cycle ‘flight times’ and diverse transition times
for the wandering effect.

Figure 27 compares the probability distribution of LES data and the model-based
asymptotic vector p*°. Again, we choose cluster k = 1 as the initial condition for LES
and for the CNM and integrate over / = 106 transitions, which corresponds to a similar
time range as that of the snapshots. The agreement between the two distributions is good.

The model performance is assessed against the reference LES results. Figure 28 shows
the evolution of the first four POD mode amplitudes (red dashed curve). The dominance
of the first two POD modes compared to the subsequent modes is expected for the current
quasi-synchronous actuated flow. Similar to the previously presented results, the temporal
evolution is smoothed with a spline. As the figure shows, CNM agrees very well with the


https://doi.org/10.1017/jfm.2020.785

https://doi.org/10.1017/jfm.2020.785 Published online by Cambridge University Press

Cluster-based network model 906 A21-29

FIGURE 25. The state space is spanned by the first three mode coefficients of the lossless proper
orthogonal decomposition of the LES data. The cluster centroids are displayed as black solid
circles and the snapshots are coloured according to their cluster affiliation.
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FIGURE 26. Dynamics of the cluster-based network model for the actuated boundary layer.
(a) Direct transition matrix. (b) Averaged transition time. The non-vanishing values of the matrix
elements are proportional to the circle radius and can be inferred from the colour code from the
bottom caption.

amplitude and phase of the LES reference data over the entire approximately 400 time
units.

The agreement between the model and the reference data is further corroborated by
comparing the autocorrelation function. Figure 29 displays the autocorrelation function
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FIGURE 27. Probability distribution of the actuated boundary layer from large-eddy simulation
(solid rectangle) and cluster-based network model (open rectangle). The CNM values are
obtained from simulating / = 106 cluster transitions.
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FIGURE 28. Evolution of mode amplitudes a—a4 for the actuated boundary layer ¢ € [0, 400].
The curves correspond to LES (black solid line) and cluster-based network model (red dashed
line).

of the CNM and the LES. As with the mixing layer, the model-based fluctuation level at
vanishing time delay is lower than the LES value but becomes similar to oscillation level
for an arbitrary larger time horizon. This large representation error at T = 0 relates to the
unresolved inner-cluster variance. Yet, the centroids adequately resolve the periodic flow
response of the flow to the periodic surface actuation.
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FIGURE 29. Autocorrelation function of the actuated turbulent boundary layer for LES (black
solid line) and cluster-based network model (red dashed line).

5. Conclusions

In the present study, we propose a new data-driven methodology for modelling nonlinear
dynamical systems. We trade compatibility with first principles, as with a POD-based
Galerkin model, with the simplicity and robustness of the modelling. Point of departure is
the cluster-based Markov model (Kaiser et al. 2014) for time-resolved snapshot data. The
snapshots are coarse-grained into a few representative centroids. The temporal evolution
of the state is conceptualized as a straight constant velocity movement from one centroid
to the next. The average flight time and the transition probabilities are inferred from the
data. Thus, the dynamics is modelled by a deterministic—stochastic network model with
the centroids as nodes, the straight trajectory segments as edges, the transition time as
parameters of the edges and the transition probability characterizing the nodes.

The resulting cluster-based network model has several desirable features: (i) The
methodology is simple and automatable. (ii) The off-line computational load is only
slightly larger than a snapshot-based POD. After the computation of the POD, the
clustering and network model requires a tiny fraction of the computational operation. If the
CNM is computed with original flow data without POD compression, the computational
costs are orders of magnitudes larger, as elaborated in appendix A. (iii) The CNM has
the same recurrence properties as the original data: if one cluster is visited multiple times
in the data, it will also be a recurrence point of the CNM. (iv) Long-term integration
will never lead to a divergence — unlike POD models. (v) The framework is very flexible
allowing us, for instance, to incorporate multiple operating conditions.

The simplicity and robustness have a price. On the kinematic side, the vanilla version of
CNM does not have the possibility of extrapolating the data, e.g. resolving oscillations at
higher amplitudes not contained in the data. On the dynamic side, we lose the relationship
to first principles: the network model is purely inferred from the snapshot data, without
links to the Navier—Stokes equations. In particular, cluster-based models are not natural
frameworks for dynamic instabilities, as the notion of exponential growth and nonlinear
saturation is intimately tied to Galerkin flow expansions. Subsequent generalizations need
to overcome these restrictions.

Cluster-based network modelling is applied to the Lorenz attractor. A k-means++
algorithm yields 10 centroids from a long time-resolved solution. Four centroids represent
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each ear of the attractor and two, the switching area. Despite the coarseness of the
presentation, the temporal dynamics mimics well the oscillations in each ear and the
switching between both ears. The agreement is mirrored by the similarity between
the autocorrelation functions of the simulation and the CNM. Statistically, the cluster
population is predicted with acceptable accuracy. The CNM dramatically outperforms
the cluster-based Markov model (Kaiser et al. 2014) in terms of predicting the temporal
evolution. In contrast, CMM is more accurate for the cluster population. The error source
of the CNM can be traced back to the chosen simple model of transition times.

Two demonstrations of CNM are performed with a laminar two-dimensional mixing
layer and with a periodically actuated turbulent boundary layer. The mixing layer features
K-H vortices and occasional vortex pairing. The cycle-to-cycle variations are clearly
distilled by the centroids and the proximity map shows the possible transitions. The
transition probabilities and times are quantified in the CNM model parameters. The
actuated turbulent boundary layer exhibits partial lock-on with a superimposed stochastic
meandering. For both applications, the snapshots are coarse-grained into 10 centroids. For
the mixing layer, one group of centroids can be associated with K—H vortices and a second
group to vortex pairing — similar to Kaiser ez al. (2014). In contrast, the centroid affiliations
for the actuated turbulent boundary layer are less categorizable. The dominant periodic
dynamics is superimposed with quasi-stochastic transitions associated with broadband
turbulence. The CNM well resolves the temporal evolution of the main flow dynamics,
the fluctuation level, the autocorrelation function and the cluster population. A noteworthy
observation relates to the autocorrelation function. For vanishing time delay, this function
displays the average representation which is significant both for the mixing layer and
wall turbulence. Yet, the function is surprisingly well represented by the CNM after one
characteristic period. This behaviour corroborates that the dominant periodic dynamics is
well resolved by the CNM with 10 centroids and the local interpolation between them.

The CNM is found to have a distinct advantage over the departure point, CMM,
namely the much longer prediction horizon as evidenced by the autocorrelation function.
POD and DMD models may describe the same flow with a similar number of modes
(Protas et al. 2015). We emphasize that the construction of the CNM could be fully
automated in a software package. In contrast, data-driven nonlinear Galerkin models
may be designed as insightful least-order representations with interpretable modes.
Moreover, the Galerkin dynamics may reveal the interplay between linear and nonlinear
terms, as beautifully displayed in mean-field theory (Stuart 1971), self-consistent models
(Manti¢-Lugo, Arratia & Gallaire 2014), resolvent operator approaches (Gomez et al.
2016), finite-time thermodynamics (Noack et al. 2008) and criteria for boundedness
(Schlegel & Noack 2015). Yet, a functional model requires the careful choice of flow data,
potentially shift and other non-standard modes, subscale closure models and calibration
techniques. Thus, cluster-based and POD based models have different niche applications.

CNM opens a novel automatable avenue for nonlinear dynamical modelling. Moreover,
CNM provides a framework for estimation and model-based control. This extension is
elaborated in appendix C and complements model-free cluster-based control for open-loop
actuation (Kaiser ef al. 2017) and for feedback laws (Nair ef al. 2019). The authors actively
pursue this direction.
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Appendix A. Data compression for clustering

Clustering is a computationally expensive process based on a large number of
area/volume integrals for the distance between snapshots and centroids. Let M and K be
the number of snapshots and clusters, respectively, then a single k-means iteration requires
the computation of K x M integrals. Let / be the number of k-means iterations and L be
the number of repetitions then the total number of integrals is L x I x K x M. Typical
values are K ~ 10, I ~ 10K and L ~ 100.

The computational load can be significantly reduced by pre-processing the snapshot
data with a lossless POD. The most expensive step of a typical snapshot POD is the
computation of the correlation matrix with M x (M + 1)/2 area/volume integrals. Thus,
the integral for the distance between two velocity fields transforms into the Euclidean
norm with (M — 1)-dimensional vectors of POD mode amplitudes. The computational
saving reads

MxM+1)/2 M+1
LxIxKxM 2LxIxK’

With typical values, the savings are one or two orders of magnitudes.

For completeness and self-consistency, the snapshot POD algorithm is described. POD
is performed with the whole computational domain 2. The inner product between two
velocity fields v(x), w(x) in the square-integrable Hilbert space £2(£2) reads

(Al

(v,w)p =/ dxv(x) - w(x). (A2)
2

The corresponding norm is given by

vl =V (v, v)g. (A3)

The distance D between two velocity fields is based on this norm,

D, w) =[v—wlg. (A4)
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The inner product (A 2) uniquely defines the snapshot POD (see e.g. Holmes et al. 2012).
The mth snapshot is represented by

M-1

W'(x) = up(x) + Y dl'ui(x), (A5)

i=1

where u, denotes the mean flow, u; the ith POD mode and a" the POD mode amplitude
corresponding to the mth snapshot. It may be noted that the maximal number of POD
modes is M — 1, e.g. two snapshots define a one-dimensional line, not a plane.

Letv = uy + Zfi}l biu; and w = uy + ngl c;u; be two velocity field representations,
e.g. a snapshot and a centroid. Then, their distance is given by

M—1

> i =) (A6)

i=1

D(v, W)_Q =

Evidently, (A 6) is much quicker to compute than (A 4) assuming the typical case that the
number of grid points is much larger than the number of snapshots.

Appendix B. On the optimal number of clusters

We investigate the prediction error of a CNM with direct transition matrix Q and
transition time matrix T for K clusters from M snapshot data. The number of clusters
K significantly influences the prediction error of the CNM. Coarse clustering (small
K) means that the direct transition matrix Q can be inferred from a lot of transition
data and is hence relatively accurate. Yet, the snapshots in each cluster have a large
representation error. In contrast, a finely resolving clustering (large K) implies a more
accurate representation of the true state. Yet, the transition matrix is larger and the error of
the estimated transition probability increases. The extremes are K = 1 cluster with large
representation error and K = M with vanishing representation error, but large error of the
transition matrix for new data. We can expect a sweet spot with optimal prediction error
based on good representation error and an accurate estimate of the transition matrix.

In the following, we define the performance measure for the CNM. The starting point
is the error between the model and true state Su(tr) = u°(t) — u*(¢). The modelling error
for a specified number of clusters K is defined as average error for all available snapshots
with prediction horizon t starting from the most accurate initial condition u°(0) ~ u*®(0).
The true initial state is taken from the snapshot data #™, while the modelled initial state is
the closest centroid ¢;». The resulting error reads

Ct) = luet+1)—wt+1),. (B1)

The overbar denotes the average over the prediction errors for all available snapshots u°(r)
with data horizon until # 4+ t; C(0) corresponds to the representation error where the true
state u* () is estimated by the modelled state u°(f) as accurately as possible; C(7) is the
prediction error after time 7.

Figure 30 illustrates the temporal evolution of prediction error for r < 50, roughly
corresponding to five Kelvin—Helmholtz shedding periods. This error expectedly increases
with growing prediction horizon t for all investigated numbers of clusters K =
10, 20, 50, 100. There is no uniformly superior prediction error for any number of clusters.
Small (large) K correspond to large (small) representation and prediction error for a small
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FIGURE 30. The prediction error C(t) over time with selected number of clusters K = 1, 10,
20, 50, 100.

time horizon. However, the more inaccurate transition matrix leads to larger prediction
errors in the long run. The CNM with K = 10 leads to the smallest prediction error for
7 € [12.5,50] in comparison to all other investigated models. Hence, we conclude that
K = 101is a good choice for the cluster number for a prediction horizon with one to several
shedding periods.

We refrain from fine-tuning the optimal number of clusters as this number is a function
of the prediction horizon 7. For T = 0, a CNM with K = M reduces the representation
error to zero, at least for the training data. For 7 = oo, the trivial CNM with K =1
yielding the mean flow outperforms all other models roughly by a factor 2. The average
error between model and data can easily be shown to be larger than the average distance
of the data to the mean. Let us consider the data u®* = cost and model u° = cos 1.05¢
with small frequency difference, i.e. increasing phase error. Then, (u®* — u°)> = 1 but
(u> — 0)2 = 1/2. On average, u° stays closer to the mean O than to another harmonics
which is occasionally out of phase.

Finally, we remark that the number of clusters K plays a similar role in cluster-based
models than the number of POD modes N in Galerkin models. Human interpretability
is easier for a low-dimensional flow representation while the accuracy increases with the
model order. For instance, for periodic dynamics, the phase resolution of each centroid is
approximately 360°/K. However, there is a noticeable difference in robustness between
CNM and POD models. POD models tend to become more fragile with increasing
state-space dimension, as every new degree of freedom comes with many new coefficients
and potential error amplifiers. In contrast, the robustness of cluster-based model does not
suffer from increasing dimension. A second difference relates to the modes. Increasing the
number of POD modes does not affect the lower-order modes by design. In contrast, all
centroids change as K is just increased by 1. Similarly, all intervals of a one-dimensional
finite-element discretization change as the number of elements increase by one.

Appendix C. POD versus cluster-based network modelling

The POD models and CNM belong to the family of data-driven dynamic grey-box
models which resolve the evolution of coherent structures. Dynamic POD modelling was
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pioneered by Aubry et al. (1988) and has enjoyed over three decades of rapid development
on coherent-structure descriptions, dynamical systems, estimation and control. In contrast,
networks have been recently introduced to reduced-order modelling of fluid flows (Nair &
Taira 2015; Taira et al. 2016). In this section, we compare POD models and CNM with
respect to kinematics (appendix C.1), dynamics (appendix C.2), estimation (appendix C.3)
and control (appendix C.4) — foreshadowing promising future opportunities of CNM.

C.1. Kinematics

Starting point of most data-driven grey-box models are M flow snapshots {u(x)}¥_
typically resolving first and second statistical moments. Like the dynamic mode
decomposition (Rowley et al. 2009; Schmid 2010), the snapshots are assumed to resolve
the coherent-structure evolution in time so that the temporal dynamics can be identified.
The POD expands the fluctuations around the mean flow #, into a given number N of
orthonormal modes u;:

N
u(x, 1) = uo(x) + Y _ ait)ui(x) + €(x. 1). (C1)
i=1
By design, this expansion minimizes the averaged representation error Z’rle llem||% /M
with respect to all Galerkin expansions of N modes. The POD modes are linear
combinations of the fluctuations u™ — uy.

Clustering coarse-grains the snapshot data to a given number K of centroids {c;}5_,.
Each snapshots with index m belongs to the closest centroid k,. The centroids are
requested to minimize the averaged representation error |u™ — ¢ ||>. Similar to POD
modes, centroids are linear combinations of the snapshots.

The representation error of centroids can be further reduced by allowing for
interpolations:

K K
u(x,t) = Zwk(t)ck(x), Zwk(t) =1, Vk:wi(t) > 0. (C2)
k=1

k=1

In case of the Markov model, the weights are the evolving probabilities wy(f) = p(¢) and
make the expansion (C 2) converge to the mean flow. In case of the network model, the
weights characterize ‘flights’ with uniform velocity between two centroids, say from k to
J, and typically re-visit all centroids in finite time. The Markov model might be compared
with unsteady Reynolds-averaged Navier—Stokes equations converging to the mean flow
while the network model is reminiscent of the large-eddy simulations.

We emphasize that (C1) and (C2) look similar but have quite different ranges of
applications. The POD expansion is based on the superposition of modes with arbitrary
mode amplitudes ;. Neither the mean flow nor the POD modes are realizable states.
POD could be considered a data-driven analogue of the Fourier expansion. In contrast,
the cluster-based expansion is only meant to describe a local interpolation for CNM.
The centroids are coarse-grained approximations of realizable states. The centroids
may be conceptualized as collocation points for a finite-element inspired ansatz and
the associated Voronoi cells serve as finite elements. As a corollary, POD expansions
can describe new states which are far from the snapshot database, because the mode
amplitudes are not confined. In contrast, cluster-based expansions are bound to stay
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close to the training data by the non-negativity w; > 0 and the normalization constraint
Z,’;l wy = 1. By construction, global POD expansions have lower representation error as
cluster-based expansions with the same number of modes. Some POD modes of simple
dynamics may have a physical meaning as they resolve instability modes or harmonics.
Typically, however, POD modes comprise a mix of frequencies and are difficult to
interpret. In contrast, all centroids are human-interpretable coarse-grained flows which
are representative for a certain state-space region. Summarizing, the choice between POD
and clustering strongly depends on the intended applications.

C.2. Dynamics

The temporal evolution of the incompressible viscous flow can be derived from the
Galerkin expansion and the Navier—Stokes equations (Fletcher 1984) for steady domains
with stationary boundary conditions. The resulting Galerkin system for the mode

amplitude vector @ = [a,, a,, ..., ay]" is the autonomous system
da
— = . C3
ar f(a) (C3)

For turbulent flows, only a fraction of the fluctuation energy is resolved by the POD
modes and the effect of the remaining unresolved fluctuations must be accounted for.
Myriad of subgrid turbulence models and calibration techniques have been proposed and
the identification of a robust realistic dynamical system constitutes a challenge. Even the
basic physical requirement of a globally bounded dynamics is often not met (Schlegel &
Noack 2015).

CNM might be conceptualized as flights between airports (centroids) from a discrete
network of routes with destination probabilities (transition matrix) and flight times
(transition times). In CNM, the chosen ‘destination’ j from ‘airport’ k at time " from
centroid k at time ¢ to centroid j during "' = " + T} is described by

J = realization according to Qj, (C4da)
u(x, 1) = we(Her(x) + wit)ei(x), (C4b)
WD) = (= ")/ T, wi(®) = 1= wy(0). (C4c)

At time 7"*!, a similar decision on the next destination is made, and so on. The CNM (C 4)
describes a deterministic—stochastic dynamics in contrast to the deterministic (C 3).

In contrast to POD models, the CNM (C4) contains no design parameter beyond the
number of clusters and is fully automated. Moreover, the dynamics is robust and cannot
diverge, unlike POD models. The price is the confinement to the neighbourhood of the
training data. Again, the decision in favour of the POD model or CNM strongly depends
on the goal. The POD models may allow deeper dynamics insights; CNM is much simpler
and much more robust by design.

C.3. Estimation

In most experiments, only few signals, denoted by the vector s(f), can be recorded. Let
u"(x,t"),m=1,..., M, be the snapshots associated with the sensor readings s” = s(#").
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The easiest realization of the estimator
u(x,t) = G(x,s(t)) (C5)

for sensor reading s is to find the closed sensor data s from the data base and to take the
corresponding snapshot #™ as an estimator. This simplistic 1-nearest neighbour estimator
can be refined in numerous ways. An interpolation with K data points can be performed
with a K-nearest neighbour approach (Loiseau, Noack & Brunton 2018). The sensor
signals may be lifted to a feature space without dynamic false neighbours, for instance with
time-delay coordinates (Loiseau et al. 2018). Or the structure of G may be pre-assumed as
in linear stochastic estimation.

The estimated flow field is canonically transcribed into POD mode amplitudes a and
permissible centroid weights W = [Wy, W», ..., Wy]'. Summarizing, the estimation can
easily be realized as add-ons in POD models and CNM. For completeness, we mention
the possibility of dynamic observers exploiting the dynamical system.

C.4. Control

The POD models may be enriched with a forcing term. In a simple case, like a
volume force, the forcing term is additive and linear in the actuation command b =
(b1, b, ..., by,]T with the gain matrix B:

da
— = f(a) + Bb. (Co)
dr

From here on, stabilizing control laws may be derived from linearizations or other
strategies (Brunton & Noack 2015).

The control design for CNM is more complex. The actuation command b affects the
dynamics (C4) via changed transition probabilities Q(b) and changed transition times
T(b). In a simple case, this dependency may be linearized:

Ny

Np
Q=Q+Y bQ., T=To+)» b, (C Ta,b)

I=1 I=1

Here, the subscript ‘0’ corresponds to the unforced state, while the subscript ‘I’ denotes
changes caused by the actuation command b,. The matrices may be identified from
actuated flow data. After, the forced CNM (C4)—(C7) is identified, a regression solver
can be employed to optimize the control law with respect to a cost function. Genetic
programming has proven to be a powerful method for this method in dozens of turbulence
control experiments (Noack 2019).

We remark that the deterministic—stochastic network dynamics rules out ‘simple’ control
design based on local linearizations, but requires the numerical solution of a non-convect
nonlinear optimization problem. Thus, the computational cost of this approach is
significantly larger than the model-based linear control. Yet, cluster-based network model
may enable nonlinear infinite-horizon control at a fraction of the computational cost of
linear optimal control using the Navier—Stokes equations. The authors actively pursue this
novel avenue of cluster-based network control for turbulence. Nair et al. (2019) and Kaiser
et al. (2017) present a model-free cluster-based control as a prelude to these efforts.
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