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ON MINIMAL THINNESS, REDUCED FUNCTIONS AND
GREEN POTENTIALS

by MATTS ESSEN

(Received 3rd January 1991)

Let Q be an open connected subset of the unit disc U, let E = U\C1 and let {Clk} be a Whitney decomposition
of U. If z(Q) is the centre of the "square" Q, if T is the unit circle and r = dist. (Q, T), we consider

W(t) = W[x, £) = I ((1 - \z(Qk)\)l\ 1 - xzW) |)2(log(4tt/c(£4)))"', T e 7;

where £ t = E n Qk and c(£t) is the capacity of Ek. We prove that the set E is minimally thin at T e T in (7 if
and only if W(x)<oo. We study functions of type W and discuss the relation between certain results of Naim
on minimal thinness [15], a minimum principle of Beurling [3], related results due to Dahlberg [7] and
Sjdgren [16] and recent work of Hayman-Lyons [15] (cf. also Bonsai] [4]) and Volberg [19]. For simplicity,
we discuss our problems in the unit disc U in the plane. However, the same techniques work for analogous
problems in higher dimensions and in more complicated regions.

1990 Mathematics subject classification (1985 Revision): 31A15, 31A20, (31B15).

0. Introduction

Let Q be an open connected subset of the unit disc U. We assume that Q is regular
with respect to the Dirichlet problem. The complement E — U\il is relatively closed in
U. Let SH(U) denote the class of nonnegative superharmonic functions in U. If h is a
nonnegative harmonic function in U, we consider the reduced function

) { ( ) { ) , ^ h on

and the lower regularization

which is superharmonic in U (cf. Helms [12]).
Let us begin by stating a special case of a very general result of Naim (cf. the

Corollary p. 234 in [15] and Theorem C in Section 3 below):

Theorem A. Rf is a Green potential in U if and only if E is minimally thin at almost
all points of the unit circle T.
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88 M. ESSEN

To define minimal thinness, we introduce the Poisson kernel (or minimal positive
harmonic function)

P(z,z) = Pz(z) = (2nr1(l-\z\2)\r-z\-2,zsU,zeT.

Definition. The set £ is minimally thin at x e T if there exists zoeU such that
£ = Pt.

This concept was introduced and studied by J. Lelong-Ferrand [14] (for further
details, see e.g. [8]). Minimal thinness of a subset £ of a half-plane D at a (Martin)
boundary point of D is defined in an analogous way.

To state a metric form of Theorem A, we let {Q} be a Whitney decomposition of U
into approximate "squares" with centres z(Q) such that

diam. Q ̂  3 ~x dist. {z(Q), T} = r/3.

(cf. Stein [17]). If c(E) is the capacity of E (cf. Ahlfors [1]), we consider

W(x) = W(x, E) = £ ((1 - \z{Qk)\)/\ 1 - T^ftJ|)2(log (4r,/c(£t)))" \

where £ t = £ n g k . We shall prove that £ is minimally thin at xeT if and only if
W{x) < oo (cf. Section 1). Applying Theorem A, we obtain:

Theorem 1. Rf is a Green potential if and only if W(x) < oo for almost all xeT.

We shall also consider.

The functions W or Wo appear also in two other problems. In the problem considered
by Hayman and Lyons [11] (also cf. Bonsall and Walsh [5] and Bonsall [4]), the
crucial condition is that we must have WO(T) = OO everywhere on T (more details are
given in Section 4). In Section 5, we discuss "boundary layers", a concept introduced by
Volberg [19]. A necessary (but not a sufficient) condition for Q = U\E to be a boundary
layer is that we have W(x) < oo everywhere on T.

In the present paper, we wish to study the function W and to show that not only the
work of Hayman and Lyons but also other results such as a minimum principle on
positive harmonic functions in the plane which is due to Beurling (cf. [3]; also cf.
Theorem B in Section 2 below) and the related result of Dahlberg (cf. [7]) can be
deduced using the theory of Nairn and certain results from potential theory. In our
discussions, we walk a middle way between the powerful but rather abstract approach
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of Nairn and the classical approach of Hayman and Lyons. For simplicity, we have
restricted ourselves to the unit disc. However, the same techniques work for analogous
problems in higher dimensions and in more complicated regions. We note that in any
dimension, we can use inversion to go from balls to half-spaces. It is a matter of
convenience whether we wish to work in a ball or in a half-space.

In the case of the unit disc, it is possible to give a simple direct proof of the result of
Nairn that we need: this is done in Section 3. In the transition from the Wiener type
conditions of [8] to the discussion of the function W{x) in the disc, we need condition
(3) in Section 1: this is a result of Beurling-Dahlberg type. An independent proof of (3)
using a weak /^-estimate of Sjogren [16] is given in the Appendix. For readers who are
willing to accept some basic results on minimal thinness and the estimate of Sjogren, the
proofs in the present paper are self-contained.

I am grateful to Dr. Phil Rippon and his colleagues for comments on an earlier
version of the present paper. In particular, the statement and proof of Theorem 4c is
due to them.

1. A metric criterion for minimal thinness

In the present section, we prove that a set E c U is minimally thin at x e T if and only
if W(T)«X>.

We consider the conformal mapping F(z) = (x + Z)/(T — z) which maps U conformally
onto D = {Z = X + iY:X>0} with x going to infinity. Then E will be minimally thin at x
in U if and only if G = F(E) is minimally thin at infinity in D. The Whitney squares {Qk}
near x in U are mapped onto a collection of Whitney squares {Qk} near infinity in D: let
lk and Rk be the distances from the centre of Qk to 3D and to the origin, respectively. A
necessary and sufficient condition for G to be minimally thin at infinity in D is that
there exists a measure v on 3D such that

X(f*/R*)2(log(4f»/c(Gk))-1 < oo, (1)

where Gk = G nQk and we sum over all Whitney squares which do not intersect the set
M(v) = {ZeD:Pv(Z)>X}. Here Pv is the Poisson integral of v in D (cf. Theorem 2 in
[8]). If we can prove that

<oo, (2)

where we sum over all indices k such that QknM(v)¥=Q, it is clear that (1) will be a
necessary and sufficient condition for G to be minimally thin at infinity in D; this time,
we sum over all Whitney squares. Translating this statement to x using the mapping
F"1, we obtain that W(x) will be finite and that the metric criterion will be proved.

We replace (2) by the equivalent condition

I J (1 + \Z\2y1dXdY< oo. (3)
M(v)
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This is a known result (cf. Lemma I in Beurling [3]; the generalization to higher
dimensions is given by Dahlberg in [7]). However, since we wish to show that the main
result in [3] and the analogue in the plane of the main result in [7] are consequences of
the work of Nairn, a weak Lx-estimate of Sjogren given in (20) below and some basic
properties of minimal thinness, we give a proof of (3) using these facts in the Appendix.

If in particular £ is a union of nonintersecting hyperbolic discs in U, log (AtJc{Ek))
will be essentially constant and £ will be minimally thin at xeT if and only if
WO(T)<OO (cf. Section 5 in [11]).

2. Some results on minimal thinness

From basic results on minimal thinness, we deduce a key lemma and a minimum
principle due to Beurling which we shall call Theorem B. The result of Hayman and
Lyons is a consequence of Lemma 1 and Theorem B.

Let u>(-,dQ = (i)(-,d£,Q) be harmonic measure on 3Q: it is defined since we have
assumed that Q is regular for the Dirichlet problem.

Lemma 1. Assume that E is not minimally thin at zeT. Then

Qo){z,dQ, (4)

where r = dQnU. Conversely, if (4) holds at xeT, E is not minimally thin at x.

Remark. In Hayman and Lyons, it is proved that (4) holds if and only if WQ(x) = oo
(cf. (3.14) in [11]): they consider the case when £ is a union of nonintersecting
hyperbolic discs. Our method of proof gives the slightly more general statement given
above. For more details we refer to Section 4.

Proof of Lemma 1. Let T G T be such that E is not minimally thin at T in U. Using
the conformal mapping F defined in Section 1, we move to D = {Z = X + iY:X>0}.
Then G = F(E) is not minimally thin at infinity in D. If G(R) = Gn {\Z\<R}, we consider
VR(Z) = Rx(R\Z) ^ X. When R->oo, VR increases to a function V which is superharmonic
in D and equal to X on G. Since G is not minimally thin at infinity in D, we have

X = R%-^V^X, ZeD,

and it follows that V(Z) = X in D. Since VR is bounded, we have
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REDUCED FUNCTIONS AND GREEN POTENTIALS 91

VR(Z)=\ VR(Qw(Z,dt;,D\G(R))-
dG

If R-KX), it follows that

J f=J (9?Oo»(Z,dC, D\G). (4')
dG

Going back to U, we obtain the first part of Lemma 1.
Conversely, assume that (4) and thus also (4') holds. From the argument above, it is

clear that the right hand member of (4') is R%. Hence we have X = R% which means that
G is not minimally thin at infinity and thus that E is not minimally thin at T. We have
proved Lemma 1.

Let S = {zn}? be a sequence of points in U and let

where p is the hyperbolic metric in U (cf. Beardon [2, Section 7.2]). Following Beurling
[3], we call S an equivalence sequence at re T if for each positive harmonic function h
in U, the inequalities

h{z)^P(x,z), zeS, (5)

imply that

h(z)^P(r,z), zeU. (6)

Theorem B. S is an equivalence sequence at xeT if and only if S(d) is not minimally
thin at i for some positive 8.

Remark. Theorem B is a modified version of the minimum principle of Beurling [3].
Lemma 1 in Hayman and Lyons [11] says that if S(5) is minimally thin at T, then S is
not an equivalence sequence at T.

Proof. To translate minimal thinness into a metric condition, we first form a new
sequence by successively deleting points from our sequence that have hyperbolic
distance at most 8 from the previous points. Our new sequence {z'k} has the following
properties:

(7)

(8)
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92 M. ESSEN

where S, = S(5/2, {z'k}), S2 = S(S,{zk}) and S3 = S(2d,{z'k}).
We claim that these three sets are either all minimally thin at T or all not minimally

thin at x. To see this, let us first assume that St is. minimally thin at T. Since all
hyperbolic discs forming S, are disjoint, the logarithmic term in W(x,St) is essentially
constant and we conclude that WO(T,S|) is finite and that

(9)

It follows that W0(T,S3) and thus also W(T,S3) will be finite which proves that S3 and
S2 will be minimally thin at T. Conversely, if Sx is not minimally thin at T, it is clear that
the other two sets will not be minimally thin at T.

We note that if S(<50) is not minimally thin at T for some positive <50, then S(S) is not
minimally thin at T for all <5e(0,<50).

The details in the remaining part of the proof of Theorem B are included since similar
arguments will be needed in the discussion of Theorem D and in the proof of Theorem
2 below.

Let us first assume that S(d) is minimally thin at T which is equivalent to assuming
that (9) holds. Again, we move to the halfplane D = {Z = X + iY:X>0}, using the
conformal mapping F from Section 1. If we define Zk — Xk + iYk = F(z'k), fc=l,2,..., it
follows from (9) that

r*2)<oo. (10)
i

Following Beurling, we define

Since P(l) is finite by (10), P is a positive harmonic function in D which is finite
everywhere. We note that

P(Zk)>Xk, k = l ,2 , . . . ,

and
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Going back to U, we obtain (5) for h(z) = P(F(z)) on the sequence {z'k} (and hence, by
Harnack's theorem, on the sequence {zn}). However, (6) fails for h and so S' is not an
equivalence sequence.

Conversely, assume that S(d) is not minimally thin at T and that (5) holds. From
Harnack's theorem, we see that there exists a positive constant C(<5) such that for all k
and for all positive harmonic functions in U, we have

It follows from (5) that

{x,z), zeS(S).

If e is a given small positive number, we can choose 5 so small that we obtain
^ 1 — e. Our assumption that S(8) is not minimally thin at T implies that

Since E > 0 can be chosen as small as we like, we obtain (6). This completes the proof of
Theorem B.

Remark. Applying criteria for minimal thinness in a halfspace from Essen [8], we
can deduce an analogue of Theorem B in higher dimensions.

3. A theorem on reduced harmonic functions in U

If EczU is a given relatively closed set, we write M = {xeT:E is minimally thin at T},
N = {xeT:E is not minimally thin at T}.

Theorem C. Let h{z) = jT P{t, z) dfi(z) be a positive harmonic function in U. Then

Rf(z) = J P(T, z) dfi(z) + | v(z, z) dfi(r), (11)
JV M

where v(x, z) = /?p(ti. )(z) and the second term is a Green potential in U.

Remark. For a very general result of this type, we refer to Nairn [14, Section 26]. In
the case of the unit disc, we give a simple direct proof.

In particular, we see that R% is a Green potential if and only if p.(N) = 0. In the case
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94 M. ESSEN

h = \, n is Lebesgue measure and we obtain Theorem A. Another consequence is that
Rf = h if and only if /x(M)=0.

Proof. To obtain a representation formula for RE, we consider

and deduce that

RE"(z) = J fc(Oai(z,dC,Qn) ̂ RE(z),ze U.
rn

Letting n->oo, we see that the left-hand member increases to a function which is
superharmonic in U, dominated by RE and which is h on E. Thus the limit is RE and we
obtain the formula

RE(z) = J h(Qco(z, dC, 0) = J <*AI(T)J P(T, Ofl)(z, dC,"), z e I/,
r T r

It r e AT, we apply Lemma 1 and replace the inner integral by P{i,z). If xeM and if
w(v) is a Green potential, then

L(r,i>(v))=f i>(T,rew)d0/(2«),
o

is a concave function of logr which decreases to 0 as r-»l —. It follows that

) ( , ( J ) ) M ) - » O as r - » l - .

Consequently, the second term in (11) is a Green potential.
It remains to prove that v(r,•) is a Green potential for all xeM. We consider the

Riesz decomposition (cf. Theorem 6.18 in [12])

where Gfx0 is the Green potential of a measure fi0 and H is the largest harmonic
minorant of v(x, •) in (7. Since JJ(T, Z) = ^f ( t . ,(z) is dominated by the minimal harmonic
function P(T, •), we have H = aP(x,-), where ae[0,1]. Our assumption that E is
minimally thin at x implies that a<\. The function v1(x,-) = v(x,-) — aP(x,-) is nonnega-
tive, superharmonic in U and (1 — a)P(x,z) for zeT. Consequently, we have

and it follows that
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If a were positive, we see that a Green potential would dominate a Poisson kernel in U
which is impossible. Hence we have o = 0, v(x,-) is a Green potential and we have proved
Theorem C.

We shall use Theorems B and C to give a simple proof of a special case of a result of
Dahlberg. Following Dahlberg, we say that a set £ <= U determines the point measure
at zeT if for every positive harmonic function h in U with boundary measure \i, we
have

n({x}) = inf{h(z)/P(x,z):zeT}.

Let T,{S) be the set {z e U: p{z, Q ̂  5 for some £e£} . Dahlberg's result is concerned with
Liapunov-Dini domains in RN, where N ^ 3 (cf. [7]). For the purpose of the present
paper, we give a version in the unit disc in the plane.

Theorem D. / / £ c [/ and reT, the following conditions on £ are equivalent.

(i) u determines the point measure at T.

(ii) For some S>0, we have

J |T — z\~2dxdy= co.

1(3)

(iii) There exists a separated sequence S = {zn} in £ with limzn = T such that

- K | ) / | T - Z B | ) 2 = O). (9')

Proof. Let us first assume that (iii) holds and let E = S(d). Exactly as in the proof of
Theorem B, we can for each e > 0 find a <5 such that if (h/P)(z) = h(z)/P(x,z),

inf (h/P)(z) ^ M(h/P)(z) ^ (1 - e) inf (h/P)(z).

Thus it suffices to consider the set E. By (9'), it is clear that £ is not minimally thin at T.
However, at all other points of T, E will be minimally thin. From (11) in Theorem C, we
see that

where a = n{{x}) and V is a Green potential in U. Consequently, for z e £ , we have

h(z)/P{x, z) = # ( Z ) / P ( T , z) = a+ K(Z)/P(T, Z).
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96 M. ESSEN

It is known (cf. Lelong-Ferrand [14]), that

where the exceptional set Eo is minimally thin at x in U. (The results in [14] are given
in a halfplane (or a halfspace in higher dimensions). There is no difficulty in transferring
them to U since minimal thinness is invariant under conformal mapping in the plane or
inversion in balls in higher dimensions).

Since the set E is not minimally thin at T, the set £ \£ 0 is also not minimally thin at %
and thus non-empty. It follows that

a g inf (h/P)(z) ̂  inf (h/P)(z) = a.
V E

It is now clear that S and thus also S determine the point measure at x.
Conversely, if I! determines the point measure at x e T, we see that

implies that

h(z)^aP(x,z),zeU.

We wish to apply Theorem B and consider therefore a Whitney decomposition {Qk}
of U. For each such "square" Q for which Q n £ is nonempty, we choose a point in the
intersection and find a sequence Sl = {zin} which is such that SX((5O)=>E for some 80>0.
Hence the set Si(S0) determines the point measure at x, and it follows from Theorem B
that Si(<5) is not minimally thin at x for <5e(0, <50). Arguing as in the proof of Theorem
B, we find a separated subsequence S of S{ which is such that (9') holds.

It remains to prove that we can choose the sequence S is such a way that it will have
the limit x. For simplicity, we move to a half-plane and assume that x is at the origin,
and that we work with a collection of dyadic Whitney squares. Let {pn} be a sequence
of integers such that £™ Pn 1 is convergent. It is easy to see that the contribution in our
sum (9') from squares of side 2~" and for which the distance to the origin is larger than
pn2~" is the order of magnitude l/pn. Thus we can delete all points in the sequence S of
this type without changing the fact that the sum of (9') is divergent. If we also choose pn

in such a way that pn2~"-*0 as n-»oo, the remaining points in S will converge to 0 and
the sum (9') will be divergent.

It is easy to prove that (ii) and (iii) are equivalent. We omit the details.

4. Bases for positive continuous functions

Let B be a subclass of the class C+(T) of positive continuous functions on T. We say
that B is a basis for C+(T) is given feC+(T) and e>0, there exists a sequence
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and a sequence {c,}? of positive numbers such that ||/— X*c,/||oo <e. In other words, B
is a basis for C+(T) if the positive cone spanned by B is dense in C+(T). A subset S of
U will be called basic if the set B = {P(-,z):zeS} is a basis for C+(T). If zmn =
(l-2~n)exp(27cim2""n), where lg«<oo and 0^m<2", we define

and Smn = S nQm „. The following result which answers a question of W. Rudin is due
to Hayman and Lyons [11, Theorem 2].

Theorem E. A set S a U is basic if and only if

W1(T)= X ( l -k n | ) 2 |T -z m > n | - 2 = oo, (12)
Sm,n*<t-

forallzeT.

A sequence {zk}S° is separated if

| | (13)

Hayman and Lyons prove that in Theorem E, it suffices to consider the case when S
is a separated sequence. Defining S(S) as in Section 2, we see that if S is a separated
sequence and if 3 is small enough, S(8) will be a collection of nonintersecting hyperbolic
discs. If S = {zn}J°, we consider

W2(z) = fj((l-\zk\)/\l-z7k\)
2, teT.

i

It is easy to see that (12) holds if and only if W2(x) = co for all xeT. Thus S will be basic
if and only if S(5) is not minimally thin at any point on the unit circle (cf. Section 5 in
[11]; also cf. Section 1 in the present paper).

The key steps in Hayman and Lyons' proof of Theorem E are [11, Lemma 1 and
equation (3.14)], which correspond to Theorem B and Lemma 1 of the present paper.

To give a further connection between the work of Nairn and the work of Hayman
and Lyons, we let A be a closed subset of T and consider the class H(U, A) of functions
h = hi — h2, where ht and h2 are positive and harmonic in U and have vanishing
boundary values on T\A. Hayman and Lyons proved (cf. [11, Theorem 3]; cf. also [5,
Theorem 10]):

Theorem F. Let A = T. Then S is basic if and only if

sup/i(z) = sup/i(z) for all heH(U,T). (14)
zeU zeS

We prove
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Theorem 2. (a) Assume that SczU and that S(8) is not minimally thin at any point of
A. Then

suph(z) = sup h(z), for all heH(U,A). (15)
zeU zeS

(b) Let S'n(d) be the radial projection onto T of the hyperbolic disc Sn(8) = {zeU: p(z, zn) ;g
8}. Assume that S'n{3) n / 1#0 ,n= 1,2,... Then (15) is a necessary and sufficient condition
for S(8) not to be minimally thin at any point of A.

We need (cf. Lemma 5 in [11])

Lemma 2. Let h be a positive harmonic function in U. Suppose that 8 e (0, ̂ ) is given
and that zl and z2 are two points in U such that p(zl,z2)<5. Then there is an absolute
constant C such that

\h(zl)-h(z2)\<CSh{zl). (16)

Proof of Theorem 2. (a) Without loss of generality, we can assume that the hyperbolic
discs that form S{8) are pairwise disjoint (cf. the proof of Lemma B). Defining

$ t h a t

Let us first use Lemma 2 to conclude that

Under our assumptions, it follows from Theorem C with E = S(8) that

) = f4 f hl
1 Sn(d)

1 Sn(<S)

and that

Letting <5->0, we obtain (15).

(b) It suffices to prove that if S(8) is minimally thin at TOEA, then (15) does not hold. In
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each disc Sn(5), we choose z* such that zj/|z*|ei4. If S1 = {zJ}?), it is clear that Sj(<5) is
minimally thin at T0. We use the construction in the proof of Theorem B to build a
positive harmonic function satisfying the conditions of Theorem B with S replaced by
S1. Furthermore, the support of the associated measure of h on T is contained in the
radial projection of St onto T. It follows that heH(U,A). We can now use an argument
from Section 5 in [11]. We have

h(z)^P(zo,z),zeS1,

Hence the function hl(z) = P(t0,z) — h(z) belongs to H(U,A) and is nonpositive on S1

but positive at points in U near T0. This contradicts (15) and completes the proof of
Theorem 2.

5. Boundary layers

The following concept has been introduced by Volberg [19]. Let E be as in the
introduction and assume furthermore that Cl=U\E is connected. We say that Q is a
boundary layer if there exists a constant c>0 such that (u(0,i)^c|/ | for all arcs I<=T,
where co(0,/) is the harmonic measure of the arc / in the domain Q evaluated at the
origin. (Instead of the origin, we can of course use any other fixed point in Q.)

The purpose of the present section is to show how certain results of Volberg follow
from our arguments and thus to illustrate the relationship between Theorem A and the
work of Volberg.

If r = f f l n ( / , we have

for all harmonic functions h which are also continuous in V. If Q is a boundary layer,
we have

2n) = cfc(O),
T T

so that

for all such functions h. Choosing h(z) = P(T, rz), where re(0,1), we have
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Letting r-*l —, we deduce using Fatou's theorem that

C, (17)

for all zeT. It is clear that this is also a sufficient condition for Q to be a boundary
layer.

Volberg proves the following results.

(i) Let $Uc£l. Then there exists a constant A^ such that

Thus, if sup W(z)^(l-c)/A1, (17) holds for all T E T and fi is a boundary layer.

(ii) There exist positive absolute constants A2 and q0 such that if (17) holds for all
zeT with q=l—c^q0, then sup W{z)^A2q. If S is a Stolz domain and £ c S ,
then W{z)-^A2P

iO(z), zeT, and the following assertions are equivalent:

(a) Q is a boundary layer.

(b) supr W(T)<OO.

(iii) If the series defining W converges uniformly on T, then O. has certain nice
properties which define what Volberg calls a good boundary layer (for details, we
refer to [19]). Assuming that ^l /cf t , we prove

Theorem 3. (a) A necessary but not a sufficient condition for £1 to be a boundary layer
is that E is minimally thin everywhere on T.

(b) Assume that the series defining W converges uniformly on T. Then E is minimally
thin everywhere on T and Q is a boundary layer.

Proof, (a) If E is not minimally thin at ze T, it follows from Lemma 1 that F°(z) = l.
Hence (17) doesn't hold and Cl is not a boundary layer.

To give an example showing that minimal thinness everywhere on T is not a
sufficient condition for Q to be a boundary layer, we consider

E=U?En, where En = {z = eie(l-2-2ny.2-n-1^0^2-"}.

This set is minimally thin everywhere on T except possibly at 1.
We have W(l) ?S Const.£f 2~"<oo. This is clear since each set £„ is contained in the

union of 2" closed Whitney squares Qin) and At{H)lc(En n Q^]) is essentially constant for
all these squares. From the criterion in Section 1, we see that E is minimally thin also
at 1.

We wish to prove that there is a sequence of arcs on T tending to 1 which have small
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harmonic measures at the origin in Q = U\E. The first step in the proof is the following
lemma which for simplicity is stated in the right half-plane D.

Lemma 3. Let a and b be positive numbers which are such that b — a»l. We consider
the domain

D(b) = D\{z = x + iy:x=l,\y\^b},

the box B, = {z = x + iy:0<x^l,\y\^t} and the interval J = {z = iy.\y\<a). Then there is
an absolute constant C such that

a>(z, J, D(b)) ^ Cexp(- n(b - a)), z e D(b)\Bb, (18)

where the left-hand side denotes the harmonic measure of J in the domain D(b).

Proof. Let h be harmonic in D(b)\Ba with boundary values 1 on dBa n{z =
x + iy: 0 < x < 1} and 0 on the rest of the boundary. It is clear that h majorizes
(o(z,J,D(b)) in D(b)\Ba. The estimate in (18) is a simple consequence of standard
estimates of harmonic measure (cf. the Corollary p. 116 in Tsuj [18]).

We return to the set E defined above. Let Jn be the radial projection of the middle
half of the arc En onto T. It follows from Lemma 3 that

and that

«(0, Jn,Q)l\Jn\SC2"exp(-%2n~3)->0, n->oo.

We have proved that fi = U\E is not a boundary layer and that the set E is minimally
thin at all points of T.
(b) Assume that $Uc£l. If the series defining W is uniformly convergent on T, E will be
minimally thin everywhere on T (cf. Section 1) and it follows from Lemma 1 and the
maximum principle that

F\x) = j P(x, C)cu(O, dQ < P(T, 0) = 1, r e T.
r

If (17) doesn't hold, there exists a sequence {rn} such that Pm(Tn)-»l as n-*oo. Without
loss of generality, we can assume that Tn=exp(i0n)->1, where {#„} is a sequence
decreasing to 0. Let e>0 be given. We know that Pro(l)< 1. Since the series defining W
converges uniformly, we can find a neighbourhood 0 of 1 in U such that

W(x,0)<e for all zeOnT,
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where W(z, O) is defined as the sum over all Whitney squares intersecting O in the sum
defining W. We write

W(T) = W(x, O) + (W(x) - W(i, O)) = (Wt + W2 )(T).

If J7(T) = Jrrv0P(T,C)co(0,dC,fl), we define P% = P<°-P™ and E1 = En0. It is known that

If « = <«(•, <i{, l/\£) and co' = co(-,dC, U\Et), we have

P?(T)^Pm'(T), T67;

and we can use Volberg's estimate (i) to deduce that

lim sup P ? ( T J g A! lim sup Wt (TB) g /41 e,
n"* oo n~* GO

so that

If £ is small enough, we conclude that 1 =limn_0OP£O(Tn)< 1 which is impossible. From
the contradiction, we see that there is no such sequence {%„}. Hence (17) holds and Q is
a boundary layer. This concludes the proof of Theorem 3.

Corollary. Assume that

EOog^MEjrUoo. (18)

Then E is minimally thin everywhere on T and il is a boundary layer.

Proof. If (18) holds, it is easy to see that the series defining W is uniformly
convergent. It follows from Theorem 3 that O is a boundary layer.

As mentioned in the introduction, the results on minimal thinness hold also in Rd,
d^3. It should be possible to prove analogues of the Hayman—Lyons and the Volberg
results in higher dimensions.

6. Concluding remarks

Let S = {zn} be a separated sequence in U and let E = S(3) be defined as in Section 2,
so that S(<5) in the union of nonintersecting hyperbolic discs. Let us consider the
following statements.
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(A) Q = U\E is a boundary layer.

(B) Kf is a Green potential.

(C) supzeTW0(z)^M<oo.

(D) S is an interpolating sequence (cf. Ch. VII in [10]).

(E) W0(T) < oo a.e. on T.

Theorem 4.

(a) (A)=>(B).

(b) (QMD).

(c) (D)=>(£).

The implications can not be reversed.

Proof, (a) This conclusion is immediate from Theorems 3 and A.

Remark. If q= 1— c is small enough, we have (A)=>(C) (cf. Volberg's result (ii)). We
also note that according to Theorem 1, we have (B)o(E).

(b) For simplicity, we give the argument in the halfplane D = {Rez>0}. Thus, if {zj} is a
separated sequence in D and

/\it-Zj\)2ZM, (19)
leR

we wish to prove that {zj} is an interpolating sequence. According to Carleson's
theorem, it suffices to prove that A = Xx/5 z y is a Carleson measure (cf. Theorem VII. 1.1.
in [10]). We choose a square 6 = [0, L] x [a,a + U] and note that

"j I (Xj/\it-Zj\)2dt7zConst. £ xj.
a zjeQ zjeQ

Using (19), we conclude that YzjeQXj^Const.L. We have proved that (C)=>(D).
An example showing that the implication can not be reversed is given by Zj=l—2~J,

7=1,2 , . . . This is clearly an interpolating sequence. On the other hand, Wo(l) = oo and
(C) does not hold.

(c) If S is an interpolating sequence, we consider the Blaschke product

B(z) = B(z, S) = [ ] ? ( - |*.|/O(* " *.)/( 1 - ™n).

If p(z, zp) < 5, there exists an absolute constant C such that

\z-zp\<CS(l-\zp\),
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and we have

\B(z)\£C8,5(z,zp)<8.

If E = S(5) and u = Rf, we see that if 5 is small enough,

«(z)g(log(C5)-1)-1log(l/|B(z)|), ze U.

Thus u is dominated by a Green potential and it follows that u itself must be a Green
potential. Applying Theorem 1, we obtain (£).

To see that the converse is false, we consider the sequence S defined by

which is not interpolating, since we have

k,n n= 1

If 5 is small, £ = S(8) is a union of nonintersection hyperbolic discs and E is minimally
thin everywhere on T except possibly at z= l . However, a computation shows that
W2(\) is finite, and so E is minimally thin everywhere on T but S is not an interpolating
sequence.

Let us finally discuss the relationship between a sequence S = {zn} and the function

which should be compared to W2{T). A classical theorem of Frostman [9] says that the
Blaschke product B(z, S) and all of its subproducts have angular limits of modulus 1 at
T if and only if V2(T) is finite. J. S. Hwang has proved that K2(T) is finite if and only if
the Green potential —log|B(z,S)| has the rarefied fine limit 0 at T (cf. [13]). Minimal
thinness and rarefiedness are two different ways of describing "smallness" of a set near a
boundary point (cf. [8]).

We hope to continue the study of these problems in a later paper, both in the plane
and in higher dimensions.

Appendix

We return to questions discussed in Section 1. We work in the half-plane D = {z =
x + iy: x > 0} and consider the Poisson integral Pv defined by
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and the set M(v) = {zeD:Pv(z)^x}.
To prove that (3) holds, we first localize the problem and consider

Dn = {zeD:2n^\z\<2"+1},

the restriction dvn of dv to /„ and Pn(z) = PvJ,z). If n0 is a fixed positive integer and \z\ is
large, the sum £ " i x Pn(z) will be an error term in our estimates which will be small, and
hence the convergence of the integral in (3) depends only on the behaviour of v near
infinity. Thus we can assume that the support of dv is contained in dD n {|z|^2"°} and
that

If z e £>„, we have

fcSn-2 fcSn-2

lcgn+2 kin

and it follows that

With z' = z/2" and dAn(t) = 2~2n{dvn_1 +dvn + dvn+l)(2"t), this latter set is a scaling by 2"
of

To complete the proof, we note that there is an absolute constant C such that if

then

| = f J dxdyZC\\X\\, (20)

(cf. Theorem 2 in Sjogren [16]). It follows from the discussion above that we have

J j (\ +\z\2)-1 dxdy^C^im^C^il+t2)'1 dv{t)<oo.
M(v)
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This finishes the proof of (3).
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