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PERTURBED GENERALISED HAMILTONIAN SYSTEMS
AND SOME ADVECTION MODELS

JIBIN Li, J.R. CHRISTIE AND K. GOPALSAMY

In this paper, it is shown that the theory of perturbed generalised Hamiltonian
systems provides an effective method for understanding the description of flow
patterns of some three-dimensional flows. Firstly, theorems for the persistence
of periodic solutions of three-dimensional generalised Hamiltonian systems under
perturbation are given by developing Melnikov's method. Then, three different
systems of three-dimensional steady fluid flows are discussed and the existence or
non-existence of periodic solutions of these systems is proved.

1. INTRODUCTION

It is well known that in the Lagrangian representation, the path x(i) of the motion
of a fluid particle in a steady incompressible flow in E3 is given by the dynamical
system x = v(x) with div (v) = 0, where v denotes the velocity field. When v(x)
is a nonlinear function of x, the dynamical behaviour of the system may exhibit a
variety of behaviour patterns including deterministic chaos and periodic motions. In
recent years, a large volume of three-dimensional steady and unsteady flow field data
has been produced both experimentally and computationally with the advent of large
computers and high-speed data-acquisition systems. This data needs to be interpreted
and mathematically understood, but there are some difficulties in the study of three-
dimensional dynamical systems. For example, even though well known, the dynamics
of the Lorenz equations have not been completely understood [13].

In this paper, we show that a description of flow patterns using the theory of
perturbed generalised Hamiltonian systems provides a framework and a method for
overcoming some of the difficulties associated with three-dimensional flows. As exam-
ples, we discuss three systems of three-dimensional steady flows. The results show that
our method enables some complicated three-dimensional flow patterns to be described
in an intelligible and unambiguous manner, and some numerical results of other authors
can be explained.
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Three-dimensional incompressible flows have a property not possessed by planar
flows called "helicity" which indicates the linkage or knottedness of the flow. Holm
and Kimura [6] have considered two classes of zero-helicity flows. By using numerical
simulations, they gave visualised spatial patterns. The so-called Arter flow [2] and
Chandrasekhar flow [5] are respectively given by

dx
— — — sin x cos y cos z + b sin (2x) cos (2z)
dt
(Lil

(1.1) 6 — = — cos x sin y cos z + b sin (2y) cos (2z)
CLXi

— — 2 cos x cos y sin z — b (cos (2x) + cos (2j/)) sin (2z)
etc

and

dx , 2 •
— = — sin x cos y cos z — k cos x sin y cos z
dt

(1.2) fc —- = — cos x sin y cos z + k2 sin a; cos y cos z
at

— = 2 cos x cos y sin z.
at

The system (1.1) 6 is a model for the flow with square planform for the onset of Rayleigh-
Benard convection. The system (1.2) k is derived as a lowest-mode linearised solution
of the Navier-Stokes equations with buoyancy for a rotating fluid in a periodic cube
(T 3 ) under the Boussinesq approximation. Note that (l.l)(,=0 coincides with (1.2)fc=0-
However, we shall not consider the Chandrasekhar flow in this paper.

On the other hand, Bajer and Moffatt [3] have studied a class of steady confined

Stokes flows. The velocity field is given by

(1.3) a v(x, y, z) = vi(x,y,z) + av2(x,y,z),

where

vi(x,y,z) = (-8xy, llx2 + 3y2 + z2 + pxz - 3, 2yz-/3xy),

v2{x,y,z) = (z,0,-x).

The system (1.3) a is called the stretch-twist-fold (STF) flow. This is a particular
quadratic flow which was devised to represent STF action in earlier dynamo-theory of
magneto-hydrodynamics (see [10] and its references). By using adiabatic invariants,
that is, the method of averaging, Bajer and Moffatt [3] discussed some dynamical
behaviour of (1.3) Q and gave numerical pictures.
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[3] Perturbed Hamiltonian systems 3

The above systems have not been analysed using rigorous mathematical methods.
In addition, Armbruster, Guckenheimer and Holmes [1], Jones and Proctor [7] and
Proctor and Jones [12] have independently considered the same equations

—j- = sis2 coscf> + e si (ui + ens? + e12s\)

(1.4) £ —^ = - s \ cos <f>

They obtained the existence of periodic solutions of (1.4) e. These periodic solutions
correspond to periodic modulated travelling waves in thermal convection. A new treat-
ment for (1.4) e will be given below.

This paper is organised as follows. In Section 2, we give theorems concerning the
persistence of periodic solutions of three-dimensional generalised Hamiltonian systems
under perturbation. In Section 3, the Arter flow is discussed. In Section 4 and Section
5, we respectively study the STF flow and the system (1.4) e. We show the existence
or non-existence of periodic orbits for these three systems.

2. PERIODIC ORBITS OF PERTURBED GENERALISED HAMILTONIAN SYSTEMS

In this section, we begin by giving a brief description of the theory of perturbed
generalised Hamiltonian systems in the three-dimensional case. For the more general
theory of generalised Hamiltonian systems, the reader is referred to [8, 11, 14].

A three-dimensional perturbed generalised Hamiltonian system studied here is
taken to be of the following form:

dx-
(21) l {x{xi,H}(x) + e9i(x,t), i = 1,2,3,

at

where x = (x\,x2,x3) € K3, {•,•} denotes the Poisson bracket [11] and H e
Cr(K3), r ^ 3, is called the Hamiltonian function. We assume that each g, is suf-
ficiently smooth (Cr, r ̂  2). We let

3 OD

fi(x) = {xitH}(x) = Y,Jij{x)jr-{x), i= 1,2,3,

where Jij(x) — {xi,Xj}. The 3 x 3 anti-symmetric matrix J(x) = (Jij{x)) is called
the structure matrix of a generalised Hamiltonian system. We note that the system
(2.1)£ can be rewritten in the form
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where g = (91,92,93)- Suppose that the perturbation terms 9i(x,t), i = 1,2,3, are
T-periodic with respect to t, and O ^ e C l .

DEFINITION 2.1: Let P be a Poisson manifold. A smooth, real-valued function
C : P —> K is called a Casimir function if {C, F) = 0 for all functions F : P ->• K.

Note that a Poisson manifold is a manifold with a Poisson bracket. We make the
following assumptions about the unperturbed system (2.1) e = o :

(A1) We assume that there exists a Casimir function C of the Poisson manifold
(R3, {•,}), which is denned on the regular point set M = {x € M3 :
rank (J(x)) = 2} (or a connected open subset U c M), such that the
gradient VC(z) ^ 0 for each x € Mc = {x £ M : C(x) = c} with
constant c satisfying \c\ ^ 6 for some 5 > 0 (that is, Mc contains no
critical points of C).

(A 2) In addition to assumption A1, we assume that for each value of c in
some open interval / C {c € R : \c\ ^ 6}, on the level set Mc the
unperturbed system (2.1) e=o possesses a one parameter family of periodic
orbits, qg(t — 9,c), a € L(c), where L(c) C M is an open interval and 0

denotes the "phase" or starting point of the orbit. We denote the period
of q§(t-0,c) by T(a,c).

DEFINITION 2.2: Let P be a Poisson manifold, let C : P -»• E be a Casimir
function and let c e R. Then, the set Pc = {x 6 P : C(x) = c} is called a symplectic

leafoi C on. P.

Evidently, the set M is a Poisson manifold with two-dimensional symplectic leaves
Mc of C, and each leaf Mc is an invariant manifold of the flow denned by the unper-
turbed system (2.1) e = o .

Under the above assumptions, we study the existence of periodic orbits of the
perturbed system (2.1) £ . Firstly, the following perturbation results will be useful.
Consider a subset of the two parameter family of periodic orbits of (2.1) e=0 whose
period is uniformly bounded above. Let L(c) C L(c) denote the set of a such that
on the level set Mc the periods T(a, c) of the periodic orbits are uniformly bounded
above, say by a constant K.

THEOREM 2 . 1 . Let q$(t — 9, c) be a periodic orbit of the unperturbed system

(2.1)e=o with period T(a, c) < K. Then, there exists a perturbed orbit q"(t, 6, c), not

necessarily periodic, which can be expressed as

(2.2) q?(t,9,c) = qg(t - 6,c) + eq?(t,6,c) + O(e2)

uniformly in t € [9,6 + T(a, c)] for e sufficiently small and all a £ L(c).
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REMARK 2.1. This result follows directly from regular perturbation theory and Gron-
wall estimates (see [15]). The restriction to L(c) avoids problems that arise when
periodic orbits limit on homoclinic orbits and the period becomes unbounded. Further-
more, q° (t,6,c) may be found by solving the variational equation

(2.3) j t (tfM.c)) =Df(qg(t -etc))q?(t,e,c)+g(qS(t-e,c),t),

where Df denotes the Jacobi matrix of / .
We want to determine if any of the two parameter family of periodic orbits in the

unperturbed system persist as periodic orbits in the perturbed system. To do this, we
first suspend the perturbed system (2.1) e by rewriting it as an autonomous system of
differential equations where we denote / = (/i,/2,/3) and g = {91,92,93)- We define
the function $(f) = t (mod T); by the T-periodicity of g we then have

- | =f{x)+eg(x,$)

(2.4) e 21
~dt = 1

where ST = K (mod T). We remark that this suspension makes sense even when g is
independent of $, although it then becomes trivial. Secondly, we shall reduce the study
of the four-dimensional problem (2.4) e to a three-dimensional Poincare map. Define a
global cross-section transverse to the vector field (2.4) e by

E° = {(x, $) € R3 x ST : $ = 0 (mod T)}

and define the Poincare map associated with the system (2.4) e , Pe : E° —> E°, by

(2.5) Pe : x£(0) -> x£(r),

where (ze(£),<&(£)) denotes the solution of the system (2.4)£ starting from the point
(xc(0),0) e E°. The mth iterate of the Poincare map, P£

m, is

(2.6) P ™ : i £ ( 0 ) - H £ K ) .

Thus, the study of subharmonic periodic orbits of (2.4) £ is reduced to the study of fixed
points of the map Pe

m. In the following, we shall explicitly construct an applicable ex-
pression for P£

m (in a new coordinate system) from the perturbed vector field (2.4) £; the
structure of the unperturbed phase space will form the framework for the analysis of the
problem. We shall restrict ourselves to a region where the periods of the unperturbed
periodic orbits are uniformly bounded above by a constant K (so Theorem 2.1 applies).
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Prom Darboux' Theorem (see [11]) and the existence theorem of the action-angle vari-
ables of a generalised Hamiltonian system in [8], we note that in a neighbourhood of
an unperturbed periodic orbit there exists a coordinate transformation of the form

(2.7) x — (a(x),(p(x) (mod 2n),C(x))

such that in the new coordinates, the unperturbed Hamiltonian is only dependent on
a and c, that is, H{x) = H(a,c), and elements of the structure matrix of the Poisson
bracket become

(2.8) = -l, {a,c} = 0,

where C(x) = c is the Casimir function given in assumption Ai and {•, •} is the Poisson
bracket in Ai . Under the transformation, (2.4)E becomes

— - -fa H(a c)\ e(Va )(a d> c $)
dt

(2.9)e dc
dl

~di = 1,

where (•, •) denotes the inner product of vectors and V denotes the gradient operator.
It follows from (2.8) and the definition of Poisson bracket that

(2.10)

where

dH
{a, H(a, c)} = {c, H(a, c)} = 0, {<f>, H(a, c)} = —

dH

da

da

means the partial derivative of H with respect to a with c held fixed, so

the system (2.9) e can be further reduced to

da
— e(Va,g)(a,<f),c,$) = eF(a,<j>,c,$)

(2.11),

dt

d(f> _ dH
dt da

at
d$ _
~dl~ '

+ e(V<£, g)(a, <j>, c, $) = Q(a, c) + e G(a, <f>, c, $)

, g) (a, 0, c, $) = e R(a, <j>, c,
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where (a, <f>, c, $ ) € A x S2V x I x ST , in which A C R+ is a finite interval and I is

Fi FT
defined in assumption A2. F, G and R are T-periodic in $ and fi(a, c) = —— is the

da
c

angular frequency of the closed orbit in the unperturbed system on the c = constant
symplectic leaf with action a and energy H(a, c). We can easily solve the unperturbed
system (2.11)e;=o (without loss of generality, take the initial value $(0) = 0) and obtain
the solution

(2.12) a = a0, cj> = £l(ao,co)t + 4>0 (mod 2TT), C = C0, $ = f (mod T).

Thus, the coordinate a plays the role of the parameter a in assumption A2 •

Now we construct an approximation to the Poincare map associated with system
(2.11)e. The cross-section to the flow defined by (2.11)£ is

(2.13) E° = {(a,0,c,*) €AxS2vxIxST-^ = 0 (mod T)}

and the mth iterate of the Poincare map, Pe
m, in the new coordinates is

(2.14) P£
ro : (a£(0),<M0),c£(0)) -> (ae(mT),<j>£(mT),ce(mT)),

where (a£(t),<j>£(t),ce(t),$(t)) is the solution of the system (2.11)£ starting from

(ao,<£oiCo,O) € E°. Using Theorem 2.1 and the solution to the unperturbed system

given by (2.12), we can approximate the Poincare map using regular perturbation theory

(note that we define T(a, c) = T(a, c))

ae{t) = a0 + e a^t) + O(e2)

(2.15) <t>E{t) = fi(a0, c0) t + 4>0 + e ̂ ( t ) + O(e2)

where t € [0,T(ao,co)] in which T(ao,co) = (2Tr)/Q(ao,co), and a.\, <j>\ and c\ satisfy
the variational system

—j = F(a0, £l(a0, c0) t + 0O, CQ, t)

(2.16) -^ = -Q^(OO, c0) ai( t) + ^ ( a o > c0) ci(t) + G(a0, f2(a0, c0) * + <j>0, c0, *)

-^ = R(a0, fi(a0, co) t + <p0, CQ, t)
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and hence (choosing ai(0) — 4>i(0) = ci(O) = 0)

rmT

a1(mT)=l F(a0,^l(a0,co)t + (j)0,co,t)dt = Mx (a0, <£o,co),
Jo

(t>i(mT) = —(ao ,co) / / F(ao,Cl(a0,co)v + <t>o,co,ri) dndt
oa j 0 j 0

dfl
—(ao ,co) /

Jo Jo

r

= /
Jo

1
Jo
mT

= M2 (

= TWm n(a0,<j>0,c0).

Recall that the approximation (2.15) is uniformly valid for one period of an unperturbed

orbit, T(a,c) = mT. For the case of ultrasubharmonics, T(a,c) — (mT/n), n ^ 2,

where m and n are relatively prime, and the approximation is not uniformly valid since

e must shrink to zero as n increases. We define the vector M as

M™ n(ao,0o,co) = (M? n(ao,</>o,co),M^ n(ao,<f>o,co),M7 "(ao,^o,co))

which we call the subharmonic Melnikov vector. We remark that the superscript m/n

denotes our search for periodic orbits which satisfy the resonance relation T(a, c) =
(mT/n), where m and n are relatively prime positive integers. In calculations, we
often take n = 1.

According to the definition of PJ", a fixed point of PJ" corresponds to a subhar-
monic orbit of order m of the perturbed system (2.1)e. Hence, by using (2.14), (2.15)
and (2.17), we can deduce the following theorem:

THEOREM 2 . 2 . Suppose (ao,^o,c0) is a point where T(ao,co) = (mT/n) and

one of the following two groups of conditions is satisfied:

(I) —(ao,co) y^O or —(a0,c0) j=0,
oa oc

and Mx (ao,<£o,co) = M3 (ao,(j>o,co) = 0

Ida (dM?/n
(

da \ 8<j) dc dc d<j>

dSl ( dM? dM^ dMT dM? \ 1
+ dc [ da d<f> dcp da I * '

(II) —-(ao,co) = -^-(ao,co) = 0 ,
da oc
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I / I
and Mx (aOl <po,co) = M2 (ao,4>o,co) — M3 (ao,<^o,co) = 0

,M2
n / n,M3

n /">

and

Then, for e sufficiently small, 0 < e ^ £(TJ), the m t h iterate of the Poincare map P™
in (2.14) has a fixed point near the point (ao, <j>o, Co); thus the corresponding perturbed
generalised Hamiltonian system (2.1) £ has a subharmonic orbit of order m. If n = 1,
the resuJt is uniformly valid in 0 < e ^ e(l).

The proof of Theorem 2.2 is analogous to that in [15, Theorem 3.1]; we therefore

omit it. We remark that in the case of (I), no knowledge of M T̂ " is needed. Thus,

evaluation of the double integrals in M2 is unnecessary in this case.
Theorem 2.2 does not apply in the case of autonomous vector fields. In such cases,

it suffices to study a diffeomorphism of R2 obtained by fixing 4> = 4>o and allowing the
a and c variables with initial values at 4> = (j>o to evolve in time until they return to
$ = (f>0. We then have the following theorem:

THEOREM 2 . 3 . Suppose there exists a point (a0, c0) such that

Mi(ao,co) = M3(a0,c0) = 0 and
8(M1,M3) 0. Then, the two-dimensional

d(a,c)
Poincare map has an isolated fixed point (a0, c0)+O(e) which corresponds to an isolated
periodic orbit for the three-dimensional flow.

REMARK 2.2. M\ and M3 in Theorem 2.3 are defined as in the non-autonomous case
except that the limits of integration now become 0 and T(a, c); therefore, we drop the
superscript m/n. The proof of Theorem 2.3 is similar to that of Theorem 2.2; see [15,
Theorem 3.2].

We next discuss whether we can calculate the components of the subharmonic
Melnikov vector in (2.17) in the original coordinates. Prom (2.17), we know that
M™ n (i = 1,2,3) actually involves the integral of the functions F, G and R along the
unperturbed orbit (a, tt(a, c) t + <j>, c). If the orbit corresponds to qft(t - 8, c) denned
in assumption A2, then we have

(CL, cj>, c) — /
Jo

-f
Jo

Here, C is the Casimir function given in assumption A1. Hence the calculation of

M371 n can be replaced by the one of M3 ". We note that a plays the same role as a
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does. Along the unperturbed orbit, (f> and 6 satisfy cj> = D,(a,c)9. Similarly, we have

(2.19)
T? "(a,<t>,c) =

Jo

-I
b, c, t) dt

From the choice of coordinates (a, cf>, c), using these new coordinates we have rewritten
the Hamiltonian H as

(2.20) H(x) = H(a,c)

and in the domain of the new coordinates,

dH
(2.21) 8a = fi(a,c)

Thus by the inverse function theorem, we can invert (2.20) to obtain

(2.22) a = a[H,cj.

Now H and C are functions of x, so it immediately follows from the chain rule that

(2.23) Vox = -^
dH

VC(x).
H

On the other hand, along an unperturbed periodic orbit, the coordinate a is invariant,
so differentiating (2.22) with respect to c along this orbit we get

(2.24)

and hence

(2.25)

dH

da
~d~c H

dH_
dc

da

dH

da

H

dH
dc

Using (2.21), (2.23) and (2.25), (2.19) becomes

(2.26)

/ (Va,g){qg(t,c),t
Jo ft(a, c)

_dH_
dc

i-mT

I (VH
Jo

mT
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and since fi(a, c) = (2n)/T(a, c), where T(a, c) is the period of q$ (t, c), and using the
fact that

(2.27)
d_H_
dc

we obtain the final formula for M^ n(a, 0, c):

(2.28) f (VH,g)(qg(t,c),t + e)dt
Jo

f} i~r pTnT

—5-(«o(0.c)) / <VC)ff)(?o°(tIc),roc j 0

For M2 , we have not found analogously simple transformations which transform
it in the coordinates (a, </>, c) into the original coordinates x = {x\,X2,xz). It appears
that in this case the new coordinates transformation must be explicitly computed.
However, by carefully observing Theorem 2.2 and Theorem 2.3, we see that in case (I)
of Theorem 2.2 and in Theorem 2.3, no knowledge of M2

is needed, while in case (II) of Theorem 2.2, ~̂—
oc

(or M2 for Theorem 2.3)

= 0 mostly occurs when

the unperturbed system is linear, and for such systems we generally can explicitly find
out the coordinate transformation in (2.7).

On the problems of stability and bifurcation, we can obtain the same results as
Wiggins and Holmes [15]; for detailed information, the reader can refer to this reference.

REMARK 2.3. The results of this section can be thought of as generalisations of Wiggins
and Holmes [15]; in fact, the system they considered can be regarded as a special case of
the perturbed generalised Hamiltonian system. They deal with the situation where the
symplectic leaves are horizontal planes. By taking a particular case of the generalised
Hamiltonian system, we can make (2.1) e the system studied by them.

REMARK 2.4. In some cases, the reduced unperturbed two-dimensional system is not
Hamiltonian but is integrable. To calculate the Melnikov integral M™'n(a,6: c), it is
similar to the original paper of Melnikov [9]. We need to put a factor exp (— /0 trace

8H
Df{qo(s,c))ds) into the integrand of (2.28) provided that -TJ-(<7O (°>c)) = °- I n

Section 4 and Section 5, we must use this remark.

3. ARTER FLOW

We consider the system (1.1)6- It is easy to see that by identifying the planes
x = —7T and x = TT, y = —TT and y = n, and z = —ir and z — n, the system (1.1)6 can
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be seen as a system denned on a three-dimensional torus T 3 . The planes x = 0, ±n,
y = 0, ±ir, z = 0, ±TT, y = x and y - -x are invariant planes of ( l . l ) b , for all b G R.
Therefore, the three-dimensional flow of (1.1) b is preserved in the fundamental cubical
cell composed by eight triangular prisms (see Figure 3.1). We only need to investigate
the dynamical behaviour of (1.1) b in a triangular prism.

(3.1)

Figure 3.1. The fundamental cubical cell of the Arter flow.

Note that (1.1) 6 = 0 is a generalised Hamiltonian system, since

dt
dy_

dt
dz

= J(x,y,z)VH(x,y,z)

0 sin x sin y cos z — sin x cos y sin z'
- sin x sin y cos z 0 cos x sin y sin z
sin x cos y sin z - cos x sin y sin z 0

where the Hamiltonian and Casimir functions are respectively (see [2, 6])

(3-2) H(x,y,z) = log (S-^)=h\

cos a:
sin a;
cosy
sin y

\ 0
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and

(3.3) C(x,y,z) = sin xsiny sin z = c*.

The system (3.1) (that is, (1.1) &=o) has a singular straight line x — 7r/2,y — TT/2.
By using the transformation (cosx,cosy,cosz) —> (u,v,w), the system (1.1)6 can be
put into the form

^ = (1 - u2)vw - 2bu{\ - u2) (2w2 - 1)

(3.4)6 — = (l - v
2)uw - 2bv(l - v2) (2w2 - l)

- ^ = - 2 ( 1 -w2)uv + 4bw(l -w2)(u2+v2 - l ) ,

which has Hamiltonian and Casimir functions

(3.5) H(u, v, to) = — lo

and

(3.6) C{u, v, to) = (1 - u2) (1 - v2) (1 - w2) = c,

respectively, where c — (c*) and we write h = exp (—2h*). For each fixed c = Co,
0 < Co < 1, on the symplectic leaf C(u,v,w) = Co, (3.4)(, can be reduced to the
following slowly varying system:

1/2

1/2

= _9,,Yi - ,,,2\ I i ^2 \
(3.7) b

 dt

+ 46w(l - to2) [ u2 - j - ~—
v ' \ (1 - u2)(l -

-£• =46c0 [2to2 -u2 - 1 +
\ (1 — tt'!)(l — ur

where 6 is sufficiently small. From (3.4);,, we know that u = ± 1 , v — ±1 and to = ±1
are invariant planes of the vector field so we only need to consider the case where
0 ^ \u\ < 1, 0 ^ \v\ < 1 and 0 ^ \w\ < 1. We now consider the unperturbed
system (3.7)b=o on the unit square {(u,w) € K2 : 0 ^ |u| < 1, 0 ^ \w\ < 1} of the
(u, u))-plane. The origin (0,0) is a centre. The curve defined by the algebraic equation
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14 J. Li, J.R. Christie and K. Gopalsamy [14]

(l — u 2 ) ( l — w2) = Co, 0 < Co < 1, is a singular curve of equilibria of (3.7)b=0, but
when 6 ^ 0 , this curve will disappear. There are two families of periodic orbits of
(3.7) b=o given by the level curves

(3.8) (1 - u 2 ) 2 ( l - w2) = coh, 0<h<co or l < h< —,
Co

for fixed CQ , and with the following parametric representation:

1/2

(3.9)

U(t,ki) =

w(t,ki) = 1 -
coh

1/2

where

in which sn(-,A;) is a Jacobi elliptic function with elliptic modulus k (see [4]). The

periods of the periodic orbits of (3.9) are

- , * = 1 , 2 ,(3.10)

where K(k) is the complete elliptic integral of the first kind (see [4]). We note that
h —¥ l / c 0 implies that k2 —> 0, and the orbits defined by (3.9) contract to the origin
(0,0); h—¥ 0 implies that ki —> l / \ / 2 , and the orbits expand to the unit square. The
periods Ti(h) are monotonically varying with respect t o / i , 0 < / i < c o o r l < / i < l/co.
We note that for CQ ^ h ^ 1, points on the orbits of (3.7) b=o do satisfy the equation
(l — u2) ( l — w2) = Coh; however, these Cartesian curves intersect the singular curve
(l — u2) ( l — w2) = Co as shown in Figure 3.2 and so the orbits are not periodic.
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Figure 3.2. The (u,w)-p\ane of the system (3.7) (,=0 for c0

1/2. The dashed line is the singular curve.

On the basis of Theorem 2.3, by using the relations

w2 = 1 -
coh

(1 -u2
1 1
h + V

we obtain the components M[ and M% of the subharmonic Melnikov vector of (3.4) b

as follows:

(3.11)
7T

2Ti

-\)dt

' dt 1 Ti

https://doi.org/10.1017/S0004972700031373 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031373


16 J. Li, J.R. Christie and K. Gopalsamy [16]

and

rTi

Ml(co, h) = 4c0 / (2w2 -u2 - v2) dt
Jo

(3.12) = 4c0

= 4co | ( 1 + •£•)/{— 2cohP_21 ,

where

u2)2

l {I - u2)n dt, n =-2,-1,1.

Letting M^(co,h) = 0, we have

and hence

l + h I\
(3.13) c0 = Ji2"

By using (3.13) and letting M[(co,h) = 0, we get

(3i4) ^ ^

Therefore, if there exists a number h € (0, Co) for i = 1 or h 6 (1, l/c0) for i = 2 such
that (3.13) and (3.14) hold, then on the symplectic leaf C(u,v,w) = CQ, the system

(3.4) t has a periodic solution provided that the condition 1; ,. ^ 0 is satisfied,
d(c0, h)

and b is sufficiently small. From Theorem 2.3, we have the following conclusion:

THEOREM 3 . 1 . If there exists h £ (0,c0) for i = 1 or h 6 ( l , ( l / c 0 ) )
for i = 2 such that llx/Il2 = h/(l + h), c0 = ((1 +h)/(2h2))(l\/li2) and
d(M[(co,h),MS(co,h)) ^ Q

periodic solution which lies on the symplectic leaf C(u, v, w) — CQ .

4. T H E STRETCH-TWIST-FOLD FLOW

In this section, we consider the STF flow (1.3) a , treating a and 0 as parameters.
In the case a > 1, (1.3)Q can be rewritten in the form v — \2(x,y,z) +evi(x,y,z)
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where

(4-1)t

, that is,

(dx\
dt
dy
dt
dz

/ z

1 o
I\~x

-8xy
3y2 + z2+
2yz-@xy

This is a perturbed generalised Hamiltonian system with Hamiltonian and Casimir
functions respectively given by (see [3])

(4.2) H(x,y,z) = ±(x2 + z2)=h

and

(4.3) C(x,y,z) = y.

Hence, for each C(x, y, z) = CQ £ K, we only need investigate the reduced system:

dx
— = z - 8e coxdt

-£ = -x + eco(2z-Px)
dt

(4.4)«

It is easy to see that the unperturbed system (4.4) £=0 has a continuous family of
periodic orbits denoted by

(4.5) x(t) = -V2hcost, z(t) = V2h sin t,

where h 6 (0,oo). Using (4.5) to compute the components Mi and M3 of the subhar-
rnonic Melnikov vector, we have (putting j3 = 1)

(4.6)

D, h) = f [coz{2z - x ) - 8 c 0 x 2 ]
Jo

— 11 6CQ dxdz

dt

= —12ncoh,

where D is the region inside the periodic orbit, and

M3(c0, h)= I [llx2 + 3c2, + z2 +xz-3] dt
Jo

/•27T

= / [22hcos2t + 2hsin2t - 2hsintcost + 3c2, - 3] dt
Jo
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18 J. Li, J.R. Christie and K. Gopalsamy [18]

From (4.6) and (4.7), we can see that if CQ ± 0, then Mi(c0, h) ^ 0. In fact, Mi(co, h) =

M3(c0,h) = 0 if and only if CQ = 0 and h = 1/4. Since 0 at (co,h) =
C(c0, h)

(0,1/4), we have the following conclusion:

THEOREM 4 . 1 . In the plane y — 0 of the three-dimensional phase space, near
the circle x2 + z2 = 1/2, there exists a periodic solution of (4.4)e for sufficiently small
e. When y ̂  0, no periodic solution of (4.4) e can be found.

We next discuss the case a <gC 1. Suppose that O ^ ^ C l ; the system (1.3) a can
be rewritten in the form (replacing a with ea and (3 with e/3 where O ^ e C l )

dx
— = -8xy + eaz
at
dy
^j- = \\x2 + 3y2 + z2 - 3 + ePxz
at

(4.8),

The unperturbed system (4.8) e=o has the generalised Hamiltonian system form for

(4.9)
dt

dl
dz

0

3x2 + 3t/2 + z2 - 3
z4

2y

3x2 + 3y2 + z2 - 3 2y\

0

2x

2x

The Hamiltonian and Casimir functions are respectively (see [3])

(4.10) H(x,y,z) = xz4 = h,

where h £M., and

(4.11) C(x,y,z) = - c ,

,4xz3,

where c € R. On the symplectic leaf C(x.y,z) = CQ, (4.8) £ can be reduced to

(4.12),

-e(a + f3y){coz
3 - y2 - z2

3 - 8y2 - 10z2 + 8 + ePz( - y2 - z2

dc
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The reduced unperturbed system (4.12)£=o is integrable. Let f(z) = llcoz3 — 10z2 +
8, z 6 K. It is easy to see that if c0 > 0 and /((20)/(33c0)) = -(10/3)(20/33co)2+8 ^ 0
(that is, Co ^ (lO\/5)/(33\/3)), then / has one negative real root and two positive real
roots denoted by T\ < 0 < r2 ^ r3; if /((20)/(33c0)) > 0, / only has one negative
real root r\. By a simple analysis, we know that in the phase plane (z, y), the phase
portraits of (4.12) e=o can be shown as in Figure 4.1.

Figure 4.1. The phase portraits of (4.12) £=0-

In cases (a) and (b) of Figure 4.1, there is a family of periodic orbits of (4.12)e=o
corresponding to the Hamiltonian function

z4y/coz
3 - y2 - z2 + 1 = h, he (o, r?(cor?-rf

For case (c) of Figure 4.1, there are two families of periodic solutions of (4.12) £=0,
respectively corresponding to h £ [0,rf(cor? — r2 + l) J, i = 1,2. Along each
closed orbit of (4.12) e=o, we compute the components Mi and M3 of the subharmonic
Melnikov vector. We have

M1{ a,P,h,c0)= /
Jo

= -3/i If (a + 0y)z2dydz

= -3ah I z2dydz,
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where D is the region inside the periodic orbit. Also,

M3(a,P,h,c0) = 3c0 I (a + Py)(c0z
3 - y2 - z2 + 1)]

Jo

rT

= 3coh / (a + Py)z~5 dt
Jo

/•Zmax j
= 3coh I (a + Py) T dz

(4.14)

= -coh
/

Z dz

- , » - £ + l)'
+ P

dz\
I" I
-I

where zmin and zmSLX are the two intersection points of the periodic orbit with the z-
axis. From (4.13), we know that if ah ^ 0 then Mi(a,P,h,co) 7̂  0, since the integral
JfD z2dydz T̂  0, so that we have the following result:

THEOREM 4 . 2 . If ah ^ 0, then on each symplectic leaf C(x,y,z) — c0, no
periodic solution of (4.8) e can be found.

If h = 0, this means that z — 0 or x = 0 from (4.10). On the invariant planes
z = 0 and x = 0, the unperturbed system (4.8) £=o has two families of periodic orbits.
For (4.8)£ with e 7̂  0, do these periodic orbits persist? This is a problem for future
study.

5. MODULATED TRAVELLING WAVES IN THERMAL CONVECTION

Consider the system

—j- = sxs2 cos <p + esi (vi + ensl + ei2s\)

(5-1). — — -s\ cos cj> + es2 [

This system has been studied by Armbruster, Guckenheimer and Holmes [1]. In this
section, we shall show that using the theory of perturbed generalised Hamiltonian sys-
tems, we can obtain a clearer understanding for the existence of modulated travelling
waves. The system (5.1) £=o has the generalised Hamiltonian form

dt
ds2

d<f>

( o 0

0

1

«2

1 \
1

s2

0

s?sin<£ ,
\ s\s2 cos (p )
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[21] Perturbed Hamiltonian systems 21

where the Hamiltonian and Casimir functions are respectively (see [1])

(5.2) H(si, s2,(j>) = s\s2 sin (f> = h,

and

(5.3) C(s1,s2,<f>) = s2 + s2
2 = c.

For a fixed c= c0, let s\ = y/cocos9,s2 = s/cos'm9. The system (5.1)£ can be reduced
to the following new system on the symplectic cylinder C(si,s2,<p) — c0:

— = - ^/c^ cos 9 cos (f> - e cos 9 sin 9 [vi — v2

+ (en - e2i)c0 cos2 6 + (e i 2 - e22)c0 sin2 9]

(,4),

— = 2ec0 [cos2 9(yi + euc0 cos2 9 + e\ic§ sin2 9)
QC

+ sin2 9{yi + e2ic0 cos2 9 + e22Co sin2 9)].

When 9 € [0, (TT/2)] and cf> € [0, IT] , that is, in the rectangle [0, (TT/2)] X [0, IT] of the

phase plane (9, <j>), the unperturbed system (5.4) e=0 has a centre at (arctan ( l / \ / 2 ) , n/2)

surrounded by a continuous family of periodic orbits. Write A2 = (h2/^), and

observe that A2 ^ A/27. Let a, j3 and 7 be the three roots of the equation

1 — 8A + u — u2 — u3 = 0. We have the following parametric representation of the

periodic orbits of (5.4) £ = o :

9(t, k) = - arccos[a - (a - (3)sn2(Qt, k)],
£1

(5.5)
<fi(t, k) = arccos

os 8{t,k)

where Q, = ^/{a - 7)/(2co), k = yj{a - P)/(a - 7) . The period of the orbit (5.5) is
T = (2K(k))/fl. To investigate the existence of periodic orbits of (5.4)£, we consider
the components Mi and M3 of the subharmonic Melnikov vector:

r

/

Jo

, ei2, e 2 i , e22, Co, /1)
T

(cos2 9 - sin2 0) [1/1 - v2 4- co(eu - e2i) cos2 0 + co(ei2 - e22) sin2 9] dt
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and

M3(ui,u2,en,ei2,e2i,e22,co,h) = ̂  I \v1 cos29 + v2sin26
Jo l

[ e u cos4 9 + (e i 2 + e2i) cos2 9 sin2 9 + e22 sin4 9] \ dt.

To calculate these integrals, we note that

— = c 0 c o s 2 ( 9 ( l . 2 ) , — (cos2l9) = 4c o [cos 4 0-cos 6 6>-A 2 ] .
L "* J \ cos40siir0/ [dtK '\

Letting r = 2v/c0~£ and m = cos20, and denning mi and m2 (mi < m2) as the two
positive roots of the equation m2 — m 3 — A2 = 0, then we have the period

%y \lm2 — m3 — A 2

which is with respect to the timescale r . Denote

h = / cos2 6{r)dT = 2 / , = dm, h = 2 m

Jo Jmi Vm2 - m3 - A2 Jmi Vm2 - m3 - A<
An

A2

Taking into account that

%1 Vm2 — m3 — A2

we have
rp-k rri-k

I cos4 9dr = I2 = \lu [ sin2 9dr == 70 - h,
Jo & Jo

rT* -. rT* .

/ sin #cos 9dr = Ix — I2 = -Ix, I sin 9dr = IQ — 2IX + I2 = Io Ix.
Jo •> Jo 3

Thus, we obtain

(5.6) Mx{i>\, i>2, e n , ei2i e2i> e22i ^o, h) = ^/co[37i — 27o][i/i — v2 -f- co(ei2 ~ e22)]

and
(5.7)

•̂ 3(1/1,1^2, en,ei2, e2i,e22iCo,/i)

o ~ A) + q v ^ [ ^ e i i 7 i + (ei2 + e2i)7j + e22(37o — 47i)J >

< (vi - t/2)/i + v2h + -%/c0'[(2en + el2 + e2x - 4e2 2)/i + 3e22/o] [ •
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Next, we discuss the zeros of the components Mi and M3 of the Melnikov vector. From

(5.6), we see that Mi(j/i,i/2,eii,ei2,e2i,e22 :co,/i) = 0 if and only if

(5.8) h = - / „ or co = -
- e22

/1 = (2/3)/0 corresponds to the relation /i2 = (4/27)cg, that is, the Hamiltonian

value at the centre equilibrium. The second relation of (5.8) implies that for the given

parameter set (v\, 1/2, ei2, e2 2) , there exists a unique CQ such that on the symplectic leaf

C(x,y,z) = c0, the system (5.4)e may have a periodic solution. From (5.7), we know

that taking CQ = (1/2 — v\)/{e\2 ~ e22) under the condition

(5.9) (v2 - u{)h ~ vih = ( l / 3 ) i / — — — [(2en + e12 + e2i - 4622)/! + 3e 2 2 / 0 ] ,
V ei2 - e22

 J

we have .^3(1/1, j/2.eii,ei2,e2i,e22,co,/i) = 0. For every given value of h such that

0 < h2 < (4 /27)CQ, (5.9) determines a curve in the parameter plane (1/1,1/2) such that

there exists a periodic solution of (5.4) e. Of course, we need to check the condition

—77;—'—rr— 7̂  0. This is clear from the result of Armbruster, Guckenheimer and Holmes
o(c0,h)

[1] so we omit it. The following conclusion coincides with [1, Theorem 4.1]:

THEOREM 5 . 1 . For a given parameter group (1/1,1/2. e n , ei2, e2i, e22), there is a

domainin the (1/1,1/2) -plane such thaton the symplectic leaf s^+s2, = {u2 — v\)/{e\2 - e 2 2 ) ,

the system (5.1) e has a unique periodic orbit, which corresponds to the modulated trav-

elling wave solution in thermal convection.
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