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In isothermal non-coalescence behaviours of a droplet against a wall, an air film of
micrometre thickness plays a crucial role. We experimentally study this phenomenon
by letting a droplet levitate over a moving glass wall. The three-dimensional shape
of the air film is measured using an interferometric method. The mean curvature
distribution of the deformed free surface and the distributions of the lubrication
pressure are derived from the experimental measurements. We vary experimental
parameters, namely wall velocity, droplet diameter and viscosity of the droplets,
over a wide range; for example, the droplet viscosity is varied over two orders of
magnitude. For the same wall velocity, the air film of low-viscosity droplets shows
little shape oscillation with constant film thickness (defined as the steady state), while
that of highly viscous droplets shows a significant shape oscillation with varying film
thickness (defined as the unsteady state). The droplet viscosity also affects the surface
velocity of a droplet. Under our experimental conditions, where the air film shape
can be assumed to be steady, we present experimental evidence showing that the lift
force generated inside the air film balances with the droplet’s weight. We also verify
that the lubrication pressure locally balances with the surface tension and hydrostatic
pressures. This indicates that lubrication pressure and the shape of the free surface
are mutually determined. Based on the local pressure balance, we discuss a process of
determining the steady shape of an air film that has two areas of minimum thickness
in the vicinity of the downstream rim.

Key words: drops, lubrication theory, thin films

1. Introduction
Isothermal non-coalescence phenomena between a droplet and a wall or a liquid

surface can occur under various conditions. Examples include droplet levitation over
moving solid walls (Neitzel et al. 2001; Smith & Neitzel 2006; Lhuissier et al. 2013;
Saito & Tagawa 2015; Gauthier et al. 2016), atomically smooth horizontal walls
(de Ruiter et al. 2015), inclined walls (Hodges, Jensen & Rallison 2004; Gilet &
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1 mm

U

FIGURE 1. Side view of a levitating droplet over a moving wall. U is the wall’s velocity.

Bush 2012; Harris, Liu & Bush 2015) and vibrating/moving liquid surfaces (Sreenivas,
De & Arakeri 1999; Couder et al. 2005; Terwagne, Vandewalle & Dorbolo 2007;
Gilet et al. 2008; Che, Deygas & Matar 2015). The isothermal non-coalescence
phenomena can be explained as follows. Lubrication pressure is generated inside
an air film of several micrometres in thickness between the droplet and the wall.
When the lubrication force (the area integral of the lubrication pressure) overcomes
the gravitational force acting on the droplet, the non-coalescence phenomena can
occur. The lubrication pressure depends on the shape of the air film (Neitzel &
Dell’Aversana 2002). The film shape, including the free surface of the droplet, is
determined by the local balance of the lubrication pressure and the surface tension
and hydrostatic pressures (Lhuissier et al. 2013). However, to the best of the authors’
knowledge, such balances have not been experimentally verified for a wide range of
parameters. Furthermore, previous research has not paid much attention to the effect
of droplet viscosity on the ‘steady’ air film shape under levitating droplets. To avoid
confusion in this paper, we use ‘stable’ and ‘steady’ for the state of droplet levitation
and the state of the air film, respectively.

We briefly summarize previous studies of non-coalescence phenomena between
droplets and a moving wall or liquid surface closely related to our study. Neitzel
et al. (2001) investigated non-coalescence phenomena between a rotating disk and
a droplet attached to a fixed support. They confirmed a steady shape of the air
film between the fixed droplet and the rotating disk. For this situation, Smith &
Neitzel (2006) computed the pressure distribution generated inside the air film by
two-dimensional numerical simulations. Gauthier et al. (2016) deposited a droplet onto
a rotating disk, resulting in unstable behaviour of the droplet. Lhuissier et al. (2013)
levitated a droplet over an inner wall of a rotating glass cylinder. They numerically
computed the two-dimensional film shape by considering the local balance of the
lubrication pressure and the surface tension and hydrostatic pressures at the bottom
of the droplet. The computed shape qualitatively agreed with the measured shape.
Sreenivas et al. (1999) estimated the thickness of the air film for droplets levitating
over a moving liquid surface near a hydraulic jump by considering the force balance
of the droplets. They also estimated the surface velocity of the droplet for a rotating
motion caused by viscous shear exerted on the bottom of the droplet. However, their
estimations have not been experimentally verified for a wide range of parameters.

In this paper, we focus on a levitating droplet over a moving wall that is in
our case a rotating glass cylinder, as shown in figure 1 and movie 1 available at
https://doi.org/10.1017/jfm.2018.952. Both the steady air film shape and the stable
droplet behaviour should help us examine the levitating droplet experimentally in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

95
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.952
https://doi.org/10.1017/jfm.2018.952


Droplet levitation over a moving wall with a steady air film 263
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FIGURE 2. (Colour online) Coordinate system and parameters for a levitating droplet.

detail. First, we investigate the effects of droplet viscosity on the surface velocity of
a levitating droplet and the steady state of the air film shape (§ 4). Next, we verify
two kinds of force/pressure balances for a steady-shape air film (§ 5). One is the
force balance acting on the levitating droplet. The lift force should balance with the
drag and gravity forces. We compute the lift force generated inside the air film by
integrating the lubrication pressure. The other is the local pressure balance at the
bottom of the droplet. We calculate the surface tension and hydrostatic pressures
from the measured air film in our experiment. Notably, the results present a good
agreement between the two kinds of force/pressure balances. Finally, we discuss how
the shape of the air film is determined.

2. Theory
2.1. Lubrication theory

In our experiments, the air film thickness (several micrometres) is sufficiently small
compared to the characteristic length along the mainstream of the air flow, namely
the droplet diameter d (a few millimetres; see figure 2). Therefore, we can apply
lubrication theory to the air film (Saito & Tagawa 2015). A detailed verification is
shown in appendix A. Figure 2 shows a coordinate system and parameters for a
levitating droplet over a moving wall where the centroidal position projected onto the
wall is set as the origin of the coordinate system. The x-, y- and z-axes represent,
respectively, the direction of wall motion, the direction normal to the x-axis on
the wall and the direction normal to the wall. The air film thickness is h(x, y).
In order to determine the equation of motion for the air film with constant wall
velocity U, we assume the following conditions: (i) an incompressible and Newtonian
fluid, (ii) a constant dynamic viscosity of the air, (iii) laminar flow, (iv) negligible
gravity and inertia forces, (v) constant pressure in the z-direction and (vi) no-slip
condition on the droplet surface. Note that Reynolds number Re = ρUh2/µd which
considers a geometrical aspect ratio is O(10−4); in other words, Re is sufficiently
smaller than unity (see appendix A). Parameters ρ and µ indicate the density of
the air and the dynamic viscosity of the air, respectively. Moreover, we assume
that the surface velocity of the droplet u is negligible since it is in the range of
2.5× 10−3–2.4× 10−1 m s−1, much smaller than the wall velocity U (of the order of
1 m s−1; see § 4). The above assumptions give an equation of motion in the air film
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as (Tipei 1962; Saito & Tagawa 2015)

∂

∂x

(
h3

µ

∂p
∂x

)
+
∂

∂y

(
h3

µ

∂p
∂y

)
= 6U

∂h
∂x
, (2.1)

where p(x, y) is the lubrication pressure generated inside the air film and µ is the
dynamic viscosity of the air. We can calculate p(x, y) using (2.1) if h(x, y) is known.
Based on the analysis of propagation of errors from the experimental parameters h, U
and µ on the lubrication pressure p, we find that the error of the air film thickness h
is dominant in comparison with the other parameters (see appendix B). We define a
thin-film area of diameter dt as the area where the lubrication pressure p is generated
(see appendix C). As a boundary condition, the rim of the thin-film area is taken to
be at atmospheric pressure (p= 0 in gauge). We solve (2.1) by the finite difference
method using MATLAB for repeating calculations.

2.2. Force/pressure balances
We experimentally verify the force/pressure balances acting on the droplet. First we
compare the lift force L and the droplet’s weight W. We call this balance the ‘global
balance’. Lift force L in the direction normal to the wall is calculated as

L=
∫∫

p dx dy. (2.2)

The integration range of (2.2) is the thin-film area (see appendix C). Note that a
measurement error of h results in a measurement error in L, because the error of the
air film thickness h is dominant on lubrication pressure p as mentioned above. In our
experiments, the maximum measurement error of L is 11 %.

Convergence condition on repeating calculations of the lift L is defined as the case
in which the difference between the lift L at the kth calculation and the lift L at the
(k − 10 000)th calculation is less than or equal to 1 × 10−3 %. The thin-film area is
divided in 500× 500 for the calculations of the lubrication pressure p and the lift L.
The difference between the lift L for the 500× 500 case and that for the 1000× 1000
case is less than 0.3 %. The droplet rests at a point where the lift force balances with
the drag and gravity forces in a glass cylinder with constant rotating velocity. Weight
W in the direction normal to the wall is expressed by

W =mg cos θ, (2.3)

where m, g and θ are the mass of the droplet, gravitational acceleration and the
inclination angle of the droplet against the gravitational acceleration direction (see
figure 3), respectively. The mass m is calculated based on the droplet diameter d
(detailed calculation is explained in § 3). The orders of magnitude for the errors of
d and m are 0.9 % and 2 %, respectively. The inclination angle θ is calculated from
an arc length of the cylinder wall from the position on the cylinder wall at θ = 0◦ to
the position at which the droplet levitates (see figure 3). We observe marks of two
positions on the wall of the rotating cylinder by using a camera, and compute the
arc length between two positions. The order of magnitude for the error of θ is 6 %.
Therefore, the error of the the weight W comes from the error of m and θ . In our
experiments, the maximum measurement error of W is 2 %. When L is quantitatively
equal to W, the global balance of the levitating droplet is satisfied.
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FIGURE 3. (Colour online) Schematic view of the experimental set-up.

Next we verify the pressure balance at an arbitrary point on the bottom of the
droplet. We call this balance the ‘local balance’. The lubrication pressure p, surface
tension and hydrostatic pressures are acting on the bottom of the levitating droplet
(Lhuissier et al. 2013). Without consideration of the air resistance and rotating motion
inside the droplet, the local pressure balance is given as

2σ(κ0 − κ)+1ρg[(z0 − z) cos θ + (x0 − x) sin θ ] = p, (2.4)

where the first and second terms on the left-hand side stand for the surface tension
pressure and variation of hydrostatic pressure, respectively. Parameters σ , 1ρ, κ and
κ0 are the surface tension coefficient, density difference between the air and the liquid,
mean curvature at the droplet’s interface and mean curvature at (x0, y0, z0), respectively.
The position (x0, y0, z0) is at the rim of the thin-film area, i.e. (x0=−dt/2, y0= 0, z0=

h(x0, y0)=H). We define ps as the total pressure on the left-hand side of (2.4). We
then compare p and ps.

2.3. Surface velocity of a levitating droplet
The surface velocity of the levitating droplet u can be calculated by a theoretical
consideration:

u'
U

1+ [2hµd/d′µ]
, (2.5)

where h, µd and d′ are the average thickness of the air film, the dynamic viscosity of
the droplet and droplet height, respectively. Here, h in steady state depends on d′ and
U (we discuss it in detail in § 4). Therefore, equation (2.5) indicates that u depends
only on µd when µ, d′ and U are constant.

3. Experiment
Figure 3 shows a schematic view of our experimental set-up (cf. Saito & Tagawa

2015). A hollow silica-glass cylinder of 200 mm in diameter rotates on its axis with
a constant wall velocity U. A droplet of silicone oil is deposited onto the inner wall
of the cylinder and levitates at a stable position where the forces acting on the droplet
balance. Note that ‘stable’ is defined as the state in which variation of levitating angle
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Viscosity Density Dynamic viscosity Surface tension
ν (cSt) ρd (kg m−3) µd (Pa s) σ (mN m−1)

10 935 0.94× 10−2 20.1
50 960 4.80× 10−2 20.8
100 960 0.96× 10−1 20.9
200 970 1.94× 10−1 21.1
300 970 2.91× 10−1 21.1
500 970 4.85× 10−1 21.1
1000 970 0.97 21.2
5000 975 4.88 21.3

TABLE 1. Physical properties of silicone oil used for droplets.

θ is not greater than 2◦. We use several kinds of silicone oil for the droplet, the
physical properties of which are shown in table 1.

In order to visualize flow motion inside a levitating droplet, tracer particles
(diameter: 50 µm; specific gravity: 1.02) are mixed into the droplets. We trace a
certain particle (PTV measurement) using a high-speed camera (FASTCAM SA-X,
Photron Co.) at a shooting speed of 250 frames per second to measure the period
of droplet rotation T . To calculate the surface velocity u, the following conditions
are assumed: (I) the surface and inner velocities of the droplets are constant, (II) the
droplets are under rigid-body rotation and (III) three-dimensional movement inside
the droplet is negligible. The surface velocity u is then given as

u=
C
T
, (3.1)

where C indicates the circumference of the droplet. Circumference C is calculated
from the droplet diameter d by using Mathematica, assuming that the droplet is on
a fixed wall for a contact angle of 180◦. This will be discussed in detail later in
this section. The error on u is the standard error of the results of several numbers
of particles tracked. Droplet diameter d is changed in the range 2.0–2.4 mm and U is
fixed at 1.57 m s−1. The viscosity of the silicone oil ν ranges from 10 to 1000 cSt,
that is, the dynamic viscosity µd ranges from 0.94× 10−2 to 0.97 Pa s.

The steady state of the air film is observed using an interferometric method.
Monochromatic light of wavelength 630 nm illuminates the bottom of the droplet
through a coaxial zoom lens (12× Co-axial Ultra Zoom Lens, Navitar Co.). The
reflected light from the bottom of the droplet and the wall forms interference fringes,
namely, interference fringes are formed when the thickness of the air film h(x, y)
is n/2 of the wavelength of the incident light, where n is an integer. We obtain an
image of the fringes with a high-speed camera (FASTCAM SA-X, Photron Co.) at a
shooting speed of 15 000 frames per second. We show a typical image of interference
fringes in figure 4(a), where the arrow in the figure shows the direction of U. From
the fringe pattern, we decide the state of the air film. We define a ‘steady state’
of the air film as the state in which variation of the minimum thickness of the
air film is not greater than 630 nm (two fringes) over 0.05 s (see figure 5a). In
contrast, ‘unsteady state’ of the air film is defined as the state in which variation of
the minimum thickness is greater than 630 nm (see figure 5b). We change ν within
100–5000 cSt and U within 0.59–1.88 m s−1 for droplet diameters in the range of
2.2 mm 6 d 6 2.4 mm.
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d: drop diameter

Thin film area diameter

1 mm

1 mm

Calculated droplet shape

Droplet 

U

U

≈

˙

(a) (b)

FIGURE 4. (Colour online) (a) Snapshot of interference fringes obtained by interferometric
method. (b) Coordinate system for computing droplet shape for the determination of
droplet mass m. (Also see Saito & Tagawa 2015.)

0 ms 3 ms 6 ms

0 ms 3 ms 6 ms

1 mmU

1 mmU

(a)

(b)

FIGURE 5. (Colour online) Snapshots of interference fringes (a) under a ‘steady state’
where the minimum thickness of the air film changes within 630 nm (two fringes) over
0.05 s and (b) under an ‘unsteady state’ where the minimum thickness changes more than
630 nm. The red line is a fringe of the minimum thickness of the air film at 0 ms.

The three-dimensional shape of the air film is reconstructed from the interference
fringes (Saito & Tagawa 2015). In this paper, we use the terms ‘shape’ to refer to the
relative distance between fringes and ‘thickness’ to refer to the absolute distance from
the wall. From the fringe pattern, we obtain only the air film shape. We cannot obtain
the film thickness unless we can measure the absolute thickness of the interference
fringes. To obtain the absolute thickness of the fringes, we push the levitating droplet
until the droplet touches the wall and record the temporal evolution of the fringes
with the high-speed camera, as shown in figure 6. We calculate the absolute thickness
of the air film from the number of newly generated fringes. Note that there exists an
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0 ms 0.7 ms

U 1 mm

1.3 ms 2.0 ms

Aluminium piece

Droplet

Wall
U U U

(a)

(b)

FIGURE 6. (Colour online) (a) Schematic of measurement for absolute thickness of the
fringes (side view). (b) Temporal evolution of interference fringes as a levitating droplet is
pushed towards a wall until it touches the wall. The red line is a fringe of the minimum
thickness of the air film at 0 ms, which will attach to the wall earlier. The green line
shows the location where the droplet touches the wall.

area where the film thickness is too large to obtain fringes. We interpolate the spaces
between the obtained fringes and the rim of the thin film area to calculate κ using
the smoothing function GRIDFIT written in MATLAB (D’Errico 2006) where Triangle
interpolation is used. The average error of the calculated curvature is approximately
7 % with closed fringes. The error becomes large around both ends of the opened
interference fringes near the downstream rim of the thin-film area (see appendix C).
We change U = 0.73–1.57 m s−1, ν = 100–5000 cSt and d= 1.17–3.16 mm.

In order to compute θ , we measure an arc length of the cylinder wall from the
position on the cylinder wall at θ = 0◦ to where the droplet levitates. Droplet diameter
d is determined from an image of the levitating droplet projected onto the x–y surface
(see figure 4a). Since it is difficult to measure m directly, we calculate it as follows.
It is known that the levitating droplet shape agrees well with that on a fixed wall
for a contact angle of 180◦ for small drops only when the underlying film is not
too deformed (Snoeijer, Brunet & Eggers 2009; Sobac et al. 2014; Saito & Tagawa
2015) (see figure 4b). In this case, the droplet shape on a fixed wall is determined
by a balance between the surface tension and hydrostatic pressures on the gas–liquid
interface (Hosoma 2013) in the coordinate system shown in figure 4(b):

2σκt +1ρgη= σ(κ1(ξ , η)+ κ2(ξ , η)), (3.2)

where the first and second terms on the left-hand side stand for the surface tension
pressure at the top of the droplet and variation of hydrostatic pressure, respectively.
The right-hand side stands for the surface tension pressure at (ξ , η). Here, κt, κ1(ξ , η)
and κ2(ξ , η) indicate the curvature at the top of the droplet, the curvature at (ξ , η)
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FIGURE 7. (Colour online) Surface velocity u versus dynamic viscosity of droplet µd. The
viscosity ν of measurement ranges from 10 to 1000 cSt, and wall velocity U is fixed at
1.57 m s−1. Error bars are the standard error. The inset shows a plot of the ratio u/U as
a function µd.

and the curvature normal to κt, respectively. Parameters σ and 1ρ indicate the
surface tension coefficient and the density difference between the air and the liquid,
respectively. We numerically compute the droplet shape from the measured diameter
d (see figure 4) using Mathematica and calculate m as the product of the droplet
density ρd and droplet volume which is obtained from the computed droplet shape.
In our experiments, the droplet shape is hardly affected by the variation of the film
thickness which is less than 1 % of the droplet diameter d.

4. Effect of droplet viscosity on steady levitation

In this section, we consider the effects of the droplet viscosity on the surface
velocity of the droplet u and the steady state of the air film. The obtained movie
and measured results of u are shown in movie 2 and figure 7, respectively. Figure 7
shows a log–log plot where the horizontal and vertical axes represent µd and u,
respectively. Error bars are the standard error. The black line indicates the theoretical
consideration given in (2.5) with d′ = 1.7 mm and h= 9.2 µm. Note that we assume
the average thickness h of the air film thickness in unsteady state to be equal to that
in steady state with similar wall velocity U and droplet diameter d for the following
reasons. The average thickness h in steady state is nearly independent of viscosity
ν (we discuss it in detail later in this section), and the variation of the air film
thickness is about ±2 µm in unsteady state. The value of 9.2 µm is the average
thickness h in the steady state where the wall velocity U and the droplet diameter
d are similar to the condition of the unsteady state. The inset of figure 7 shows a
plot of the ratio u/U as function of µd. Note that although the droplet shown in
movie 2 appears to rotate like a rigid body, an overhead view of the droplet shows
a complicated internal flow, as seen in movie 3. Thus, the net torque balance of
the droplet cannot be verified experimentally. Moreover, the model does not consider
prefactors seriously. Nevertheless, u decreases monotonically with increasing droplet
viscosity for both experiments and theory with reasonable agreement. For a dynamic
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FIGURE 8. (Colour online) Air film shape under a levitating droplet with varying viscosity
and wall velocity. Droplet diameter d is 2.3± 0.1 mm.

d: Drop diameter

U 1 mm

Thin film area diameter

d: Drop diameter

Thin film area diameter
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(a) (b) 8
7
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0
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(c)

FIGURE 9. (Colour online) Snapshots of interference fringes under a levitating droplet
with viscosity of (a) 500 cSt and (b) 5000 cSt. (c) Droplet shape along the symmetric
axis. The blue curve and red curve correspond to the shape of the 500 cSt droplet and
5000 cSt droplet, respectively. Position x= 0 indicates the centre of the droplet.

viscosity of µd > 0.96 × 10−1 Pa s (i.e. viscosity ν > 100 cSt), u is less than 5 %
(see inset of figure 7) of U. In this regime, the L values calculated for the surface
velocity u are within the measurement error. Thus, it is reasonable to assume that u
is negligible for ν > 100 cSt.

We next investigate the effect of droplet viscosity on the steady state of the air
film shape. We show results of the steady state of the air film in figure 8. The blue
triangles and red circles represent steady state and unsteady state, respectively. For
a fixed ν, the air film shape changes from steady to unsteady as U increases. For
a fixed U, the air film shape changes from steady to unsteady as ν increases. For
ν= 5000 cSt, the air film shape is in the steady state for U≈ 0.7 m s−1, which is less
than half the wall velocity for the ν = 100 cSt case (U ≈ 1.6 m s−1). This indicates
that the unsteady state does not originate from capillary waves since capillary waves
are unlikely to be enhanced by liquid viscosity. The exact origin of the unsteady
state is thus still unknown. Now, we consider the effect of droplet viscosity on
the steady film shape. Figures 9(a) and 9(b) show obtained images of interference
fringes under droplets with d = 2.34 ± 0.01 mm, ν = 500 cSt and U = 0.73 m s−1,
and d = 2.37 ± 0.01 mm, ν = 5000 cSt and U = 0.73 m s−1, respectively. The two
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FIGURE 10. (Colour online) (a) Air film thickness measured by the interferometric
method. The arrow and black lines represent the direction of wall velocity and both
interference fringes and the rim of the thin film area, respectively. We show only a part of
the air film in order to emphasize the details in the thin-film area. (b) Pressure distribution
calculated by applying lubrication theory. The pressure is shown in gauge pressure and
the arrow and black line represent the direction of wall velocity and the rim of the
thin-film area, respectively. Experimental parameters are as follows: d= 3.16± 0.02 mm,
U = 1.57 m s−1 and ν = 100 cSt.

images of interference fringes shown in figure 9(a,b) have common characteristics.
For quantitative comparison, we show the shape of both droplets along the symmetric
axis in figure 9(c). The difference in the film thickness is around a quarter of the
wavelength of the incident light, i.e. within the measurement error of our interference
method. Therefore, the droplet viscosity does not affect the film shape when the air
film is in the steady state.

The above results verify that droplet viscosity is an important factor in determining
the surface velocity of a droplet and the steady state of the air film, although it does
not affect the film shape kept in steady state. In the following section, we investigate
the lubrication pressure under the experimental conditions where the surface velocity
is negligible and the air film is in the steady state.

5. Global and local force balances
In this section, we experimentally verify two kinds of force balances. An example

of the measured thickness of an air film is shown in figure 10(a) with d = 3.16 ±
0.02 mm, ν = 100 cSt and U = 1.57 m s−1. The measured air film has a flat shape
near the centre of the thin-film area and a dimple in an off-centred area. In addition,
the air film has its smallest thickness in two areas near the downstream rim. A film
shape having these characteristics is called a ‘horseshoe shape’, and has also been
observed under other experimental conditions in our study. Note that this unique shape
is also found at droplet migration in a Hele–Shaw cell (Ling et al. 2016). Furthermore,
this shape is reported in previous studies (Lhuissier et al. 2013; Huerre et al. 2015,
2016; Zhu & Gallaire 2016; Daniel et al. 2017; Reichert et al. 2018). Figure 10(b)
shows p calculated by applying lubrication theory (2.1) to the film thickness shown in
figure 10(a). The lubrication pressure is positive for a wide range of the thin-film area
and is negative near the rim. The lubrication pressure for other experimental conditions
has the same characteristics as described above.

With the as-calculated p, we investigate the global and local balances in §§ 5.1
and 5.2, respectively.
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Droplet Viscosity Wall Lift Weight Difference Error
diameter d ν velocity U L W

∫∫
|p− ps| dx dy |L−W|/W

(mm) (cSt) (m s−1) (µN) (µN) (µN) (%)

1.17± 0.01 100 1.57 6.17± 0.57 6.68± 0.15 1.62 7.63
1.98± 0.01 100 1.57 30.8± 2.1 31.7± 0.4 4.68 2.84
3.16± 0.02 100 1.57 106± 5 111± 2 12.2 4.50
2.37± 0.01 100 0.83 50.8± 4.4 53.2± 0.6 5.58 4.51
2.38± 0.02 100 1.20 50.9± 3.8 53.1± 1.1 5.60 3.58
2.33± 0.01 100 1.57 51.4± 2.7 49.2± 0.6 7.73 4.47
2.34± 0.01 500 0.73 52.3± 5.4 53.7± 0.6 5.69 2.61
2.37± 0.01 5000 0.73 50.7± 5.8 51.6± 0.6 7.34 1.74

TABLE 2. Calculated lift and weight for a variety of experimental conditions, and
quantitative comparison of global and local force balances.

5.1. Global force acting on droplet
For the experimental condition presented in figure 10, the lift force L generated
inside the air film is calculated by (2.2) as L= (1.06± 0.05)× 10−4 N. The droplet’s
weight W is computed by (2.3) as W = (1.11 ± 0.02) × 10−4 N. Thus, the forces
quantitatively agree within the measurement error. We show the calculated lifts and
weights in table 2 under a variety of experimental conditions, changing d, ν and U.
Note that the lift L considering the surface velocity u is still within the range of
the lift L shown in table 2. Therefore, the surface velocity u is insignificant for the
experimental conditions shown in table 2. For all conditions, we obtain quantitative
agreements between the forces within the measurement error. Consequently, we have
clarified that the lift force acting on the droplet generated inside the air film is
balanced with the droplet’s weight when the droplet shows stable levitation over the
moving wall. This confirms that the droplet levitation is sustained only by lubrication
pressure and not by air drag. We show the relative difference between L and W in
table 2 for all the experimental conditions.

5.2. Local balance acting on bottom of droplet
We present distributions of p (2.1) and the sum of surface tension and hydrostatic
pressures ps (2.4) in figures 11(a) and 11(b), respectively. The experimental condition
is the case presented in figure 10. Figure 11(a) is a top view of figure 10(b). Both
pressure distributions have positive values in a wide range of the thin-film area, except
in the vicinity of the downstream rim. This qualitative agreement suggests that the
local balance of pressure is satisfied at the bottom of the droplet.

For a quantitative comparison, figure 12 shows cross-sections of the pressure
distributions along y = 0 with the measurement error. The measurement error of
the pressure p comes from the error of the interference method (±1/4 wavelength).
The error of ps comes from the error of the mean curvature κ as well as surface
tension σ . The detailed error estimation process of the mean curvature κ is shown
in appendix D. The large error at negative pressure is due to the error of the
mean curvature κ . The measurement error of the surface tension σ with viscosity
ν= 100 cSt is ±0.18 mN m−1 (9 %). The Wilhelmy method (plate method or vertical
plate method) was used to determine the surface tension (CBVP-AB, Kyowa Interface
Science Co.).
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FIGURE 11. (Colour online) (a) Pressure distribution p calculated by applying lubrication
theory and (b) sum ps of surface tension and hydrostatic pressures. The horizontal and
vertical axes are the x- and y-axes. The arrow and black line represent the direction of
wall velocity and the rim of the thin-film area, respectively. Experimental parameters are
as follows: d= 3.16± 0.02 mm, U = 1.57 m s−1 and ν = 100 cSt.
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FIGURE 12. (Colour online) Cross-section of the pressure distribution p calculated by
applying lubrication theory (red line) and the pressure ps of surface tension and hydrostatic
pressures (blue line) along y = 0. Experimental parameters are as follows: d = 3.16 ±
0.02 mm, U = 1.57 m s−1 and ν = 100 cSt.

Notably, the overall pressure distributions for both cases are almost identical, except
for the negative pressure region around x = 950 µm. For −650 µm 6 x 6 550 µm,
the pressures are positive and nearly constant. The maximum pressures are at around
x = 750 µm and the minimum pressures are at around x = 950 µm. The difference
in negative pressures is observed not only along y = 0 but also near the rim of the
thin-film area. In particular, the largest difference in negative pressure is at around
(x, y) = (600 µm, ±800 µm) where the air film is the thinnest. The reason for this
would be as follows. The surface tension pressure of the first term on the left-hand
side in (2.4) is O(101) while the hydrostatic pressure of the second term is O(10−2)
and therefore the surface tension pressure dominates the sum pressure ps, which is to
say that the surface tension coefficient σ and mean curvature κ are dominant factors
for ps. A limitation of our method, as stated in § 3, is that the calculation error of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

95
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.952


274 E. Sawaguchi, A. Matsuda, K. Hama, M. Saito and Y. Tagawa

Thin film area

Droplet

Air film

˚0
-1

U U Up

x

x

x

x

x

x

p p

(a) (b) (c)

FIGURE 13. (Colour online) Schematic views of the process of air film shape formation
along with the lubrication pressure and surface tension pressure in two dimensions. Upper:
the gas–liquid surface shape shown as a black line, direction of lubrication pressure shown
as red arrows and direction of surface tension pressure shown as green arrows. Lower:
lubrication pressure. (a) Lubrication pressure has positive pressure upstream and negative
pressure downstream while the surface tension pressure has positive pressure over the
whole range. (b) The gas–liquid surface has a plateau in the centre of the droplet and a
minimum thickness downstream. (c) A high lubrication pressure due to the steep surface
region (wedge effect) arises by decreasing the air film thickness in the downstream side,
and the pressure increases at the blue circle. As a result, dimple formation is generated.

curvature is especially large near both ends of the opened interference fringes. Several
open ends of the interference fringes exist around the thinnest film regions, and thus
the error of negative pressure is particularly large there.

We compare p and ps for a variety of experimental conditions and obtain
quantitative agreement except for the values of negative pressure, namely, except for
where our method exhibits limitations. We experimentally find that p locally balances
with the surface tension and hydrostatic pressures at the bottom of the droplet in
our experimental conditions. We show the difference of pressure

∫ ∫
|p − ps| dx dy

in table 2 for all experimental conditions. The
∫ ∫
|p − ps| dx dy is less than three

times the error of the lift L. Recall that
∫∫
|p− ps| dx dy is the sum of the absolute

value of difference between the pressure p and ps while the error of the lift L is
calculated considering positive/negative pressure. Therefore, we regard the values∫∫
|p− ps| dx dy obtained in our experiments as reasonably small.

5.3. Determining process of the steady horseshoe shape
In this section, we discuss how the horseshoe shape of the air film is created based on
the local balance at the gas–liquid surface. We consider only the lubrication pressure
and surface tension pressure, because the hydrostatic pressure is sufficiently small as
mentioned in § 5.2. We first discuss the formation of the film shape in two dimensions
and then expand the discussion to three dimensions.

We here outline a typical process of air film shape formation in two dimensions
in the mainstream direction. Figure 13 shows schematic views of the process of
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the gas–liquid interface shape formation and the pressure distribution along the
x-axis. The surface tension pressure in figure 13 signifies 2σ(κ0 − κ) (the first term
on the left-hand side of (2.4)). As shown in figure 13(a), when the axisymmetric
droplet approaches the moving wall, the lubrication pressure is positive upstream
and negative downstream (Hicks & Purvis 2010). The x-intercept of the pressure
curve is 0. Upstream, a positive lubrication pressure pushes up the gas–liquid surface,
while downstream negative lubrication pressure pulls down the surface. The surface
shape becomes inclined and the positive lubrication pressure region expands, i.e.
the x-intercept shifts to a positive value. The negative lubrication pressure region
narrows, resulting in an increase in the surface curvature near the downstream rim
(see figure 13b). This is likely why the minimum thickness is distributed near the
downstream rim. The thin film downstream, around the blue circle in figure 13(c),
experiences a high lubrication pressure due to the steep surface region (wedge effect),
leading to dimple formation. When a negative lubrication pressure balances the
surface tension pressure, the droplet can levitate without touching the moving wall.

Next, we consider the positions where the air film has the smallest thickness, around
(x, y)= (600 µm,±800 µm), as shown in figure 10(a). In the case of large absolute
value of y, the positive pressure is smaller near the rim than in the centre since the
boundary of the thin-film area, where atmospheric pressure is applied, is closer. This
small positive pressure results in lateral (y-axis direction) suction which causes the
thin-film area near the rim (a more elaborate discussion of a droplet in a liquid in a
Hele–Shaw cell is found in Reichert et al. 2018). In addition, the air flow moves the
minimum thickness area in the downstream direction (Burgess & Foster 1990). This
local pressure balance and the movement of the minimum thickness might produce
the horseshoe shape of the air film, with two areas of minimum thickness near the
downstream rim.

6. Conclusion

Our purpose is to investigate levitating droplets over a moving wall for a wide
range of experimental parameters, which have not been covered by previous studies.
We experimentally measure the surface velocity of droplets and the three-dimensional
shapes of the air film. The droplet viscosity is found to affect the surface velocity of
a droplet and the steady state of the air film shape. An increase in droplet viscosity
decreases the surface velocity, which is sufficiently small compared to the wall
velocity U in our experimental conditions. Droplet viscosity and wall velocity decide
the steady/unsteady state of the air film. Surprisingly, increasing the droplet viscosity
tends to reduce the range of velocity of the steady state. However, the film shape
in the steady state is not affected by droplet viscosity. Next, for a negligible surface
speed and when the steady state of the air film shape can be assumed, we calculate
the pressure distribution by applying lubrication theory to the measured air film.
Based on the calculated pressure distribution, we verify two kinds of balances acting
on the levitating droplet, a global balance and a local balance. First, we calculate
both the lift force L and the droplet’s weight W and then compare the two values.
With varying droplet diameter, viscosity and wall velocity as experimental parameters,
we obtain quantitative agreement between L and W. Thus, we experimentally verify
that the lift acting on a levitating droplet balances with the droplet’s weight. Second,
we calculate the surface tension and hydrostatic pressures acting on the bottom of
a droplet. For all experimental conditions, we confirm the local pressure balance
between lubrication pressure, surface tension and hydrostatic pressures at every
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point in the thin-film area, except an area with large measurement error. Thus, we
experimentally verify that the local balance of pressure is satisfied at the bottom of
the droplet. Finally, we consider the typical process through which the air film takes
on a horseshoe shape.

The results obtained in this research, including the experimental evidence for the
force/pressure balances, should contribute to studies of various levitating droplets, such
as those over a heated surface (Lagubeau et al. 2011; Burton et al. 2012; Tran et al.
2012; Quéré 2013; Sobac et al. 2014), although droplet evaporation may add another
layer of difficulty.
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Appendix A. Application of lubrication theory to an air film under a levitating
droplet

Applying lubrication theory to a levitating droplet in the same way as in previous
studies (Lhuissier et al. 2013; Saito & Tagawa 2015) requires a Reynolds number Re
inside the air film sufficiently smaller than 1 and a film thickness that is sufficiently
thinner than the characteristic length along the mainstream. In this paper, Re including
a geometrical aspect ratio (= ρUh2/µd) is used, and Re is sufficiently smaller than 1
for the airflow under a levitating droplet in our experiments. Thus, it is appropriate to
apply lubrication theory to the air film under a levitating droplet. However, if general
Re= ρUh/µ is used, Re is not sufficiently smaller than 1 in our experiments. Hence,
it is questionable whether lubrication theory can be applied since the inertia term in
the Navier–Stokes equation does not seem to be negligible. Therefore, we discuss here
whether lubrication theory can be applied to the air film under a levitating droplet
by performing numerical simulations. For this discussion, we numerically solve the
Navier–Stokes equation including or neglecting the inertia term with a continuity
equation, and then compare the pressure distributions in the air film.

We conduct the numerical simulation using COMSOL Multiphysics, which performs
computations by the finite element method. We investigate whether the inertia term
affects the pressure distribution generated inside the air film based on the results of
numerical simulations obtained by two kinds of governing equations: (i) the general
Navier–Stokes equation and continuity equation and (ii) the Navier–Stokes equation
neglecting the inertia term and continuity equation. For each approach, we use about
700 000 triangle-shape meshes. We simulate an air film between a moving wall and
the three-dimensional shape of the air film as measured in our experiment with droplet
diameter d= 3.16± 0.02 mm, viscosity ν= 100 cSt and wall velocity U= 1.57 m s−1.
We assume that the gas–liquid interface is a solid wall with a no-slip condition since
the air film has a steady shape and the surface velocity of the droplet is negligible in
comparison with the wall velocity (see § 4). We use U = 1.57 m s−1 for the moving
wall along the x-axis positive direction and atmospheric pressure on the rim of the
thin-film area as boundary conditions, as in our experiment.

Figures 14(a) and 14(b) show the pressure distributions numerically simulated by
the governing equations (i) and (ii), respectively, where the horizontal and vertical
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FIGURE 14. (Colour online) Pressure distribution computed by (a) general Navier–Stokes
equation and continuity equation and (b) Navier–Stokes equation neglecting the inertia
term and continuity equation.

axes are the x- and y-axes and the arrow and black line represent the direction of
wall velocity and the rim of the thin-film area, respectively. Both pressure distributions
have positive pressure except in the vicinity of the rim of the thin-film area. The peak
values of the positive and negative pressures each agree between the two distributions
within an error of 0.3 %. In addition, L calculated by (2.2) agrees for both distributions
within an error of 0.3 %. Therefore, we obtain quantitative agreement between the two
pressure distributions shown in figure 14(a,b). This agreement indicates that the inertia
term in the Navier–Stokes equation does not largely affect the lubrication pressure.

Appendix B. The propagation of errors from the experimental parameters
We have the following two equations, namely for pressure gradients in the direction

of x-axis and y-axis to derive the equation of motion in the air film (2.1):

∂p
∂x
=−

12
h3
µ

(
Qx −

Uh
2

)
, (B 1)

∂p
∂y
=−

12
h3
µQy, (B 2)

where Qx and Qy indicate flow rate per unit thickness in the direction of x-axis and
y-axis, respectively. By the law of propagation of errors, the errors of pressure
gradients in the direction of x-axis σx and y-axis σy from (B 1) and (B 2) are

σ 2
x =

(
12
h3
µ

(
3
h

Qx −U
))2

σ 2
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σ 2
y =

(
36
h4
µQy

)2

σ 2
h +

(
−
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h3
µ

)2

σ 2
Qy
+

(
−

12
h3

Qy

)2

σ 2
µ, (B 4)

where σQx , σQy , σµ, σh and σU indicate the errors of each parameter, respectively. We
estimate that the air film thickness h, the dynamic viscosity of the air µ and the
wall velocity U are O(10−6) m, O(10−5) Pa s and O(100) m, respectively. The flow
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FIGURE 15. (Colour online) Calculated lift L versus thickness at the rim of the thin-film
area H.

rate Qx is O(10−6) m2 s−1 which comes from the wall velocity U and the air film
thickness h. We also estimate that σh, σµ and σU are O(10−6) m, O(10−7) Pa s and
O(10−2) m, respectively. Error σQx is O(10−2) m2 s−1 which is same as σU, because
σh is sufficiently small in comparison with σU. The flow rate Qy is assumed to be
negligible. As a result, we find that the error of the air film thickness h is dominant
in comparison with those of the other parameters.

Appendix C. Decision procedure of the thin-film area

We consider the area inside the air film where the lubrication pressure is generated
as the thin-film area. The rim of the thin-film area has thickness H which is equal
to z0 (see figure 2) and experiences atmospheric pressure as the boundary condition.
When H changes with the thin-film area diameter dt, the thin-film area where the
lubrication theory is applied also changes. Therefore, we need to select the proper
thickness H to accurately calculate the lubrication pressure p generated inside the air
film. In this appendix, we determine the thin-film area and the thickness at its rim H
focusing on the lift L. We calculate L for a range of thicknesses H, in steps of 1 µm.
When the variation of L with H is smaller than the measurement error, that value of
H is defined as the thickness of the thin-film area. Next, we numerically compute dt

corresponding to each value of H.
We show an example of our results in figure 15, where the horizontal axis is the

thickness at the rim of the thin-film area, H, and the vertical axis is the calculated L.
The result is obtained for a droplet diameter of d = 3.16 ± 0.02 mm, viscosity ν =

100 cSt and wall velocity U = 1.57 m s−1. The variation in L is smaller than 1 %
when H is in the range 20–24 µm. However, the measurement error of the calculated
L is 5 % for H = 22 µm, which is larger than the variation in L with H. Based on
the above, we choose 22 µm for H at the rim of the thin-film area. Note that the
lift L decreases with H > 30 µm and becomes negative with H > 300 µm, since the
lubrication approximation becomes inappropriate. Similarly, we investigate the relation
between H and L for the whole range of values and find that H and the thin-film area
can be determined for every experimental condition, where the two kinds of balance
are verified as mentioned in §§ 5.1 and 5.2. Consequently, we conclude that the thin-
film area is appropriately determined in our method.
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FIGURE 16. (Colour online) A part of a sphere formed by closed black lines which are
substituted for interference fringes (a) before reconstruction and (b) after reconstruction.
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FIGURE 17. (Colour online) A part of a sphere formed by opened black lines which are
substituted for interference fringes (a) before reconstruction and (b) after reconstruction.

Appendix D. Calculation and error estimation for mean curvature
We calculate the mean curvature κ by using the patch curvature function written

in MATLAB. In the function, the least-squares curved surface including the local
neighbourhood is calculated at a certain point. By using the eigenvectors and
eigenvalues of the Hessian to the curved surface, the mean curvature κ is obtained.

We determine the error of the mean curvature κ as follows. We conduct a smoothing
process between fringes to obtain the mean curvature κ . This smoothing process
causes the error of the mean curvature κ . To investigate the error, we reconstruct a
known three-dimensional shape from certain interference fringes, and calculate the
mean curvature κ . A part of a sphere of 1 mm in radius is used, where the mean
curvature κ is 103 m−1. This mean curvature κ is of the same order as the mean
curvature around the minimum thickness of the measured air film. It is inferred that
the absolute value of the mean curvature κ is large around the minimum thickness,
and the error of the mean curvature κ is the largest. We set the minimum height
of the interference fringes at 5.01 µm from the wall, and 19 fringes between 5.42
and 13 µm at regular intervals. Additionally, the maximum height of the air film (i.e.
the rim of the air film) is set at 20 µm. We calculate the mean curvature κ , when
the interference fringes consist of (i) only closed lines which are circles and (ii)
closed lines and opened lines which are semicircles. Figures 16(a) and 16(b) show
the interference fringes and the reconstructed shape for condition (i), respectively.
Figures 17(a) and 17(b) show the interference fringes and the reconstructed shape for
condition (ii), respectively. In condition (ii), the fringes at the minimum and maximum
height are closed lines, and the others are opened lines. Figures 18(a) and 18(b) show
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FIGURE 18. (Colour online) Relative error κerr of calculated curvature using (a) closed
and (b) opened black lines which are substitutes for interference fringes for theoretical
mean curvature κtheory = 103 m−1.
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FIGURE 19. (Colour online) (a) The pressure ps overlaid with obtained interference
fringes and (b) enlarged view of (a) around the smallest thickness.

the relative error κerr of the mean curvature κ for conditions (i) and (ii), respectively.
Black lines and colour bars indicate the interference fringes and relative error for
theoretical mean curvature of the sphere κtheory = 103 m−1, respectively. The relative
error κerr can be calculated by the equation

κerr =
κ − κtheory

κtheory
, (D 1)

where κ is mean curvature calculated by our method. First, we focus on condition
(i) in which the interference fringes consist of only closed lines. As shown in
figure 18(a), the error of the mean curvature κ is large around the maximum height
of the air film, i.e. the rim of the air film. This is because the area is near to the rim
of the air film, in other words, the boundary of calculation. However, when the mean
curvature κ is calculated in our experiments, interpolation is conducted between the
interference fringes and the rim of the air film. Therefore, the significant error of the
mean curvature κ occurs inside the area of the interference fringes in experiments.
In this area, the maximum and average of the error of the mean curvature κ are
about 50 % and 7 %, respectively. Now, we focus on condition (ii). As shown in
figure 18(b), the error of the mean curvature κ is large at the ends of the opened
lines. The absolute pressure of pressure ps also increases at the ends of the opened
lines in figure 19(b). Thus, the error of the pressure ps is due to the increase of the
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error of the mean curvature κ at the ends of the interference fringes. In summary,
we find that the smoothing process affects on the error of the mean curvature κ , and
the error increases at the open ends of the interference fringes.
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