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Abstract

Let (X, D) be a dlt pair, where X is a normal projective variety. We show that any
smooth family of canonically polarized varieties over X\ SuppbDc is isotrivial if the
divisor −(KX +D) is ample. This result extends results of Viehweg–Zuo and Kebekus–
Kovács. To prove this result we show that any extremal ray of the moving cone is
generated by a family of curves, and these curves are contracted after a certain run of
the minimal model program. In the log Fano case, this generalizes a theorem by Araujo
from the klt to the dlt case. In order to run the minimal model program, we have to
switch to a Q-factorialization of X. As Q-factorializations are generally not unique,
we use flops to pass from one Q-factorialization to another, proving the existence of a
Q-factorialization suitable for our purposes.
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1. Introduction

1.1 Introduction and main results
Let f◦ : Y ◦→X◦ be a smooth projective family of canonically polarized manifolds over a quasi
projective manifold X◦ of dimension at most 3. Viehweg’s conjecture [Vie01, Problem 6.3] asserts
that X◦ is necessarily of general type if f◦ has maximal variation. A generalization of this
conjecture is proved by Kebekus and Kovács in [KK08a, KK10]. They show that the variation
of the family is bounded by the Kodaira–Iitaka-dimension κ(X◦).

(i) If κ(X◦) > 0 then the variation is less than or equal to κ(X◦). In this case the Kodaira–
Iitaka-dimension is an upper bound for the variation.

(ii) If κ(X◦) =−∞ then the variation of f◦ is not maximal.
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The upper bound given in the second case is generally optimal. For instance, any family of
maximal variation over a variety Z can be pulled back to a family over Z × P1. The base Z × P1

has negative Kodaira–Iitaka dimension, and the variation of the family is given by dim Z.

We ask if we obtain better results if we make additional assumptions. Clearly, if X◦ = P1, then
Kebekus’ and Kovács’ result immediately implies that the family is isotrivial, see also [Kov00].
This in turn implies that the family is necessarily isotrivial on rationally connected varieties.
Therefore, isotriviality holds if X◦ is a Fano manifold, i.e., X◦ is projective and −KX◦ ample.

In this paper, we will focus on log Fano varieties, these are dlt pairs (X,∆) with −(KX + ∆)
ample. The main result of this paper is stated in the following theorem.

Theorem 1.1 (Isotriviality theorem). Let (X,∆) be a dlt pair where ∆ is an effective R-
divisor, where −(KX + ∆) is R-ample, and X is projective. Let T ⊂X be a subvariety of
codimension greater than or equal to 2 such that X\(T ∪ Suppb∆c) is smooth. Then any smooth
family of canonically polarized varieties over X\(T ∪ Suppb∆c) is isotrivial.

It is still an open question if log Fano varieties are rationally connected by curves that
intersect ∆ in at most two points. Therefore, the short line of argument given above to show
that families over Fano manifolds are isotrivial does not apply.

Instead, we will use Kebekus’ and Kovács’ result which asserts that any run of the minimal
model program for (X,∆) factorizes the moduli map birationally. The following theorem, which
is a generalization of a result by Araujo [Ara10, Theorem 1.1], describes the different types of
minimal model programs with scaling that can be run. Before we state this theorem we recall
the following definition.

Definition 1.2. Let V be a real vector space and C ⊂ V a cone which does not contain a line.
A subcone F ⊂ C is called an:

– extremal face, if a, b ∈ C and a+ b ∈ F necessarily implies a, b ∈ F ;

– exposed face, if there is a linear form λ ∈ V ∨ such that F = λ⊥ ∩ C and C ⊂ Vλ>0 holds.

If the subspace spanned by F is 1-dimensional, we call F a ray.

Remark 1.3. Any exposed face is also extremal, but the converse is generally false. The following
picture shows a cross section of a cone which has four extremal rays which are not exposed. These
rays are marked by •.

• •

• •

Theorem 1.4 (Moving cone theorem). Let (X,∆) be a Q-factorial dlt pair, where ∆ is an
effective R-divisor and X is projective. Let R be an exposed ray of the cone NM1(X) +
NE1(X)KX+∆>0 that intersects (KX + ∆) negatively. Then there is an irreducible locally closed
subset HR of the Hilbert scheme of curves on X such that:

(i) each closed point of HR corresponds to a curve that generates R;

(ii) for any closed subset Z ⊂X of codimX(Z) > 2, there is a non-empty open subset HZ
R of

HR such that any curve that corresponds to a closed point of HZ
R avoids Z;
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Families over Fano varieties

(iii) there exists a run of the minimal model program with scaling that terminates with a Mori
fiber space

X
λR //___ XR

πR

��
BR

such that any closed point of HR corresponds to a curve that is contained in the open set
U ⊂X, where λR is an isomorphism of U onto its image. Moreover, the image of this curve
via λR is contained in a fiber of πR.

1.2 Outline of paper

The Isotriviality Theorem 1.1 is a consequence of the Moving Cone Theorem 1.4, thus we will first
focus on the proof of the latter. In § 2 we recall some facts and results of [BCHM10] concerning
the minimal model program, then we will explain the minimal model program with scaling.
Finally, we will generalize some results for klt pairs to the dlt case. The proof of Theorem 1.4 is
then given in § 3.

In § 4 we will analyze different Q-factorializations of dlt pairs and show that a flop of
a Q-factorialization yields a new one. We will use this result to construct for each effective
Weil divisor D on a log Fano dlt pair a Q-factorialization (Y,∆Y ) such that the strict
transform of D is not numerically trivial on all (KY + ∆Y )-negative exposed rays of the cone
NM1(Y ) + NE1(Y )KY +∆>0.

In § 5 we will finally prove the Isotriviality Theorem 1.1. The proof is an induction on the
dimension n of the underlying variety. As part of the induction we prove Kebekus’ and Kovács’
result [KK10, Theorem 1.2] for varieties of negative Kodaira–Iitaka-dimension.

Assuming Kebekus’ and Kovács’ result in dimension n, the moduli map induced by the
family factors via any run of the minimal model program. An application of the Moving Cone
Theorem 1.4 then describes the relevant runs of the minimal model program in more detail.
In particular, we will see that if HR is the set given in the Moving Cone Theorem, then the
family restricted to a curve that corresponds to a general element of HR is isotrivial. The
ampleness of −(KX + ∆) implies that there are sufficiently many such rays. This finally implies
the Isotriviality Theorem for n-dimensional varieties.

On the other hand, the Isotriviality Theorem in dimension n, and the recently proven
Bogomolov–Sommese vanishing for lc pairs [GKKP11, Theorem 7.2] imply Kebekus’ and Kovács’
result for (n+ 1)-dimensional varieties of negative Kodaira–Iitaka-dimension. This completes the
proof.

Finally, § 6 finally shows that the Isotriviality Theorem can be used to obtain a description
of the moving cone of varieties that admit non-isotrivial families.

2. The minimal model program with scaling

In this chapter we introduce the minimal model program with scaling and prove termination
for the Q-factorial dlt case. This generalizes a result of [BCHM10] from the klt to the dlt case.
Although this generalization is probably well-known to experts, we will include a proof since the
methods used will be very useful to prove Theorem 1.4.

1021

https://doi.org/10.1112/S0010437X1200053X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1200053X


D. Lohmann

2.1 The standard minimal model program
The reader who is not familiar with the classical minimal model program is referred to [KM98].
Unless otherwise stated, a pair (X,∆) consists of a projective normal variety X and an R-
divisor ∆. We always demand that KX + ∆ is R-Cartier, but we do generally not assume that
X is Q-factorial. Moreover, we notice the following remark.

Remark 2.1. In [KM98], everything is stated for Q-divisors. Note that the relevant definitions
of singularities can easily be extended to R-divisors. Moreover, using that Q is dense in R one
can show that the Cone theorem also holds for Q-factorial dlt pairs (X,∆) with ∆ being an
R-divisor, see also Proposition 2.12.

It is not known whether any run of the minimal model program terminates in finitely many
steps. If a run of the minimal model program terminates, we call it a terminating run of the
minimal model program.

Each step of the minimal model program is either a divisorial contraction or a flip. If a run
of the minimal model program leads to a Mori fiber space π :Xλ→B, then the map π does not
count as a step of the minimal model program.

We will frequently use the following notation.

Notation 2.2. Let (X,∆) be a Q-factorial dlt pair, and let

X =:X0
ϕ1
99KX1

ϕ2
99K · · ·

ϕn
99KXn

ϕn+1
99K · · ·

be a (possibly infinite) run of the minimal model program. Let i ∈ N such that the ith step ϕi
exists.

(i) Given an R-divisor D on X, we set D0 :=D and define an R-divisor Di on Xi recursively
as

Di := (ϕi)∗Di−1.

(ii) We denote by Ri ⊂NE1(Xi−1) the (KXi−1 + ∆i−1)-negative extremal ray which is
contracted or flipped by ϕi. If the run of the minimal model program terminates with a Mori
fiber space Xm→B, we define Rm+1 analogously.

2.2 Pushforward and pullback of curves
In the following we will sometimes have to take pushforward and pullback of numerical classes
of 1-cycles. To define this, we use pullback and pushforward of classes of divisors and duality of
the underlying vector spaces, see [Bar08, ch. 3] and [Ara10, ch. 4].

Definition 2.3 (Numerical pushforward and pullback of curves). Let f :X 99K Y be a bira-
tional map between Q-factorial varieties which is surjective in codimension 1. Then we define
the numerical pullback and numerical pushforward

f∗ :N1(Y )→N1(X) and f∗ :N1(X)→N1(Y )

as the dual maps of the pushforward and the pullback of divisors.

Remark 2.4. If a curve is contained in the domain of the map, then the pushforward of its class
coincides with the class of its cycle-theoretic pushforward, see [Bar08, Corollary 3.12].

On the other hand it is difficult to see what the pullback or pushforward of a curve is if it
is contained in the indeterminacy locus of the underlying map. There are examples where the
pullback of a curve behaves rather counterintuitively, see [Ara10, Examples 4.2 and 4.3].
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Families over Fano varieties

The definition above immediately implies the following identities.

Proposition 2.5 (Projection formulae). Let f :X 99K Y be as in Definition 2.3.

(i) If γ ∈N1(X) and [D] ∈N1(Y ), then f∗γ · [D] = γ · f∗[D].
(ii) If γ ∈N1(Y ) and [D] ∈N1(X), then f∗γ · [D] = γ · f∗[D].

2.3 The minimal model program with scaling
The existence of terminating runs of the minimal model program can be proved if we take a
given divisor into account.

Definition 2.6 (Minimal model program with scaling). Let (X,∆) be a Q-factorial dlt pair,
and let H be an ample R-divisor such that KX + ∆ +H is nef. A (terminating) run of the
minimal model program with scaling of H is a (terminating) run of the minimal model program

X =:X0
ϕ1
99KX1

ϕ2
99K · · ·

ϕn
99KXn

ϕn+1
99K · · ·

and a (finite) decreasing sequence of real numbers

s0 > s1 > · · ·> sn > · · ·> 0,

such that for any i, where Ri is defined, the following holds.

(i) The divisor KXi−1 + ∆i−1 + si−1Hi−1 is nef.
(ii) The ray Ri is contained in the hyperplane

(KXi−1 + ∆i−1 + si−1Hi−1)⊥ ⊂N1(X).

(iii) If the run of the minimal model program terminates with a Mori fiber space Xm→B,
then Rm+1 ⊂ (KXm + ∆m + smHm)⊥.

We will denote a run of the minimal model program with scaling of H by the sequence of pairs
(ϕi, si)i.

Remark 2.7. An easy computation shows that the divisor KXi + ∆i + si−1Hi is nef, see [Ara10,
3.8]. Properties (i) and (ii) of Definition 2.6 imply that si is uniquely determined by the equation

si = inf{s > 0 |KXi + ∆i + sHi is nef}.

We can therefore view a step of the minimal model program with scaling as follows. The
divisor KXi + ∆i + si−1Hi is nef, and after scaling s down, the hyperplane (KXi + ∆i + sHi)⊥

approaches the Mori cone and determines the ray Ri+1.

Remark 2.8. It is a priori not clear that runs of the minimal model program with scaling exist
generally, even if flips are known to exist. Given si as in Remark 2.7, we have to ensure the
existence of an extremal ray R⊂ (KXi + ∆i + siHi)⊥ that intersects KXi + ∆i negatively. The
statement that for dlt pairs such a ray indeed exists is given in [Bir10, Lemma 3.1]. Hence we
can always run a minimal model program with scaling, if flips exist.

For the klt case, termination is stated in the following theorem, see [BCHM10, Corollary 1.3.3]
and [Ara10, Theorem 3.9].

Theorem 2.9 (MMP with scaling for klt pairs). Let (X,∆) be a Q-factorial klt pair such that
KX + ∆ is not pseudo-effective. Let H be an effective ample R-divisor such that KX + ∆ +H
is nef and klt. Then any run of the minimal model program with scaling of H terminates with
a Mori fiber space.
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2.4 The minimal model program with scaling for dlt pairs
In Theorem 2.15 we will show that Theorem 2.9 still holds for dlt pairs. The proof uses that dlt
pairs can be seen as the limit of klt pairs.

2.4.1 The limit of klt is dlt. The proof of the following Proposition 2.10 which is given
in [KM98] for Q-divisors does not directly apply to R-divisors. For that reason and for lack of an
adequate reference for R-divisors, we provide short proofs of the results discussed in this section.
A generalization of the following proposition for R-divisors is then given in Proposition 2.12.

Proposition 2.10 [KM98, Proposition 2.43]. Assume that (X,∆) is dlt (∆ a Q-divisor) and
X is quasi projective with ample divisor H. Let ∆1 be an effective Q-divisor (not necessarily Q-
Cartier) such that ∆−∆1 is effective. Then there exists a rational number c > 0 and an effective
Q-divisor D ∼Q ∆1 + cH such that (X,∆− ε∆1 + εD) is dlt for all rational numbers 0< ε� 1.

If Supp ∆1 = Supp ∆, then (X,∆− ε∆1 + εD) is klt for all sufficiently small rational numbers
ε > 0.

Lemma 2.11 (See [Laz04, Example 9.2.29]). Let (X,∆) be a klt pair and H an ample R-
divisor. Then H is R-linearly equivalent to an effective divisor H ′ such that (X,∆ +H ′) is
klt.

Proof. The proof is standard and is therefore left to the reader. 2

Proposition 2.12 (Generalization of Proposition 2.10 for R-divisors). Let (X,∆) be a dlt
pair and H be an ample R-divisor. Then for any ε > 0 there exists an effective R-divisor
∆ε ∼R ∆ + εH such that the pair (X,∆ε) is klt.

Proof. After rescaling of H we can assume without loss of generality that ε= 1. The first part
is to show the assertion provided ∆ is a Q-divisor. This part follows with standard arguments
using the previous results and is therefore left to the reader.

Assuming that Proposition 2.12 holds if ∆ is a Q-divisor, we consider the general case where
∆ is not necessarily a Q-divisor. Because of the first part of the proof it suffices to find an
effective Q-divisor ∆′ such that:

– (X,∆′) is dlt;

– H + ∆−∆′ is R-ample.

To prove the existence of ∆′, we first write ∆ as a positive linear combination

∆ =
n∑
i=1

riSi,

where Si are distinct prime Weil divisors and ri ∈ [0, 1], for i= 1, . . . , n. Consider KX ∈
WDiv(X) as a fixed divisor which represents the canonical class and set

Q :=
{
KX +

∑
λiSi | λi ∈ [0, 1]

}
⊂WDivR(X).

Note that Q is a rational polytope in WDivR(X) and consequently, the intersection B :=
Q ∩DivR(X) is a rational polytope as well. Moreover, B is not empty because KX + ∆ ∈B. Note
that the property dlt is an open property on B. More precisely, there is an open neighborhood
U ⊂B of KX + ∆ such that the pair (X, Γ) is dlt for any KX + Γ ∈ U . Since ampleness is also
an open property, we can assume that for any KX + Γ ∈ U the divisor H + ∆− Γ is ample.

1024

https://doi.org/10.1112/S0010437X1200053X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1200053X


Families over Fano varieties

Since B is a rational polytope, the set BQ :=Q ∩DivQ(X) is dense in B. Therefore, there
exists KX + ∆′ ∈ U with ∆′ being a Q-divisor. This finishes the proof. 2

2.4.2 Terminating runs of the minimal model program. The following lemma shows that a
variation of the boundary divisor ∆ does not affect flips.

Lemma 2.13 (Rigidity of flips). Let (X,∆) be a Q-factorial dlt pair. Assume that R is a
(KX + ∆)-negative extremal ray, and that the contraction f of R is small. Let D be an arbitrary
R-divisor on X such that R is (KX +D)-negative. If the (X,∆)-flip ϕ of f exists, then ϕ is also
the (X, D)-flip of f .

Proof. Assume that any flip

X
ϕ //_______

f   @@@@@@@@ X+

f+}}{{{{{{{{

Y

of f exists. We have to show that KX+ + ϕ∗D is f+-ample. Let C+ ⊂X+ be a curve which is
contracted by f+. Then it is shown in [Bar08, Lemma 4.13] that for the numerical pullback the
following holds:

−ϕ∗[C+] ∈R.
Since ϕ∗ :N1(X+)→N1(X) is an isomorphism of vector spaces, the relative Picard number
ρ(X+/Y ) is 1, and it suffices to show that KX+ + ϕ∗D intersects C+ positively. This follows
easily from the projection formula, thus ϕ is a flip for both (X,∆) and (X, D). 2

Corollary 2.14. Let (X,∆) be a Q-factorial dlt pair, and let H be an ample R-divisor such
that KX + ∆ +H is nef. Let (ϕi, si)i=1,...,n be the first n steps of a minimal model program with
scaling of H, and assume that (Xn,∆n) is not a minimal model.

Then the hyperplane (KXn + ∆n + snHn)⊥ contains a (KXn + ∆n)-negative extremal ray
Rn+1. Moreover if the contraction f of Rn+1 is small then the flip of f exists.

Proof. The existence of Rn+1 is shown in [Bir10, Lemma 3.10], thus it suffices to show the
existence of flips for dlt pairs. It is shown in [BCHM10, Corollary 1.4.1] that flips exist for klt
pairs, thus Lemma 2.13 and Proposition 2.12 imply their existence for dlt pairs. 2

We are now able to generalize Theorem 2.9.

Theorem 2.15 (MMP with scaling for dlt pairs). Let (X,∆) be a Q-factorial dlt pair, and H
an ample R-divisor such that KX + ∆ +H is nef. Assume that KX + ∆ is not pseudo-effective.

(i) Set σ := inf{s > 0 |KX + ∆ + sH is pseudo-effective}, and let 0 6 ε1, ε2 < σ be arbitrary
real numbers. For k ∈ {1, 2}, let ∆k := ∆εk

be as in Proposition 2.12, if εk is positive, or set
∆k := ∆, if εk = 0.

If (ϕi, si)i is the run of a minimal model program with scaling for the pair (X,∆1), then
(ϕi, si + (ε1 − ε2))i is a run of the minimal model program with scaling for the pair (X,∆2).

(i) Any minimal model program with scaling of H can be run for the pair (X,∆) and
terminates.

Proof. It is shown in Corollary 2.14 that the minimal model program with scaling can be run
for dlt pairs. Part (i) is then a consequence of part (i) and Theorem 2.9.
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To show (i), we first observe that for any i the numerical equivalence

KXi + ∆1
i + siHi ≡KXi + ∆2

i + (si + (ε1 − ε2))Hi

holds. In particular, the divisor KXi + ∆2
i + (si + (ε1 − ε2))Hi is nef and numerically trivial on

Ri+1. Moreover, if Ri+1 is (KXi + ∆2
i )-negative, then it follows from Lemma 2.13 that a flip of

Ri+1 does not depend on the numbers ε1, ε2. It therefore remains to show that for any i the
following holds.

(a) The number si + (ε1 − ε2) is positive.
(b) The ray Ri+1 is (KXi + ∆2

i )-negative.
(c) If the first sequence terminates, then so does the second one.

We first show that (a) implies (b), thus we assume that si + (ε1 − ε2) is positive for some i. Since
Ri+1 is (KXi + ∆1

i )-negative and (KXi + ∆1
i + siHi)-trivial, Ri+1 is Hi-positive. As we have seen

before, Ri+1 is also
(
KXi + ∆2

i + (si + ε1 − ε2)Hi

)
-trivial, and since si + (ε1 − ε2) is positive,

we conclude (b).
The next step is to show (a) by induction on i. For i= 0, it follows from Remark 2.7 that

s0 = inf{s > 0 |KX + ∆1 + sH is nef}.

In particular,

s0 > inf{s > 0 |KX + ∆1 + sH is pseudo-effective}= σ − ε1.

Therefore, s0 + (ε1 − ε2) > σ − ε2, which is positive by assumption.
For the induction step we assume that sj + (ε1 − ε2) is positive for each j 6 i, and we aim to

show that si+1 + (ε1 − ε2) is also positive. Assume this is not the case. This immediately implies
ε2 > ε1, in particular (X,∆2) is klt. Moreover, the ray Ri+1 is (KXi + ∆2

i )-negative, thus ϕi+1

is a step of a (X,∆2)-minimal model program with scaling of H. We obtain the following nef
R-divisors on Xi+1:

KXi+1 + ∆2
i+1 + (si + (ε1 − ε2))Hi+1,

KXi+1 + ∆2
i+1 + (si+1 + (ε1 − ε2))Hi+1.

Convexity of the nef cone implies that also KXi+1 + ∆2
i+1 is nef, thus a run of the minimal model

program with scaling for the pair (X,∆2) terminates with a minimal model, a contradiction to
Theorem 2.9.

It remains to show (c). We assume on the contrary that the first sequence terminates and the
second one does not. This in particular implies that the first run of the minimal model program
terminates with a minimal model. Exchange ε1 for ε2, and we obtain a contradiction to (a). 2

3. The moving cone of Q-factorial dlt pairs

The goal of this chapter is to prove Theorem 1.4. The proof is given in several steps. We first
analyze an arbitrary Mori fiber space and specify the curves we want to pull back. More precisely,
we construct the following subvariety of the Hilbert scheme.

Lemma 3.1. Let λ :X 99KX ′ be a birational map between normal projective varieties which is
surjective in codimension 1. Let B be a variety with dimB < dimX ′, and let π :X ′→B be a
surjective morphism with connected fibers. Then there is an irreducible locally closed subvariety
H of the Hilbert scheme of curves on X such that:
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(i) any closed point of H corresponds to a moving curve that is contained in the open set where
λ is an isomorphism;

(ii) any closed point of H corresponds to a curve C whose image λ(C) lies in a fiber of π; and

(iii) if Z ⊂X has codimension greater than or equal to 2, then the set

HZ := {p ∈H | p corresponds to a curve that avoids Z}

is non-empty and open in H.

Proof. Let U ⊂X denote the set where λ is an isomorphism onto its image V := λ(U). We aim
to find a dominating family of curves that is entirely contained in U .

To this end, we first remark that the inverse λ−1 does not contract any divisor, thus
codimX′(X ′\V ) > 2 holds. Therefore, if F is a general fiber of π, then codimF (F\V ) > 2,
as well. Let k be the relative dimension of X ′ over B, and pick k − 1 very ample divisors
H1, . . . , Hk−1 on X ′. If D1, . . . , Dk−1 are general members of the corresponding linear systems
|H1| , . . . , |Hk−1| then the intersection F ∩D1 ∩ · · · ∩Dk−1 ⊂ F is an irreducible smooth curve
that avoids X ′\V . We conclude that there is an open subset U ⊂B × |H1| × · · · × |Hk−1| such
that for (b, D1, . . . , Dk−1) ∈ U the intersection π−1(b) ∩D1 ∩ · · · ∩Dk−1 is a smooth curve. This
defines a family of curves that are entirely contained in V . Moreover, if Z ′ is any subvariety of
X ′ of codimension greater than or equal to 2 then the general member of this family avoids Z ′.

Via λ we obtain the required family of curves on X which in turn defines the subset H
of the Hilbert scheme. Moreover, if Z ⊂X has codimension greater than or equal to 2, then
Z ′ := λ(U ∩ Z)⊂X ′ has codimension greater than or equal to 2 as well. Thus a general point of
H corresponds to a curve that avoids Z. 2

Corollary 3.2. If a run of the minimal model program leads to a Mori fiber space, then the
numerical pullback of any curve on a fiber of the Mori fiber space is a moving class.

Proof. Note that a run of the minimal model program which leads to a Mori fiber space satisfies
the condition of Lemma 3.1. Let X ′→B denote the Mori fiber space, then the relative Picard
number ρ(X ′/B) is 1. Thus all classes of curves in fibers are numerically proportional in X ′, and
Lemma 3.1 shows that these classes are moving. 2

The next step in the proof of Theorem 1.4 is the construction of a divisor suitable for running
the minimal model program with scaling. This will be done in the following lemma, which is
closely related to [Leh09, Lemma 4.3]. A similar statement is also given in [Ara10, Proof of
Theorem 1.1].

Lemma 3.3. Let (X,∆) be a Q-factorial dlt pair and let

R⊂NM1(X) + NE1(X)KX+∆>0

be a (KX + ∆)-negative exposed ray. Then there is an R-ample R-divisor H such that for

σ := inf{s > 0 |KX + ∆ + sH ∈NE1(X)} the following holds.

(i) The divisor KX + ∆ +H is nef.

(ii) The intersection (KX + ∆ + σH)⊥ ∩ (NM1(X) + NE1(X)KX+∆>0) =R.

(iii) The intersection (KX + ∆ + sH)⊥ ∩ (NM1(X) + NE1(X)KX+∆>0) = 0, if s > σ.
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Proof. We start with the construction of H. By definition of exposed there exists an R-divisor
D such that

R=D⊥ ∩ (NM1(X) + NE1(X)KX+∆>0),

and D is non-negative on NM1(X) + NE1(X)KX+∆>0. We claim that there is an a > 0 such
that D − a(KX + ∆) is an ample R-divisor. If −(KX + ∆) is ample, we can take any sufficiently
large a. Thus we may assume without loss of generality that −(KX + ∆) is not ample. Since
D and KX + ∆, considered as forms on N1(X), have no common zeros in NE1(X)\{0}, there
exists a hyperplane Z ⊂N1(X) such that

(D⊥ ∩ (KX + ∆)⊥)⊂ Z and Z ∩NE1(X) = {0}.

It follows from basic linear algebra that there exist b, c ∈ R such that Z = (bD + c(KX + ∆))⊥,
i.e., for any x ∈NE1(X)\{0} the inequality (bD + c(KX + ∆)) · x 6= 0 holds. This inequality still
holds if we slightly vary b and c, thus we may assume that both b and c are not zero. We set
a :=−c/b, and it remains to show that the resulting divisor is ample and that a is positive. Since
−(KX + ∆) is not ample, there exists w ∈NE1(X)\{0} intersecting KX + ∆ trivially. Thus we
have (D − a(KX + ∆)) · w =D · w > 0, by the choice of D. Since the cone NE1(X) is connected,
the divisor D − a(KX + ∆) intersects any element of NE1(X)\{0} positively, and Kleiman’s
ampleness criterion implies that the divisor is ample. To see that a is positive we consider the
intersection product of D − a(KX + ∆) with a generator z of R. Since this is positive, a is
positive and the claim follows.

To finish the construction of H, we choose l > 0 such that KX + ∆ + l(D − a(KX + ∆)) is
nef, and set

H := l(D − a(KX + ∆)).

It remains to show that H has the required properties. Property (i) follows immediately from
the construction of H. To show property (ii), we first observe that D is numerically proportional
to KX + ∆ + (1/al)H. By [BDPP04, Theorem 2.2], the cones NM1(X) and NE1(X) are dual.
Consequently, the divisor D is pseudo-effective, in particular σ 6 1/al. Moreover, KX + ∆ + sH
intersects any generator of R negatively for any s < 1/al. Therefore σ = 1/al and D is numerically
proportional to KX + ∆ + σH, hence

(KX + ∆ + σH)⊥ ∩ (NM1(X) + NE1(X)KX+∆>0)
=D⊥ ∩ (NM1(X) + NE1(X)KX+∆>0) =R,

as required.
To prove the last property (iii), recall that H is ample. This immediately implies that for any

s > 0 and γ ∈NE1(X)KX+∆>0 the intersection product (KX + ∆ + sH) · γ is positive. Moreover,
for any s > σ the divisor KX + ∆ + sH =KX + ∆ + σH + (s− σ)H is big, thus it intersects any
γ ∈NM1(X) positively. 2

With the previous lemmas at hand, we are now able to prove the Moving Cone Theorem 1.4.

Proof of Theorem 1.4. Let (X,∆) and R be as in Lemma 3.3. We apply this lemma and obtain
an R-ample R-divisor H and positive number σ that satisfy properties (i)–(iii). The existence of
R implies that KX + ∆ is not pseudo-effective, see [BDPP04, Theorem 2.2]. By Theorem 2.15
we obtain a terminating run of the minimal model program with scaling of H which we denote
(ϕi, si)i∈I . By Proposition 2.12, there exists for any 0< ε < σ an R-divisor ∆ε ≡∆ + εH such
that (X,∆ε) is klt. It follows from Theorem 2.15 that the sequence (ϕi, si − ε)i∈I is a run of the
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minimal model program with scaling of H for the pair (X,∆ε), and that both runs terminate
with a Mori fiber space, say π :Xl→B. Denote by λ the composition of all ϕi, i ∈ I, then we
obtain the following diagram.

X
λ //___ Xl

π

��
B

The family of curves constructed in Lemma 3.1 gives the required subset HR of the Hilbert
scheme. It remains to show that the class γ of a curve corresponding to a closed point of HR

generates R. Since γ is moving and because of property (ii) of Lemma 3.3, it suffices to prove
that the equality

(KX + ∆ + σH) · γ = 0

holds.
To this end, we consider the decreasing sequence of positive numbers

s1 − ε> s2 − ε> · · ·> sl − ε> 0.

Since the inequality sl − ε> 0 holds for all ε ∈ [0, σ), we obtain sl > σ. To show sl 6 σ, we note
that if C is any curve on a general fiber of π, then the class γ is numerically proportional to
λ∗([C]). Therefore

0 = (KXl
+ ∆l + slλ∗H) · C

= (KX + ∆ + slH) · γ.

Consequently, property (iii) of Lemma 3.3 implies sl = σ. We now apply property (ii) of
Lemma 3.3 again, which implies that R is generated by γ. 2

4. Q-factorializations of dlt pairs

4.1 Q-factorialization
If (X,∆) is a dlt pair where X is not Q-factorial, then we cannot apply Theorem 1.4. To overcome
this difficulty, we aim to replace X with a small, Q-factorial modification.

Definition 4.1 (Q-factorialization). Let X be a normal projective variety. A Q-factorialization
of X is a proper birational morphism f : Y →X where Y is a normal projective Q-factorial
variety and the exceptional set of f has codimension greater than or equal to 2 in Y .

Example 4.2. Let (Y,∆) be a Q-factorial dlt pair. Assume that there is a (KY + ∆)-negative
extremal ray R of the cone NE1(Y ) whose associated contraction map contR : Y →X is small.
Then X is not Q-factorial and contR : Y →X is a Q-factorialization of X.

The existence of Q-factorializations of dlt pairs is a result of [BCHM10].

Proposition 4.3 [BCHM10, Corollary 1.4.3]. Let (X,∆) be a log canonical pair and let f :
W →X be a log resolution. Suppose that there is a divisor ∆0 such that KX + ∆0 is klt. Let E

be any set of valuations of f -exceptional divisors which satisfies the following two properties:

(i) E contains only valuations of log discrepancy at most 1; and

(ii) the center of every valuation of log discrepancy 1 in E does not contain any non-klt centers.
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Then we may find a proper birational morphism π : Y →X, such that Y is Q-factorial and the
exceptional divisors of π correspond to the elements of E.

We state the explicit result for dlt pairs in the following corollary. For klt pairs this is also
explained in the discussion after the formulation of [BCHM10, p. 9, Corollary 1.4.3].

Corollary 4.4 (Existence of Q-factorializations). Let (X,∆) be a dlt (respectively klt) pair.
Then a Q-factorialization of X exists. Moreover, if f : Y →X is an arbitrary Q-factorialization
of X, and ∆Y := f−1

∗ ∆ is the strict transform of ∆, then the pair (Y,∆Y ) is dlt (respectively
klt).

Proof. If (X,∆) is dlt, then we may apply Proposition 2.12 and find a divisor ∆′ such that
(X,∆′) is klt. Therefore, the existence of a Q-factorialization follows from Proposition 4.3, if we
set E = ∅.

Now let f : Y →X be an arbitrary Q-factorialization, and let ∆Y be the strict transform
of ∆. Note that f is small, thus the equalities

f∗(KX + ∆) =KY + ∆Y and f∗∆Y = ∆X

hold. Moreover, the coefficients of ∆Y are exactly the coefficients of ∆, hence b∆c= 0 if and only
if b∆Y c= 0. A straightforward calculation yields that the discrepancies of (X,∆) and (Y,∆Y )
are equal, which in turn implies that (Y,∆Y ) is klt if (X,∆) is klt; see also [KM98, Lemma 2.30].

To show that the property dlt is preserved, recall its definition, [KM98, Definition 2.37].
According to this, it remains to prove that the strict transform of an snc divisor on the smooth
locus U of X is an snc divisor on f−1(U)⊂ Y . We even claim that f |f−1(U) is an isomorphism.
Indeed, if x ∈ U is a point where the inverse map f−1 is not regular, then [Sha94, ch. II.4,
Theorem 2] immediately implies that f contracts a divisor. This contradicts the assumption
that f does not contract divisors. 2

Notation 4.5. Given a dlt pair (X,∆) and a Q-factorialization f : Y →X, we will denote by ∆Y

the strict transform of ∆ as defined in Corollary 4.4.

Remark 4.6. In fact, Q-factorializations of a given variety are generally not unique. As we will
see in § 4.3, any log flop of a Q-factorialization yields a new Q-factorialization.

4.2 Q-factorializations of log Fano varieties
We consider dlt pairs (X,∆) with −(KX + ∆) ample. Unfortunately, if f : Y →X is a Q-
factorialization, then the divisor −(KY + ∆Y ) =−f∗(KY + ∆) is generally not ample, unless
f is the identity. Nevertheless, the following lemma holds.

Lemma 4.7. Let (X,∆) be a Q-factorial klt pair such that −(KX + ∆) is big and nef. Then the
cones NM1(X) and NE1(X) are rational polyhedrons. Moreover, for any divisor D any minimal
model program for the pair (X, D) can be run and terminates.

Proof. Recall from [BDPP04, Theorem 2.2] that a divisor is big if and only if it intersects
any γ ∈NM1(X)\{0} positively. Hence, the cones NM1(X)\{0} and NE1(X)KX+∆=0\{0} are
disjoint, and by convexity there exists an R-divisor B that separates these cones, i.e.,

NM1(X)\{0} ⊂ N1(X)B>0, and
NE1(X)KX+∆=0\{0} ⊂ N1(X)B<0.

In particular, the divisor B is big.
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We claim that for sufficiently small ε > 0 the pair (X,∆ + εB) is still klt and the divisor
−(KX + ∆ + εB) is ample. To prove the claim we first note that for any sufficiently small ε > 0
the pair (X,∆ + εB) is klt, see [KM98, Corollary 2.35(2)]. To show that −(KX + ∆ + εB) is
ample for 0< ε� 1, we use Kleiman’s ampleness criterion. According to this, we must show
that the intersection product with any class γ ∈NE1(X)\{0} is positive. This is obviously true
for γ ∈NE1(X)B<0\{0}, thus it remains to show that the intersection product with any class
γ ∈NE1(X)B>0\{0} is positive. Let H ⊂N1(X)R\{0} be an affine hyperplane such that its
intersection with the Mori cone is a cross section, i.e.,

∅ 6= NE1(X)|H :=H ∩NE1(X)

is compact, and
NE1(X) = R>0 ·NE1(X)|H .

It suffices to show that −(KX + ∆ + εB) intersects any class γ ∈NE1(X)|H,B>0 positively. Since
NE1(X)|H,B>0 is compact, the continuous function

NE1(X)|H,B>0 → R
γ 7→ −(KX + ∆ + εB) · γ

has a global minimum mε ∈ R. This minimum depends continuously on ε and is positive for
ε= 0. Consequently, the claim follows.

The Cone Theorem implies that NE1(X) is a rational polyhedron, and the assertion for
NM1(X) is proved in [BCHM10, Corollary 1.3.5]. To show that for any divisor D any run of
the minimal model program terminates, we apply [BCHM10, Corollary 1.3.2] to (X,∆ + εB).
According to this, the variety X is a Mori dream space (see [HK00, Definition 1.10] for the
definition), and it follows from [HK00, Proposition 1.11] that the minimal model program can
be run for any divisor and terminates. 2

Corollary 4.8. Let (X,∆) be a dlt pair with −(KX + ∆) ample, and let f : Y →X be any
Q-factorialization of X. Then the cones NE1(Y ) and NM1(Y ) are rational polyhedrons and for
any divisor the minimal model program can be run and terminates.

Proof. By Lemma 4.7 it suffices to show that there is a divisor ∆′ on Y such that (Y,∆′) is
klt and −(KY + ∆′) is big and nef. In order to prove the existence of ∆′ we first pick an ample
divisor H on X. It follows from Proposition 2.12 that for any ε > 0 the divisor ∆ + εH is R-
linearly equivalent to a divisor ∆ε such that (X,∆ε) is klt. Moreover, if ε is sufficiently small then
−(KX + ∆ε) is still ample. By Corollary 4.4 the pair

(
Y, f−1

∗ (∆ε)
)

is klt. Finally the R-divisor
−(KY + ∆′) is big and nef since it is the pullback of an ample R-divisor. 2

4.3 Log flops of Q-factorializations
One main step in the proof of the Isotriviality Theorem 1.1 is to find a certain exposed moving
ray which intersects a given pseudo-effective divisor D non-trivially. This is not a big problem
if the pair (X,∆) is Q-factorial and log Fano. However, if we drop the assumption that X is
Q-factorial, then we have to switch over to a Q-factorialization f : Y →X which is generally
not log Fano, as we have seen. Indeed, it could happen in this situation that the set of exposed
moving rays is entirely contained in the hyperplane (f−1

∗ D)⊥ in N1(Y ).
To prove the Isotriviality Theorem 1.1 in the non-Q-factorial case we have to find the

right Q-factorialization. We will see that a certain class of birational maps gives us new Q-
factorializations. These log flops are strongly connected to flips.
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Definition 4.9 (Log flops, see [Mat02, Conjecture 11.3.3]). Let (X,∆) be a dlt pair. A
flopping contraction is a proper birational morphism f :X → Y to a normal variety Y such
that the exceptional set has codimension at least 2 in X and KX + ∆ is numerically f -trivial.

Assume that there exists an R-Cartier divisor D on X such that −(KX + ∆ +D) is f -ample,
and the (KX + ∆ +D)-flip of f exists. Then this flip is also called the D-log flop of f or log flop
for short.

Remark 4.10. If ∆ = 0, a log flop is a flop, see [KM98, Definition 6.10].

Lemma 4.11 (Existence of log flops on Q-factorializations). Let (X,∆) be a log Fano dlt
pair with Q-factorialization (Y,∆Y ). Let D be an arbitrary R-divisor on Y , and let F ⊂
NE1(Y )KY +∆Y =0 be an extremal face that is contained in D < 0. Then:

(i) the contraction g : Y → Z of F exists and factorizes the Q-factorialization map f : Y →X;
and

(ii) the D-log flop of F exists and is another Q-factorialization of X.

Proof. By Corollary 4.8 the minimal model program for the pair (Y, D) is well-defined, in
particular the contraction g : Y → Z of F exists. To prove that g is small, we note that the
map f : Y →X is the contraction of the extremal face G := NE1(Y ) ∩ (KY + ∆Y )⊥. Indeed, it
is easy to see that a curve C is contracted by f if and only if it intersects KY + ∆Y trivially.
Since this is a small contraction and F ⊂G is a subface, any curve that is contracted by g is also
contracted by f . Therefore, the exceptional set of g has codimension at least 2, hence g is a small
contraction. It remains to show that g factorizes f . We have already seen that f contracts each
fiber of g. Thus the assertion follows immediately from [Deb01, Lemma 1.15(b)]. This implies
(i).

Item (ii) is an immediate consequence of Corollary 4.8, and is visualized in the following
commuting diagram.

Y
D-log flop //_______

g

  @@@@@@@@

f

��000000000000000 Y +

g+

}}{{{{{{{{

f+

��

Z

��
X

The map f+ is the new Q-factorialization which is obtained by the D-log flop. 2

We finally come to the main result of this section. Roughly speaking, the following proposition
asserts that for any effective Weil-divisor D on X, there exists a Q-factorialization f : Y →X
such that (f−1

∗ D)⊥ is in a sufficiently general position relative to the moving cone NM1(Y ).

Proposition 4.12. Let (X,∆) be a dlt pair with −(KX + ∆) ample, and let D 6= 0 be an
effective R-Weil-divisor on X. Then there exists a Q-factorialization (Y,∆Y ) such that the cone
NE1(Y )KY +∆Y =0 + NM1(Y ) has a (KY + ∆Y )-negative exposed ray which is not contained in
D⊥Y , where DY is the strict transform of D.

The proof of Proposition 4.12 is quite long, and will be given in the following two §§ 4.3.1
and 4.3.2.
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4.3.1 Preparation for the proof of Proposition 4.12. The proof of the proposition consists of
the following steps:

(i) use log flops to construct the Q-factorialization; and

(ii) prove that the Q-factorialization satisfies Proposition 4.12.

Since the second part includes some tedious but not very challenging computations, we divide
these computations into the following two lemmas. The first lemma provides a criterion to decide
whether a given ray in a cone is extremal, and can be formulated in terms of convex geometry,
the second one analyzes the image of exposed moving rays via flips.

Lemma 4.13 (Criterion of extremeness). Let V be a finite dimensional real vector space, and
let C1, C2 ⊂ V be two closed, convex cones. Let α ∈ V ∨ be a linear form and R⊂ C1 a ray such
that the following conditions hold:

– R= C1
α=0, and C1 ⊂ {α> 0};

– C2 ⊂ {α> 0};
– R 6⊂ C2 and (−R) 6⊂ C2.

Then R is an extremal ray of C1 + C2.

Proof. Observe that the set D := (C1 + C2)α=0 is an extremal face of C1 + C2. Therefore, the face
D decomposes into

D = C1
α=0 + C2

α=0 =R+ C2
α=0.

Since R 6⊂ C2 and (−R) 6⊂ C2, it follows that R is an extremal ray of D. To finish the proof, recall
that being extremal is a transitive property, i.e., since R is extremal in D and D is extremal in
C1 + C2, the ray R is also extremal in C1 + C2, as required. 2

Remark 4.14. The ray R⊂ C1 + C2 is not necessarily exposed.

Lemma 4.15 (Flips of exposed rays). Let X, Y be Q-factorial normal projective varieties, and
let ϕ :X 99K Y be a birational map which is an isomorphism in codimension 1. Let F ⊂NM1(X)
be an exposed face, cut out by a pseudo-effective R-divisor D. Then the image ϕ∗(F ) of F via
the numerical pushforward of curves is an exposed face of NM1(Y ) which is cut out by ϕ∗(D).

Proof. The assumptions imply that the vector spaces N1(X)R and N1(Y )R are isomorphic via
the pullback and pushforward of divisors. Moreover, the restriction of the pushforward map to
NE1(X) gives a bijection between the pseudo-effective cones NE1(X) and NE1(Y ). By duality,
the numerical pushforward and pullback of curve classes yields an isomorphism between N1(X)R
and N1(Y )R, and by [BDPP04, Theorem 2.2], a bijection between NM1(X) and NM1(Y ), in
particular ϕ∗(F )⊂NM1(Y ). Since the divisor D is pseudo-effective, its pushforward ϕ∗(D) is
pseudo-effective as well.

It remains to prove that the equality ϕ∗(D)⊥ ∩NM1(Y ) = ϕ∗(F ) holds. This follows easily
from the projection formula and the fact that pushforward and pullback are mutually inverse
bijections. These computations are straightforward, thus we omit them. 2

Remark 4.16. The lemma is also true for extremal faces, but becomes false if the map is not an
isomorphism in codimension 1, e.g., if ϕ is a divisorial contraction.

4.3.2 Proof of Proposition 4.12. We start with an arbitrary Q-factorialization f0 : Y0→X.
Set ∆0 := ∆Y0 , and let D0 := (f−1

0 )∗D be the strict transform of the effective Weil divisor D

1033

https://doi.org/10.1112/S0010437X1200053X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1200053X


D. Lohmann

on X. Let R0 be a (KY0 + ∆Y0)-negative extremal ray of the moving cone NM1(Y0) which is not
contained in D⊥0 . By Corollary 4.8, the cone NM1(Y0) is polyhedral, therefore R0 is exposed and
there is a pseudo-effective R-divisor DR0 such that

R0 = NM1(Y0)DR0
=0.

Because of Corollary 4.8 we can run the relative minimal model program for the pair (Y0,∆0 +
DR0) over X. Observe that this run of the minimal model program only involves log flops
and yields by Lemma 4.11 a sequence of Q-factorializations of X. Because of Corollary 4.8 we
eventually obtain a minimal model over X which is expressed in the following commutative
diagram.

Y0

f0   AAAAAAA
ϕ //_______ Y

f��~~~~~~~~

X

Moreover, the divisor KY + ϕ∗(DR0) + ϕ∗(∆0) is f -nef.
This finishes the construction of the Q-factorialization, and it remains to show that Y has

the required properties. To this end, we first observe that Y0, Y , and ϕ satisfy the conditions of
Lemma 4.15, hence the ray R := ϕ∗(R0) is an exposed ray of NM1(Y ), cut out by DR := ϕ∗(DR0).
Moreover, since KY + ϕ∗(∆0) +DR is f -nef and any KY + ϕ∗(∆0)-trivial curve is contracted by
f , we obtain the inclusion

NE1(Y )KY +ϕ∗(∆0)=0 ⊂ {DR > 0}.
Note that the divisor −(KY + ϕ∗(∆0)) is big, thus NE1(Y )KY +ϕ∗(∆0)=0 ∩NM1(Y ) = 0, and
Lemma 4.13 applies. Altogether, the ray R is an extremal ray of NE1(Y )KY +ϕ∗(∆0)=0 + NM1(Y ).
Since this cone is polyhedral by Corollary 4.8, the ray R is even an exposed ray.

To finish the proof, we have to show that R is not contained in the hyperplane D⊥Y , where
DY is the strict transform of D. Since ϕ is an isomorphism in codimension 1, the divisor DY is
also given by the pushforward of D0 via ϕ. The projection formula immediately implies that DY

intersects any non-zero class γ ∈R positively, and the proof is finished.

5. Families over log Fano varieties

In this section we will prove the Isotriviality Theorem 1.1 by induction over the dimension. As a
part of the induction we prove Theorem 5.1, which is stated below. Assuming that Theorem 5.1
holds in dimension n, we first show that the family is necessarily isotrivial on certain moving
curves, namely the curves we constructed in Theorem 1.4. Next we show that for any proper
algebraic subset Z of X there exists a moving curve that is not contained in Z and intersects Z
properly. On this curve the family is isotrivial. This finally finishes the proof of the Isotriviality
Theorem 1.1 for n-dimensional varieties.

Assuming that Theorem 1.1 holds in dimension n we will prove Theorem 5.1 in the (n+ 1)-
dimensional case. This finally finishes the proof of both theorems in arbitrary dimension.

5.1 A result of Kebekus and Kovács
Given a smooth projective family of canonically polarized varieties, it is proved in [KK10,
Theorem 1.2] that any run of the minimal model program for the base terminates with a Kodaira
or Mori fiber space that factors the moduli map birationally, if the dimension of the base is less
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than or equal to 3. A proof for surfaces can be found in [KK08a]. Since we discuss log Fano
varieties, we will focus on the case of negative Kodaira–Iitaka dimension. As part of the induction
we show that this result holds in arbitrary dimension.

Theorem 5.1 (Moduli and the minimal model program, [KK10, Theorem 1.2]). Let (X,∆) be
a Q-factorial dlt pair of negative Kodaira–Iitaka-dimension. Let T ⊂X be a subvariety of
codimX(T ) > 2 such that X\(T ∪ Suppb∆c) is smooth, and let µ :X\(T ∪ Supp(b∆c))→M

be a map to the coarse moduli space of canonically polarized manifolds which is induced by a
smooth projective family over X\(T ∪ Suppb∆c).

Then any terminating run of the minimal model program λ :X 99KX ′ leads to a Mori fiber
space π :X ′→B which factors the moduli map µ via π ◦ λ birationally. In other words, there
exists a rational map ν :B 99K M such that the following diagram commutes.

X
λ //______

µ

���
�
� X ′

π

��
M B

νoo_ _ _ _ _ _

5.2 Proof of Theorems 1.1 and 5.1
5.2.1 General strategy and setup. The proof of the Theorems 1.1 and 5.1 is by induction on

the dimension. For arbitrary x the notation Theorem xn stands for ‘Theorem x in dimension at
most n’. The proof is given in the following three steps.

Step 1: The case where the Picard number of X is 1. In this case, both theorems assert
that a smooth family of canonically polarized varieties is isotrivial over a logarithmic log Fano
dlt pair with Picard number 1. A proof of this case is given in [KK10] if dimX 6 3. It can be
generalized to arbitrary dimension, since the Bogomolov–Sommese vanishing for Q-factorial lc
pairs holds in arbitrary dimensions, see [GKKP11]. Note that this case implies both theorems if
X is a curve.

Step 2: Theorem 5.1n implies Theorem 1.1n. Assuming Theorem 5.1n, it follows from
Proposition 4.12 and Theorem 1.4 that the family is isotrivial on ‘sufficiently many’ moving
curves. This implies Theorem 1.1n.

Step 3: Theorem 1.1n implies Theorem 5.1n+1. Finally, we can apply Theorem 1.1n to the
general fiber of a Mori fiber space, which in turn implies Theorem 5.1n+1.

5.2.2 The case where the Picard number of X is 1. To show that Theorem 5.1 holds if the
Picard number is 1, we have to use certain invertible sheaves A⊂ Symn Ω1

X(log ∆) which were
introduced by Viehweg and Zuo in [VZ02]. These Viehweg–Zuo sheaves are also discussed in
[KK10, ch. 5].

Theorem 5.2 [KK10, Theorem 6.1]. Let (Z,∆) be a log canonical logarithmic pair where Z
is projective Q-factorial. Assume that there exists a Viehweg–Zuo sheaf A of positive Kodaira–
Iitaka dimension, and that the divisor −(KZ + ∆) is nef. Then the Picard number of Z is greater
than 1.

Proof. After replacing the old version of the Bogomolov–Sommese vanishing theorem [KK10,
Theorem 3.5] with the new one [GKKP11, Theorem 7.2], the proof given in [KK10, Theorem 6.1]
applies verbatim for arbitrary dimension. 2
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Lemma 5.3 (Picard number 1). Let (X,∆) and µ be as in Theorem 5.1 and assume that the
the Picard number of X is 1. Then µ is constant.

Proof. Assume that µ is not constant. Since the Picard number is 1, the R-divisor ∆ is nef, in
particular the pair (X, b∆c) is dlt log Fano. Thus we can assume without loss of generality that
∆ is reduced.

Let π : X̃ →X be a log resolution of (X,∆) such that π−1(T ) is contained in the π-exceptional
divisor E ∈Div(X̃). Set ∆̃ := E + π−1

∗ (∆), and note that ∆̃ is snc and π∗∆̃ = ∆. Use π to obtain
a family of positive variation over X̃\ Supp ∆̃. It follows from [VZ02, Theorem 1.4] that there
exists a Viehweg–Zuo sheaf Ã ⊂ Symn Ω1

X̃
(log ∆̃) with κ(Ã)> 0. Apply [KK10, Lemma 5.2] to

obtain a Viehweg–Zuo sheaf A⊂ Symn Ω1
X(log ∆) with κ(A) > κ(Ã)> 0. By Theorem 5.2 the

Picard number of X is greater than 1, which is a contradiction. 2

Since curves always have Picard number 1, we obtain the following corollary.

Corollary 5.4 (Start of induction, [Kov00, 0.2]). Theorems 5.1 and 1.1 hold in dimension 1.

5.2.3 Theorem 5.1n implies Theorem 1.1n. We first use Theorem 5.1n to show that a smooth
family of canonically polarized varieties is isotrivial on certain moving curves.

Proposition 5.5. Assume Theorem 5.1n. Let (X,∆), T and µ be as in Theorem 5.1n. Let R
be a (KX + ∆)-negative exposed ray of the cone NM1(X) + NE1(X)KX+∆>0. Let HR be the
associated subset of the Hilbert scheme as in Theorem 1.4. Then there exists a non-empty open
subset HR,µ of HR such that any curve C ⊂X that corresponds to a closed point of HR,µ satisfies
the following properties.

(i) The curve C is not contained in T ∪ Suppb∆c.
(ii) The moduli map µ is constant on C ∩ (X\(T ∪ Suppb∆c)).
(iii) For any closed subset Z ⊂X of codimX(Z) > 2, there is a non-empty open subset HZ

R,µ

of HR such that any curve that corresponds to a closed point of HZ
R,µ avoids Z.

Proof. We apply the Moving Cone Theorem 1.4 and obtain an associated run of the minimal
model program λ :X 99KX ′ and a Mori fibration π :X ′→B such that any curve that
corresponds to a point of HR is contained in the locus where λ is well-defined and is mapped to
a fiber of π. Theorem 5.1n gives a commutative diagram of rational maps

X
λ //______

µ

���
�
� X ′

π

��
M Boo_ _ _ _ _ _

which becomes a diagram of morphisms on appropriate non-empty open sets. More precisely, let
V ⊂B be the domain of B 99K M and let U ′ ⊂X be the intersection of the domains of µ and λ.
Then, if we set U := λ|−1

U ′ (π
−1(V )), we obtain the following commutative diagram of morphisms.

U
λ //

µ

��

π−1(V )

π

��
M Voo
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Let A be a very ample divisor on X in general position. Then the intersection S := (SuppA ∩
(X\U))⊂X is a subvariety of codimX(S) > 2. Property (ii) of Theorem 1.4 implies that there
is an open subset HS

R of HR such that any closed point of HS
R corresponds to a curve that avoids

S. We set HR,µ :=HS
R, and it remains to show that HR,µ has the required properties (i)–(iii).

Let C ⊂X be a curve that corresponds to a closed point of HR,µ.
Since A is chosen to be ample, C intersects A positively in a point p ∈ SuppA. By definition,

p /∈X\U , which implies (i).
Since C is not entirely contained in X\U , the image π ◦ λ(C ∩ U) is a point of V , thus the

family is isotrivial on C. This implies (ii).
To prove the last property (iii), recall that HR is irreducible and HR,µ ⊂HR is open. For

Z ⊂X of codimX(Z) > 2 let HZ
R be as in property (ii) of Theorem 1.4. We set HZ

R,µ :=HR,µ ∩HZ
R

which is non-empty and open in HR,µ. This implies (iii). 2

Lemma 5.6. Theorem 5.1n implies Theorem 1.1n.

Proof. Let (X,∆) and T be as in Theorem 1.1, and dimX = n. Let X→X\(T ∪ Suppb∆c) be a
smooth projective family of canonically polarized manifolds. As before, we denote by µ :X 99K M

the induced moduli map to the coarse moduli space of canonically polarized manifolds. To prove
that µ is constant we argue by contradiction and assume that this is not the case. Since M is quasi-
projective, see [Vie95, Theorem 1.11], we may choose a general hyperplane section H on M. This
is a divisor which intersects the image of µ properly, hence we can take its strict transform via µ,
denoted by DX ∈WDiv(X). This is an effective Weil divisor to which we apply Proposition 4.12.
Accordingly, we obtain a Q-factorialization f : Y →X with boundary divisor ∆Y := f−1

∗ ∆ and
a (KY + ∆Y )-negative exposed ray R of the cone NM1(Y ) + NE1(Y )KY +∆Y >0 which is not
contained in the hyperplane (f−1

∗ (DX))⊥ defined by the strict transform DY := f−1
∗ (DX).

Observe that the family over X\(T ∪ Suppb∆c) can be pulled back along f to a family over
Y \(f−1(T ) ∪ Suppb∆Y c), and the induced moduli map is given by µY := µ ◦ f . Since f is small,
the set f−1(T ) has codimension greater than or equal to 2, thus the conditions of Proposition 5.5
are still satisfied.

Consequently, we obtain a subset HR,µY
of the Hilbert scheme such that µY is constant on

any curve C in HR,µY
. Denote by S ⊂ SuppDY the set of points where the moduli map µY is

not defined. Since codimY S > 2 and because of property (iii) of Proposition 5.5, there is an open
subset HS

R,µY
of HR,µY

such that the curves that correspond to this subset avoid S. Moreover, if
A is a very ample divisor in general position on Y , then we can assume, after shrinking HR,µY

if necessary, that any such curve avoids (SuppA) ∩ (SuppDY ). In particular, any curve that
corresponds to a closed point of HR,µY

is not entirely contained in SuppDY .
Let C be an arbitrary curve that corresponds to a closed point of HS

R,µY
. Due to

Proposition 5.5, the image of C is a point p ∈M. Since C intersects DY outside S, this point p
is an element of the hyperplane section H which in turn implies that C is contained in DY . This
finally contradicts the choice of C. 2

Remark 5.7. Note that the assumption that (X,∆) is log Fano is only needed to apply
Proposition 4.12. More precisely, the proof of Theorem 1.1 still works if we assume that
Proposition 4.12 holds for the pair (X,∆), instead of assuming that (X,∆) is log Fano.

5.2.4 Theorem 1.1n implies Theorem 5.1n+1, end of proof. To finish the proof, we show the
following lemma.
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Lemma 5.8. Theorem 1.1n implies Theorem 5.1n+1.

Proof. Let λ :X 99KX ′ be a run of the minimal model program which leads to a Mori fiber space
π :X ′→B. Set ∆′ := λ∗∆, and let T ′ be the union of the indeterminacy locus of λ−1 and the
closure of the image of T . Note that codimX′ T

′ > 2 holds. We use λ−1 to pull the family back
to a family f ′ : Y ′→X ′\(Suppb∆′c ∪ T ′). Then we have to show that the family is isotrivial on
a general fiber of π.

If the Picard number ρ(X ′) of X ′ is 1, then (X ′,∆′) is in particular log Fano. In this case
Lemma 5.3 implies the assertion.

Otherwise, if ρ(X ′)> 1, then dimB > 1. Let F be a general fiber of π, then (F,∆′|F ) is dlt
log Fano. Moreover, codimF (F ∩ T ′) > 2, and b∆′|F c= b∆′c|F . Since dim F 6 n, Theorem 1.1n
implies that the family restricted to F is isotrivial, which finishes the proof. 2

6. A corollary of Theorem 1.1

We are now able to discuss some properties of the cone

NM1(X) + NE1(X)KX+∆>0.

First we recall some well-known facts.

Fact 6.1 ([Leh09, Theorem 1.3] and [BCHM10, Corollary 1.35]). Let (X,∆) be a Q-factorial
dlt pair, Then the following holds.

– If −(KX + ∆) is ample, then NM1(X) is a rational polyhedron.

– More generally, there are countably many rays (Ri)i∈N ⊂NM1(X) such that

NM1(X) + NE1(X)KX+∆>0 = NE1(X)KX+∆>0 +
∑
i

Ri.

These rays are locally discrete away from hyperplanes that support both NE1(X)KX+∆>0 and
NM1(X).

If (X,∆) is a pair that admits a family of positive variation we can apply our proof of
Theorem 1.1 to obtain another result. Remark 5.7 implies that Proposition 4.12 cannot hold for
(X,∆). This in turn implies the following observation.

Observation 6.2. If (X,∆) is a dlt pair that admits a non-isotrivial family, then Proposition 4.12
does not hold for (X,∆). In particular, if X is Q-factorial, then there is a hyperplane H ⊂N1(X)
such that any (KX + ∆)-negative exposed ray of NM1(X) + NE1(X)KX+∆>0 is contained in H.
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KK10 S. Kebekus and S. Kovács, The structure of surfaces and threefolds mapping to the moduli
stack of canonically polarized varieties, Duke Math. J. 155 (2010), 1–33.

KM98 J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in
Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998), with the collaboration
of C. H. Clemens and A. Corti, translated from the 1998 Japanese original.
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