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GLOBAL ASYMPTOTIC STABILITY OF A PERIODIC SYSTEM
OF DELAY LOGISTIC EQUATIONS

R.A. AHLIP AND R.R. KING

Sufficient conditions are obtained for the existence and global asymptotic stability
of a periodic solution in Volterra's population system of integrodifferential equa-
tions with periodic coefficients. It is shown that if (i) the intraspecific negative
feedbacks are instantaneous and dominate the interspecific effects (ii) the mini-
mum possible growth rates are stronger than the maximum interspecific effects
weighted with the respective sizes of all species, when they are near their poten-
tial maximum sizes, then the system of integrodifferential equations has a unique
componentwise periodic solution which is globally asymptotically stable.

1. INTRODUCTION

In this paper we propose to derive a set of "easily verifiable" sufficient conditions
for the existence of a globally asymptotically stable strictly positive (componentwise)
periodic solution of the integro-differential system

(1.1) *
- £ cy(t) f fcy(* - s)xj(s)ds

i=\ J-°°

t>0

with initial conditions

(1.2) Xi{t) = <j>i[ 0, i = l, 2, . . . , n

where <f>i (i = 1, 2, . . . , n) are bounded nonnegative continuous functions on (—oo, 0)
with possible jump discontinuities at < = 0 so that

(1.3) i = l,2,...,n.

The coefficients aa(t), bi(t), Cij(t), (i, j = 1, 2, . . . , n) are given real p-periodic func-
tions defined for all t ^ 0, and satisfying the conditions

(1.4) au(t) > 0, b{(t) > 0, Cij{t) > 0, i, j = 1, 2, . . . , n.

Received 18 July 1995
We wish to thank Dr. K. Gopalsamy for suggesting this problem for our consideration.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 SA2.00+0.00.

373

https://doi.org/10.1017/S0004972700017135 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017135


374 R.A. Ahlip and R.R. King [2]

The delay kernels kij(t) (i, j = 1, 2, . . . , n) are continuous functions defined for all
t ^ 0 and satisfy the conditions:

(1.5) M < ) ^ 0 ; t^Q; i, j = 1, 2, . . . , n

and

(1.6) / k a ( t ) d t = l ; i , j = 1 , 2 , . . . , n .
J

In mathematical ecology, (1.1) denotes a model of the dynamics of an n-species
system in which each individual competes with all others of the system for a common
pool of resources and the interspecific competition involves a time delay extending over
the entire past as typified by the delay kernels in (1.1). The assumption of periodicity
of the parameters bi, a-ij (i, j = 1, 2, . . . , n) is a way of incorporating the periodicity
of the environment (for example the seasonal effects of weather, food supplies, mating
habits et cetera).

A number of authors have considered scalar systems of the form (1.1). Miller [5]
considered the integro-differential equation

dx \ f* 1
— = x{t) \b - ax(t) - c / k{i - s)x(s)ds \, t>0,
dt L V-oo J

where a, b, c are real positive numbers. He proved the existence of a globally asymp-
totically stable positive solution under prescribed conditions on the coefficients a, b and
c. Cushing [2] considered the periodic logistic equation and derived sufficient conditions
for the existence of a non-trivial, non-negative, periodic solution. Badii and Schiaffino
[1] obtained sufficient conditions for the existence of a positive globally asymptotically
stable periodic solution of the integrodifferential equation

^ = x{t) a(t) x(t) - c(t) J k(t - s)x(s)dx\ ,

where the coefficients a(t), b(t) and c(t) are periodic with common period p > 0.
Gopalsamy [3] provided sufficient conditions for the existence of a positive periodic so-
lution and its global asymptotic stability in Volterra's population system incorporating
hereditary effects, in a constant environment.

2. NOTATION AND PRELIMINARY RESULTS

Let Cp = CP(R, R) denote the Banach space of all real p-periodic continuous scalar
functions with the supremum norm
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[3] Delay logistic equations 375

Cp = C"(K, fifc) denotes the Banach space of all real n-dimensional, p-periodic contin-
uous functions endowed with the norm

||(xi, X2, . . . , X n ) | | = , m a X Ikillo-

The natural ordering in C™, that is,

x ^ y if X{(t) ^ yi(t) for i = 1, 2, . . . , n and < e R , will be used.

For x defined on [0, p], the average of x is defined to be

tv
[x] = p"1 / x(s)ds.

Jo

Let the convolution of k with the bounded function x be denoted by

(k*x){t)= f k(t - s)x{s)da.
J — OO

DEFINITION: A solution of the problem (1.1) - (1-2) is a continuous function

with
SCJ: ( - 0 0 , 0 0 ) - > [0 , 0 0 ) ( t = 1 , 2 , . . . , n )

such that Xi(t) = <j>i(t) on (—00, 0] with Xi(t), (i = 1, 2, . . . , n) continuously differen-
tiable on (0, 00) and satisfying (1.1).

THEOREM 2 . 1 . Cushing [2]. Let &<(<), afi(*) (t = l , 2, . . . , n ) be given real

p-periodic continuous functions such that [bi] > 0 and an(t) > 0 (i = 1, 2, . . . , n) and
Cy-(i) = 0 (i, j = 1, 2, . . . , n), t G R, tien (I.I j has a unique positive (componentwise)
periodic solution.

THEOREM 2 . 2 . Let the coefficients bi(t), aa(t), c,-,-(t) and kij (i, j = 1, 2, . . . ,
n) of the integrodiSerential system (1.1) satisfy the conditions (1.4) and (1.5), and let
the initial conditions </>i{t), (i = 1, 2, . . , n), t ^ 0 be non-negative bounded continuous
functions on (—oo, 0). Then the problem (1.1) - (1.2) has a unique non-negative
(componentwise) bounded solution.

PROOF: The existence and uniqueness of a local solution are proved by standard
techniques applicable to integrodifferential equations (see, for instance, Cushing [2]).
The non-negativity and boundedness of the solution follow from the form of (1.1) and
o«(*)>o. D
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Let G be the set defined by

n

G={x€C;: [6,(0 - J2 *i(*)(*y * *;)(<)] > 0}, i = 1, 2, . . . , n.

Let the operator B: G —> C™ be defined as follows:

(Bx)(t) = «(<), i £ R ,

where u(<) 6 C™ is the unique positive (componentwise) periodic solution of the system

(2.1) ^ i = [bi(t) - £ *,•(*)(*« * x,)(<)]Wi(0 - aaWutit), i = 1, 2, . . . , n

which exists as a consequence of Theorem (2.1). It is evident that p-periodic solutions of

(1.1) are in one-to-one correspondence with the fixed point of the operator B: G —> C™,

and it immediately follows that G is not empty since x(t) = 0 belongs to G.

Define

u°(t) = (BO)(t); u° G C;.

LEMMA 2 . 1 . If x e C"(K, K) and c,-7-(<) are real p-periodic continuous functions

(i, j = 1, 2, . . . , n), then

V — (2/1, 2/2, • • •, 2/n) € C£(R, R),

w ie r e

2^ '3 J ^ V J

and

r*+p

, = 1

f kij(t-s)xj(s)ds
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LEMMA 2 . 2 . Let x™ and x™ belong to G and x^ ^ x™, then Bx™ ^ B™.

PROOF: Let

and

and let u^{t) = (Bx^)(t) for t £ R with j = 1, 2. Then we have

v>M{t) > wW{t), where to") = (w[j), w{
2
j), ..., i o « ' ) , j = 1, 2.

Further, [w\^] - [auu^] since «i j ) ( t ) (i = 1, 2, . . . , n; j = 1, 2) are periodic by virtue
of Lemma 2.1. Hence,

for some
to£R, u^\t0) > u\l \t0), (t = l ,2 ,

Now let Vi(t) = ttj.1^*) - u^2)(t); hence it follows that:

dt ~ di dt

- Ht) («i1} (0 - «i1} (0) H 1 ^ ) + -i1} W)

Thus,

^ ^ «(<)»*(*) for * ^ 'o,at

where qi(t) - wj1^*) - bi(t)(u\1]{i) + wf}( t ) ) , i = 1,2, . . . , n . This implies that

Vi(t) ^ 0 for all t ^ to , i = 1, 2, . . . , n . D

LEMMA 2 . 3 . Let fci,- (i, j = 1, 2, . . . , n ) satisfy (1.5) and define fcjj = 0 for

t < 0, and iet c,-j(t) and Vij(t) belong to Cp. Then

i = l
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P R O O F :

Lj=l " " " -I j=li=-oo-'0

" ~ /-P /-P(i-l)

D

3. T H E MAIN RESULT

D E F I N I T I O N 3 .1 : The solution x*(t) - (x$(t), x*(<), . . . , x^(t)) of (1.1) is called
globally asymptotically stable if and only if all solutions of the system (1.1) with initial
conditions a;i(0) > 0 (i = 1,2, ..., n) defined for all t > 0 satisfy:

(3.1) lim \xi{t)-x?(*)| = 0; i = 1, 2, ...,n.
t—»oo

By definition of global asymptotic stability it follows that x*(t) is unique.

THEOREM 3 . 1 . Consider the set of integrodifferential equations (1.1) along with
(1.2) - (1.3). Let the coefficients a.ij(t), bi(t), Cij(t) (i, j = 1,2, ..., n) satisfy condi-
tions (1.4), and let kij (i, j = 1,2, . . . , n) satisfy (1.5) and (1.6).

Further, if

(3.2) min a,-,(t) > max
*6[o,P] te[o,j>]

for some positive constant a i , and

n r i /J\ ^

(3.3) min Oi(t) > y max Cij(t) —; ! -r-r + £2
*£[°IP] ^r^*^!0'?] Lnuil*€[o,p] °ii(^)J

for some positive constant e2, then the system (1.1) with (1.2) - (1.3) has a strictly
positive (componentwise) globally asymptotically stable p-periodic solution.

The proof of the Theorem is presented in two parts. In Part 1 the existence of a
positive (componentwise) p-periodic solution is demonstrated, and in Part 2 the global
asymptotic stability of the solution is shown.
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PART 1.

P R O O F OF THE EXISTENCE OF A POSITIVE P-PERIODIC SOLUTION..

Consider the set of differential equations:

(34) J(T)lT = bi{t)-aii{t)uOi{t)'' i = 1)2) ••"n-

As a consequence of the periodicity of the equations (3.4) it follows that

(3.5) [&j] = [o««J], i = l , 2 , . . . , n.

Lemmas (2.3) and (2.3) imply

(3.6)

and consequently that u° = (uj, u\, ..., u^) £ G. Since 0 < u° (i = 1, 2, . . . , n),
then Bu° < u° .

Now if the function v £ C™ satisfying the condition 0 < v < u° is considered, it is
clear that 0 < Bu° ^ Bv < it0.

Therefore the set

Go = {ueC^:0<v^u0} CG

is left invariant by the operator B. Further

Bu° ^ Bv ^ u° => Bu° ^ B2v ^ B2u° => B3u° ^ B3v ^ B2u°.

By induction,

B2n+1u° ^ B2n+1v ^ B2nu°

and

(3.7) B2n+1u° ^ B2n+2v ^ B2n+2u° for n = 0, 1, 2 , . . . .

It is now to be shown that (J92n+1M°) and (B2™u°) are, respectively, increasing
and decreasing sequences.
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The method of finite induction will be used to prove the last assertion. Now

0 < u° => Bu° < u° => 0 < Bu° < B2u° < u° =>• 0 < Bu° < B3u° < B2u° < u°

=» 0 < Bu° < B3u° < B2u° < u°.

Let it be assummed that for n = k, the following relationship holds:
(3.8)

0 < Bu° < B3u° <...< B2k-3u° < fl"-1*0 < B2ku° <...< B*u° < B2u° < u°.

We wish to show that

(3.9) 0 < Bu° < B3u° <...< B2h-3u° < B^^u0

< B2k+2u° < B2h-2u° <...< 5 V < B2u°.

Using the operator B on all terms in (3.7), and the monotonic properties of B

discussed above together gives

0 < Bu° < B3u° <...< B2k-3u° < B2k-lu°

< B2k+2u° < B2ku° < B2k-2u° <...< £ V < B2u° < u°

and hence (3.9) holds. Therefore, from the principle of finite induction {B2n+1u0} and

{B2nu0} are, respectively, increasing, and decreasing sequences.

Now define

Since the sequence ( 5 2 n + 1 u ° ) is monotonic increasing, and bounded above by every
term in the sequence (B2nu°) , then u~(t) = I imu2 n + 1( t) exists.

n

Similarly, since the sequence (i?2nT40) is monotonic decreasing and bounded below
by every term in the sequence (i?2Tl+1u0), then u~*~(t) = ]imu2n(t) exists, and so

n

0 < u~(t) ^ u+(i)

(that is, 0 < v,r(t) ^ ut(t); i = 1, 2, . . . , n).
To prove the existence of a unique fixed point u*{t) of the operator B it is sufficient

to show that

u-(_t) = u+{t)=u*[t)

(that is, uTit) = «+(*) = «?(*); i = 1, 2, . . . , ) .
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As a result of the montonocity and uniform boundedness of {«"} , the L2-

convergences of the sequences {u 2 n + 1 } and {u2 n} follow, and also that of their deriva-
tives, since, by definition

—i-^- — I bi(t) - y Cij(t)(kij * «n~x)(<) )u"(t) - aa(t)(u?\

(3.10) t = l, 2, . . . , n ; t > 0.

Taking the hmit for n gives, for odd and even cases, respectively,

(3.11)

ur = (bi(t) - E ^ (o (% * «i")wW(0 - «*<(*)(«r(*))a» * = i, 2,... , n

(3.12)

i+ = (bi(t) - E ci,-(*)(*i,- * «,-)(<))«+(<) - a^(<)(U+(<))2, i = 1, 2, . . . , n.

From dividing (3.11), (3.12) by u,~(<), uf(t), respectively, i = 1, 2, . . . , n, the result
is

( * <)(')) - ^(OK-(O), » = 1, 2, ..., n;

(3.14)

^ ^ E ^(*)(*ii * «7)(*)) - «»(0K(0), i = 1, 2, • • •, n.
J=1 /

Integrating (3.13) and (3.14) with respect to t from 0 to oo, and using the peri-
odicity of logu^~(<) and uf(t) (t = 1, 2, . . . , n) we have

(3.15)

L ^ J

Let «i(t) = uf(t) - u,r(t); i = 1, 2, . . . , n. From (3.15) it follows that

(3.16) \^ e«(*)(*« • »i)W | = M * W ) ] i = 1, 2, ..., n.
Li=i
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As a consequence of Lemma 2.3 we have,

(3.17) []£>,•(<)(*« * *,-)(0l = [M0*(01 i » = 1, 2, ..., n.

It follows that
(3.18)

[bii(t)vi(t)} = [vi(t)(ku * c«)(t)} + ... + [vi(t){kii * c«)(t)] + ... + [vn(t)(kin * ci

i = l, 2, . . . , n .

Condition (3.2) implies

^ max cu(t)> ^ (kij*Cij)(t) 0 s$ t < p; i = 1, 2, . . . , n

which further imphes that

M O > (fc» * c»)(0 => fli.-(0«.-(0 > »<(<)(*<* * c«)(0-

Since «i(0 ^ 0 , i = l , 2, . . . , n we have

(3.19) [o«(0»i(0] > [»*(0(*« * M O ) ] , t = 1, 2, . . . , n.

But (3.19) contradicts the equality in (3.18). Therefore it follows that

Vi(t) = Ofori = 1, 2, . . . , n

and hence

This completes the proof of the existence of a fixed point of the operator B and
hence the existence of a positive periodic solution of (1.1). D

PART 2.

PROOF OF THE GLOBAL ASYMPTOTIC STABILITY OF THE SOLUTION.

Let the unique positive (componentwise) fixed point of the operator B be denoted
by

It will now be shown that x*(0 is a globally asymptotically stable solution of the system
(1.1) together with (1.2) and (1.3).
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Let x(t) = xi(t), X2(t), ...,xn(t) be any solution of the system (1.1) with
x(t) = <j>(t) for t ^ 0, where <j>{t) = {^i(t)}JLj with the <f>i(t) continuous functions
on (—oo, 0). Since all solutions of (1.1) with strictly positive initial conditions remain
strictly positive, we let

(3.20) X;{t) = logx*i{t)a.ndXi(t)=logxi(t), i = l,2,...,n.

Consequently, from (1.1), it follows that:

(3.21)

ft(X:(t) - Xiit)) = -aii(t){exp(X:) - exp (*<

f
i = l,2, ...,n, t>0.

We define a Lyapunov function as follows

(3.22)

+ J2 r kii(S) f Cij(u + a)|exP (X;(u)) - exp (X^u))\ du ds\
i=i •'o Jt— J

with t ^ 0.

It follows from (3.22) that v(t) ^ 0. Since v is continuous and globally Lipschitzian
on Rn, the upper right Dini-derivative of v along the trajectories of (3.21) exists. In
order to utilise the properties of upper-Dini derivatives we introduce a functional a as
follows. Let z be a continuously differentiable scalar function defined on [0, oo], then
define <r(z)(t) as follows:

(3.23) cr(z)(t) =

1, z{t) > 0,

0, z{t) = 0,

- 1 , z{t)^0,

dz{t)
dt

> 0

dt

dt

It is not difficulty to verify that

z(t)a(z)(t) = \z(t)\
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and

(3.24) D+\z{i)\ = *(z)(t)^

where D+ denotes the upper right Dini-derivative.

By evaluating the upper right Dini derivative along the solutions of (3.21) we get

D+v[t) =

iit))) -£>,•(«) f kij{t-
j=i J-°°

i = i

x (exp (XJ(t - a)) - exp (Xj(t - s)))ds\.

Using (3.24),

D+v(t) < -

r
E /
=i Jo

As a consequence of (3.2) and (1.6), we have
n

(3.25) D+v(t) < -<*! J2 !*<(«) - **(*)!

;(t) - exp(Xj(t))) (exp(x;(t) - erp(Xj(t))))dB

. JQ

Cj(t))\ds

tj{t-s))\ds]

= — ̂  la»'t| | e xP \Xi (t)) — exp (Xi(i))|

™ f°° 1
|exp (Xj'(i)) — exp(Xj(<))| x / fcij(s)cij(f + s)daI.
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From the non-negativity of v(t) for t ^ 0, by integrating (3.25) we have

v(t) -1,(0) < -« ! / ' Y, \*U>) - *i(')l da,

which implies

(3.26)

J2 \\X;{t) - Xi(t)\ + £ r kvia) f Cij{u + s) |exp (X*{u)) - exp (JT,-(t.))| du ds]
i=i j=iJo Ji~'

f* n
+ ai / V |xj(a) - Xi(s)\ da < «(0) < oo.

It follows from (3.26) that

c« i («+* ) l

is bounded on [0, oo), from which is follows that v(t) is uniformly continuous on [0, oo).
It is now claimed that (3.22) implies that v(t) —* 0 as t —> oo, implying (3.1).

Now if it is supposed that (3.1) is not true, then there exists a sequence {tm},

(m = 0, 1, 2, . . . , ; tm —* oo), such that

(3.27) £\*i(tm)-*i(im)\>-; rn = 0 , 1 , 2 , . . . ,

for some small positive number e. It then follows from (3.25) that

(3.28) D+v(tm) < - e for m = 0, 1, 2, . . . .

If 77 is a sufficiently small positive number such that

tm-l < tm. - V < 'm

then

(3.29) D+v(i) < ( -e /2) for t G (<m - v, <m) and m = 0, 1, 2,

https://doi.org/10.1017/S0004972700017135 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017135


386 R.A. Ahlip and R.R. King [14]

Since v(t) is uniformly continuous on [0, oo) this ensures that rj can be chosen to be
independent of tm. It will then follow from (3.29) that

(3.30) v{tm) - v(tm - rj) ^ f D+v{3)ds ^ - f i | 77.
Jtm-v l21

Since v is non-increasing with respect to t, t ^ 0, from (3.30)

(3.31) < w ( i m _ a ) -

^ v(to)-m [-J77.

Equation (3.31) implies that, for large m, v(tm) will become negative, since v(to)
is finite. Since v(t) ^ 0, the implied negativity is a contradiction. Hence it follows that
such a sequence {<m} cannot exist. Thus, (3.1) follows, and the proof is complete.

4. DISCUSSION

Since the coefficients — aa[t) [i — 1, 2, 3, . . . , n) are usually considered to repre-
sent the strength of the self-regulating negative feedback effects (intraspecific competi-
tion) and bi(t) (t = 1, 2, . . . , n) the potential growth rates of the n-competing species
at time t, we have shown the following: in the case of an n-species Lotka Volterra
model with hereditary effects in a periodic environment, the system will be globally
asymptotically stable if, besides condition (1.4), the following hold:

(i) The self regulating periodic intraspecific negative feedback effects - aa(t)
are instantaneous and dominate the periodic interspecific interaction ef-
fects of all the species (3.2).

(ii) The minimum possible growth rates of the i-th species are stronger than
the maximum interspecific effects weighted with the respective sizes of all
species when they are near their potential maximum sizes.

In this sense, if

m ^ V^ ,^ |"maxte[OiP]M<)]
dt) > > max Cijtt) —: — —

^*6[o,P] [mint6[o)P]ai;,(<)J

mm
t€[o,P]

then the i-th species can successfully recover when its population is low in the presence

of delayed periodic interspecific interactions of all species when all are at their maximum

sizes.
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In the case of a constant environment the periodic coefficients become constant,
which satisfies the conditions (1.4) - (1.6) and (3.2) - (3.3). Our result implies, in
this case, the existence and global asymptotic stability of a positive steady state of the
system of integrodifferential equations considered by Gopalsamy [4]:

dx- F n ft "1
-TT = *»(*) bi ~ auxi(t) - V " Cij I kij(t - s)xj(s)ds ,

L J = 1 J-oo J

which is a particular case of the system (1.1).

5. EXAMPLE

The coupled first order differential equations given by (1.1) for the case n = 3
were integrated numerically by using a standard Runge-Kutta-Fehlberg method. The
numerical values used are listed below:

^P- = z 1 (
dt

/•*
- (0.7 + 0.5cos?rt) / exp(- ( i -s ) )x i (s )<fs

J-oo

- (0.8+ 0.5sin7rt) / exp( - ( t - s))x2{s)ds
J — CO

r* l
-(0.6 + 035sinirt) / exp( - ( t - a))x3(s)ds\

J — oo J

- ^ = x2(t) (12 + 0.5sinnt) - (6 + 0.4cosirt)x2(t)
dt [

-(0.8 + 0.5cos7rf) I exp(-{t-s))xi(s)ds
J—oo

- ( 0 . 7 + 0.4sinirt) I exp(-(t - s))z2(s)ds
J—oo

- (0.8 + 0.5 cos •nt) J exp {-{t - s))x3{s)da
J — oo J

^ i = xs(t) [(9 + 0.5sin7rt) - (6.5 + 0.3sin7rf)a;3(*)
dt I

- ( 0 . 4 + 0.3sinizt) I exp(-(< - s))xi(s)ds
J — oo

- ( 0 . 5 + 0.4sinTrt) I exp (-(< - s))x2(s)da
J—oo
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-(0.4 + 0.3sinnt) / exp(-(< - s))x3(s)ds .
J—oo J

The initial conditions, chosen arbitrarily were:

zi(s)=0.6 (-00 < s < 0)

x2(s) = 0.62

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

' • •

' . • • • •

8
Time

• X1 • X2 X3

Figure 1. XI, X2, X3, as a function of time.

O 0. 0. 0 0. 0. 0. 0. 0. 0. 1 1. 1. 1. 1. 1. 1. 1. 1. 1 . 2 2. 3 1 3 . 3. 3. 3. 3. 3. 3. 3. 4 4. 4. 4. 4. 4. 4 4. 4, 4. 5

X2 • - X3

Figure 2. XI, X2, JO, as a function of time (constant coeffi-
cients case).
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Figure 1 displays the results and shows the globally asymptotically stable nature
of the system comprised of individually periodic solutions. .Figure 2 illustrates the case
for the same system of differential equations with constant coefficients, obtained from
the original system with the period being set equal to zero.
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