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GLOBAL ASYMPTOTIC STABILITY OF A PERIODIC SYSTEM
OF DELAY LOGISTIC EQUATIONS

R.A. AHLIP anp R.R. KING

Sufficient conditions are obtained for the existence and global asymptotic stability
of a periodic solution in Volterra’s population system of integrodifferential equa-
tions with periodic coefficients. It is shown that if (i) the intraspecific negative
feedbacks are instantaneous and dominate the interspecific effects (ii) the mini-
mum possible growth rates are stronger than the maximum interspecific effects
weighted with the respective sizes of all species, when they are near their poten-
tial maximum sizes, then the system of integrodifferential equations has a unique
componentwise periodic solution which is globally asymptotically stable.

1. INTRODUCTION

In this paper we propose to derive a set of “easily verifiable” sufficient conditions
for the existence of a globally asymptotically stable strictly positive (componentwise)
periodic solution of the integro-differential system

(1.1) % = zi(t) |bilt) — an(t)zi(t) — Z ciji(t) /_ kij(t — s)zj(s)ds

j=1
1=1,2,...,n, t>0
with initial conditions

(1.2) z:,-(t) =¢i(t), t<0, i=1,2,...,n

where ¢; (=1, 2, ..., n) are bounded nonnegative continuous functions on (—o0, 0)

with possible jump discontinuities at £ = 0 so that
(1.3) $:i(0)>0, ¢1=1,2,...,n.

The coefficients a;i(t), bi(t), cij(t), (3,5 =1,2, ..., n) are given real p-periodic func-
tions defined for all ¢ > 0, and satisfying the conditions

(1.4) a;i(t) > 0, b;(t) >0, ai()>0, 4,3=1,2,...,n.
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The delay kernels k;;(t) (¢, 7=1,2,...,n) are continuous functions defined for all
t > 0 and satisfy the conditions:

(1.5) ki) 20, t 20, 4,7=1,2,...,n

and

(1.6) / b()dt=1 i,j=1,2,...,n.
0

In mathematical ecology, (1.1) denotes a model of the dynamics of an n-species
system in which each individual competes with all others of the system for a common
pool of resources and the interspecific competition involves a time delay extending over
the entire past as typified by the delay kernels in (1.1). The assumption of periodicity
of the parameters b;, a;; (i, 7 =1, 2, ..., n) is a way of incorporating the periodicity
of the environment (for example the seasonal effects of weather, food supplies, mating
habits et cetera).

A number of authors have considered scalar systems of the form (1.1). Miller [5]
considered the integro-differential equation

t

“li—: =z(t) [b —az(t) - c/ k(t — s)z(s)ds|, t>0,

-0

where a, b, ¢ are real positive numbers. He proved the existence of a globally asymp-
totically stable positive solution under prescribed conditions on the coefficients a, b and
¢. Cushing [2] considered the periodic logistic equation and derived sufficient conditions
for the existence of a non-trivial, non-negative, periodic solution. Badii and Schiaffino
[1] obtained sufficient conditions for the existence of a positive globally asymptotically
stable periodic solution of the integrodifferential equation

o = 2(0) o) — a(0e(0) = ot0) [ Kt - s)a(e)d],

where the coefficients a(t), b(t) and c(t) are periodic with common period p > 0.
Gopalsamy [3] provided sufficient conditions for the existence of a positive periodic so-
lution and its global asymptotic stability in Volterra’s population system incorporating
hereditary effects, in a constant environment.

2. NOTATION AND PRELIMINARY RESULTS

Let Cp = Cp(R, R) denote the Banach space of all real p-periodic continuous scalar

functions with the supremum norm

lzlly = Supogegs I2(2)] -
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Cp = C}(R, R) denotes the Banach space of all real n-dimensional, p-periodic contin-
uous functions endowed with the norm :

21, 22,y 20}l = max ol

The natural ordering in C}, that is,
z2yifz;(t) 2 yi(t)fori=1,2,...,n and t € R, will be used.

For z defined on [0, p], the average of z is defined to be

ol = [ a(e)ds.

Let the convolution of k with the bounded function z be denoted by

t

(k% 2)(t) = / k(t — s)o(s)ds.

— 00

DEFINITION: A solution of the problem (1.1) — (1.2) is a continuous function

2(t) = (21(t), z2(t), - -+, 2n(1)),

with

z;: (—o0, 0) > [0,0) (i=1,2,...,n)
such that z;(t) = ¢i(t) on (—oo, 0] with z;(t), (¢ =1, 2, ..., n) continuously differen-
tiable on (0, 00) and satisfying (1.1).

THEOREM 2.1. Cushing [2]. Let bi(t), aii(t) (:=1,2,...,n) be given real
p-periodic continuous functions such that [b;} > 0 and a;i(t) >0 (i =1,2,...,n) and
¢ij(t)=0 (4,7=1,2,...,n), t €R, then (1.1) has a unique positive (componentwise)
periodic solution.

THEOREM 2.2. Let the coeflicients b;(t), aii(t), ¢:5(¢) and kij (3,7 =1,2, ...,
n) of the integrodifferential system (1.1) satisfy the conditions (1.4) and (1.5), and let
the initial conditions ¢i(t), (: =1, 2, .., n), t < 0 be non-negative bounded continuous
functions on (—oo, 0). Then the problem (1.1} — (1.2) has a unique non-negative
(componentwise) bounded solution.

PROOF: The existence and uniqueness of a local solution are proved by standard
techniques applicable to integrodifferential equations (see, for instance, Cushing [2]).
The non-negativity and boundedness of the solution follow from the form of (1.1) and
a.,'.-(t) >0.
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Let G be the set defined by
¢={zecy: [b;(t) — 3 cist)(ksj * ::j)(t)] >0}, i=1,2...,n
i=1
Let the operator B: G — Cp be defined as follows:

(Bz)(t) =u(t), teR,

where u(t) € Cp is the unique positive (componentwise) periodic solution of the system

n

= [0(t) = D cii(®)kis * 23)(8) | us(®) — ass(®ud(t), i=1,2,...,n

i=1

du;
dt

(2.1)

which exists as a consequence of Theorem (2.1). It is evident that p-periodic solutions of
(1.1) are in one-to-one correspondence with the fixed point of the operator B: G — Cp,
and it immediately follows that G is not empty since z(t) = 0 belongs to G.
Define
u’(t) = (BO)(t); u° € C}.

LEMMA 2.1. Ifz € C}(R, R) and c¢;;(t) are real p-periodic continuous functions
(¢,7=1,2,...,n), then

y=(y1a Y2, .-y yﬂ)ec;(R’R),

where
n t
w(t) = S es) [ k(e zs(e)ds i,5=1,2,..m
j=1 ke
and
n t+p
wlt+p) = S est+8) [ kylt+p-o)ai(s)ds
i=1 —oo

= Z‘-‘iz‘(t) /_w kij(t — s)zj(s — p)ds

= Z ci;(t) /_co kij(t — s)zj(s)ds

= yi(t).
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LEMMA 2.2. Let z(!) and z(?) belong to G and z(V) < z(?), then Bz(?) < BY.

PROOF: Let

n

wi) = b(t) = Y ei5(t) (ks':' * zS-”) ®),

i=1
and

wsz) = bi(t) — Zc,-,-(t)(k,-,- * a:g-z)(t)), i=1,2,...,n, t>0
j=1

and let uU)(t) = (Bz())(t) for t € R with j =1, 2. ‘Then we have
w(l)(t) > w(?(t), where wld) = (ng), ng), ey ws;i)), j=1,2.

Further, [ng)] = [a,-,-ugj)] since ugj)(t) (i=1,2,...,n;j=1,2) are periodic by virtue
of Lemma 2.1. Hence,

[l > [en®], (i=1,2,...,n)

for some
to €R, uP(t)>ulk), (=12 ...,n)

Now let v;(t) = uEl)(t) - ugz)(t); hence it follows that:

dv; dugl) dugz)

dt - dt dt
= () - b)) (4(0)” - w0 - 50 (1)
= vty (1) - w0 (t) - 5i(0) (1) - wP(1)) (u0) + 4 (1))

> [w}(2) - b:() ((8) + w2 () out)-

Thus,

dvi 2 gi(t)vi(t) for t >,

dt
where gi(t) = w{"(t) — b.-(t)(u?)(t)+u$2)(t)), i=1,2,...,n. This implies that
vi(t)>0forall t >2,i=1,2,...,7n. 0

LEMMA 2.3. Let ki (i,7=1,2,...,n) satisfy (1.5) and define k;; = 0 for
t <0, and let c¢;;(t) and v;;(t) belong to Cp. Then

[z:; eij(t)(kij * ”"J')(t)] = [2::1 v;5()(kij * €i5)(2)
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Proor:
n 4 e P p(i+1)
(S etk v £ 5 [Testo [ kita opito)doat
=1 j=1i=-oc¥0 P
= ZC'J Z / c._,(t)/ ij(t — 8 —ip)dsdt
j=1 i=—o0
"= P p(i-1)
= E / ’U,'J'(s) k,’j(t - s)c,-j(t) dsdt
j=1i=—o0 Y0 —ip

M:

;

vij(kij * c,-,-)] :
7

1

3. THE MAIN RESULT

DEFINITION 3.1: The solution z*(t) = (z}(¢), z3(t), ..., z}(t)) of (1.1) is called
globally asymptotically stable if and only if all solutions of the system (1.1) with initial
conditions z;(0) >0 (i =1, 2, ..., n) defined for all ¢ > 0 satisfy:

(3.1) lim |zi(t) - 23 (8)] =0; i=1,2,...,n

By definition of global asymptotic stability it follows that z*() is unique.

THEOREM 3.1. Consider the set of integrodifferential equations (1.1) along with
(1.2) — (1.3). Let the coeflicients a;j(t), bi(t), cij(t) (3,7 =1, 2, ...,n) satisfy condi-
tions (1.4), and let kij (3,7 =1, 2, ..., n) satisfy (1.5) and (1.6).

Further, if

n

3.2 st H(t
(32) (Din_ ai(t) > tggﬁ]jzlcg()Jral

for some positive constant a;, and

ma.xte[oyp] bJ(t)
3.3 mJn bi(t) > ma.x Cij —_ T+
(3:3) tefo, () E [mm:e[o,pl a;;(t) ?

for some positive constant €3, then the system (1.1) with (1.2) — (1.3) has a strictly
positive (componentwise) globally asymptotically stable p-periodic solution.

The proof of the Theorem is presented in two parts. In Part 1 the existence of a
positive (componentwise) p-periodic solution is demonstrated, and in Part 2 the global
asymptotic stability of the solution is shown.

https://doi.org/10.1017/50004972700017135 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700017135

[7] Delay logistic equations 379

PART 1.

PROOF OF THE EXISTENCE OF A POSITIVE p-PERIODIC SOLUTION..

Consider the set of differential equations:

1 du?

2008 dt - 1 q ) = P .
u?(t) dt bl(t) au(t)u, (t), 1 1, 2, ,

(3.4)
As a consequence of the periodicity of the equations (3.4) it follows that
(3.5) (] = [auul], i=1,2,...,n.

Lemmas (2.3) and (2.3) imply

(3.6)
[a,,-i'u,:-]] = [bi] > [2": max c;j(t)[gme[o—’]bj(-tl]] > [i uq(k;j * c,-_,-)]
e te(o, p) MmN, p) a,,-,-(t) = J
= [ X et <)o)
j=1
and consequently that u® = (u}, u},...,u’) € G. Since 0 < w? (i=1,2,...,n),

then Bu® < u°.
Now if the function v € Cp satisfying the condition 0 < v < u? is considered, it is
clear that 0 < Bu® € Bv < u°.
Therefore the set
Go={u€C”,‘:0<v<u°}CG

is left invariant by the operator B. Further
Bu® < Bv € u° = Bu® € B%v < B%u® = B34’ < B3v < B%C.

By induction,
B2n+1u0 s B2n+lv < BZnuO

and

(3.7) B0 < B2y < B2 forn =0, 1,2, ... .

It is now to be shown that (B2"*'u®) and (B?"u’) are, respectively, increasing

and decreasing sequences.
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The method of finite induction will be used to prove the last assertion. Now

0<u’®= Bu’ <u’=0< Bu’ < Bu® <4’ = 0 < Bu® < B3u® < B%4° < 4°
= 0 < Bu® < B34 < B%u® < °.

Let it be assummed that for n = k, the following relationship holds:

(3.8)
0 < Bu® < B3’ <... < B 734% <« B?*14% « B?%,° < ... < B*4°® < B%4® < 2.

We wish to show that

(3.9) 0 < Bu® < B%u® <... < B¥7340 ¢ p2k—1,0
< B2k+2,,0 < B2k-2y,0 < ...< B*® < B%°.

Using the operator B on all terms in (3.7), and the monotonic properties of B

discussed above together gives

0< Bu’ < B3u® < ... < B¥ 340 « B2+—10
< B2 « B2%40 « B#-20 « | < B*u® <« B%u® < u°

and hence (3.9) holds. Therefore, from the principle of finite induction {B?"*14°} and
{B?™u%} are, respectively, increasing, and decreasing sequences.
Now define
u™(t) = (B™’)(t) = (Bu™"1)(¢).
Since the sequence (B***'u%) is monotonic increasing, and bounded above by every
term in the sequence (B*"u°), then u™(t) = lim u?n*1(¢) exists.

Similarly, since the sequence (B 271u") is monotonic decreasing and bounded below
by every term in the sequence (B2"*'u?), then u*(t) = lim u?"(t) exists, and so
n

0<u™(t) <u*(t)
(that is, 0 < u7(t) Su}(t);i=1,2,...,n).
To prove the existence of a unique fixed point u*(t) of the operator B it is sufficient

to show that
v (t) = u+(t) =u*(t)

(that is, u; (¢) = uf(t) =u}(t); i=1,2,...,).
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As a result of the montonocity and uniform boundedness of {u"}, the L
convergences of the sequences {u?**1} and {u?"} follow, and also that of their deriva-

tives, since, by definition

R COR Zc.,(t )k + 5772)(0))u2(0) - as()(u? ()’

(3.10) i=1,2,...,n; t>0.

Taking the limit for n gives, for odd and even cases, respectively,

(3.11)

w; = (bi(t) - Z cij() (ki *u;’)(t)) ul (t) — aii(t)(u;(t))z, i=19...n
(3.12)

uf = (bi(t) - Z cij(t) (kij * U,-")(t))u?(t) —aa)(uf®)?, i=1,2,...,n
From dividing (3.11), (3.12) by u; (t), u}(t), respectively, i = 1,2, ..., n, the result
(3. 13)

8 (b (t) - ,Zl eij(t) (kij * u;“)(t)) —ai(t)(u; (@), i=1,2,...,n;

(3.14)

at N ‘
+(t) (b (t) - Zcu(t) kij xu; )(t)) —au(t)(uf(t)), i=1,2,...,n

Integrating (3.13) and (3.14) with respect to ¢ from 0 to oo, and using the peri-
odicity of logu; (t) and u}(t) (i=1,2, ..., n) we have

[b (1) - Zc.,(t)(k., v ul)(8) - ass(tu; (t)]

= [b,’(t) - E c.','(t)(k.'j * u;)(t) - aii(t)u?-(t)]; 1=1,2,...,n.

i=1

(3.15)

Let vi(t) = uf(t) —u;(t); i=1,2,...,n. From (3.15) it follows that

(3.16) [E C;J'(t)(k,'j * vj)(t)] = [aﬁ(t)v;(t)] 1=1,2,...,n.

i=1
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As a consequence of Lemma 2.3 we have,
(3-17) [Z vj(t)(kij * cij)()| = [es(t)oi(¥)]; i=1,2,...,n.

ji=1

It follows that
(3.18)
[bii(t)vi(t)] = [wi(t)(kar * ca)(t)] + . .. + [wa(8)(Rai * cas)(E)] + . .. + [on(E)(kin * cin)(2));

i=12 ..., n.

Condition (3.2) implies
n n
ai;l(t) > m si(1) > kijxeci;)(t) 0<t<p;, i=1,2,...,
(>3 e e8> T (k> es)()) 0<t<p .

which further implies that
aii(t) > (ki * cii)(t) = ii(2)vi(t) > vi(t)(kii * cis)(1).
Since v;(t) 2 0,2=1,2, ..., n we have
(3.19) (aii(t)vi(t)] > [vi(t)(kii* cii(t))], i=1,2,...,n.
But (3.19) contradicts the equality in (3.18). Therefore it follows that
vi(t)=0fori=1,2,...,n

and hence
wt(t)=u"(t), i=1,2,...,n.

This completes the proof of the existence of a fixed point of the operator B and

hence the existence of a positive periodic solution of (1.1). 0
PART 2.

PROOF OF THE GLOBAL ASYMPTOTIC STABILITY OF THE SOLUTION.
Let the unique positive (componentwise) fixed point of the operator B be denoted
by
2" (t) = (21(2), 23(t), .-, z(2))-
It will now be shown that z*(t) is a globally asymptotically stable solution of the system
(1.1) together with (1.2) and (1.3).
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Let z(t) = zi1(t), 22(t), ..., za(t) be any solution of the system (1.1) with
z(t) = ¢(t) for t < 0, where ¢(t) = {¢:(t)}L; with the ¢;(t) continuous functions

i=1
on (—o0, 0). Since all solutions of (1.1) with strictly positive initial conditions remain

strictly positive, we let

(3.20) X7 (t) =log z;(t) and X;(t) =logzi(t), i=1,2,...,n.
Consequently, from (1.1), it follows that:

(3.21)

Z(XE(0) — Xi(1)) = —a(t) (exp (X7) — exp (X(1)

_ Z eij(t) [_w kij(t — s)(exp (X;(s)) — exp (X_,-(s)))ds

i=1
i=1,2,...,n, t>0.

We define a Lyapunov function as follows

(3.22)
o(t) = Do [1%: (1) - Xi(o)
+ Z /0°° kij(s) - cij(u+ 8)|exp (X;(u)) — exp (X_,-(u))l du ds]
with £ > 0.

It follows from (3.22) that v(¢) > 0. Since v is continuous and globally Lipschitzian
on R,, the upper right Dini-derivative of v along the trajectories of (3.21) exists. In
order to utilise the properties of upper-Dini derivatives we introduce a functional o as
follows. Let z be a continuously differentiable scalar function defined on [0, co], then
define o(z)(t) as follows:

1, z(t) >0, () |

dt
(3.23) o(2)t)={ 0, 2(t)=0, d‘;—(t‘) ~0
-1, z(t) <0, d;—(tt) < 0.

It is not difficulty to verify that

2(t)a(2)(t) = |2()]
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and
(3.24) D (1) = o(2)() 2

where D* denotes the upper right Dini-derivative.
By evaluating the upper right Dini derivative along the solutions of (3.21) we get

n

D*u(t) = 3 [olexp (X7) - exp (Xi)(~as(t)) exp (X3 (1))
- exp(Xi(1) = S eis(t) [ kilt — 5) exp (X(9) - exp (Xs(6))

o (exp (X;(s)) —exp(X;(s)))ds + Z /ooo kij(8)cij(u + s)
x o(exp X} (t) — exp (X;(t))) (exp(X;(t) — exp (Xj(t))))ds

- i /wl kij(S)Cij(t)V(exp(Xf(t —s) —exp (X;(t - s))))

j=1vI=

x (exp (X} (t — s)) — exp (X;(t — s)))ds] .

Using (3.24),

D*u(t) < = 3 [laal lexp (X7 (2)) - exp (X:(1)]
+ Z ¢i;(t) /0°° kij(s) [exp (X (t — 8)) — exp (X;(t — 5))| ds

_ Z /;°° kij(s)cij(t +s) |exp (X;(t)) — exp (Xj(t))l ds

- Z /:o kij(s)cij(t) |exp (X} (t — 5)) — exp (X;(t — )| ds]

n

= = 3 [lasl lexp (X3 (1)) - exp (X:(0)]
=3 fexp (X5(0) — exp ()] x [ (o) + )]

As a consequence of (3.2) and (1.6), we have

(3.25) D¥o(t) < —eq E |z} () — zi(2)| .
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From the non-negativity of v(t) for t > 0, by integrating (3.25) we have

o) — v(0) < —as /0 Y- lei(s) - 2i(o)l ds,
which implies
(3.26)
[0+ Y [ kato) [ et ) foxp (X3(0) - xp (Xya))] duds]

t B
+a/ z}(s) — zi(s)|ds < v(0) < o0.
A ,;' (s) — zi(s)] (0)
It follows from (3.26) that

o(t) = Y [1Xi(0) - X:(0)

1=1

+ é /‘;wk,-j(s) A

cij(u + s) |exp (X;('u.)) — exp (Xj(u))l du ds]

-8
is bounded on [0, oo), from which is follows that v(t) is uniformly continuous on [0, ).
It is now claimed that (3.22) implies that v(t) — 0 as ¢ — oo, implying (3.1).

Now if it is supposed that (3.1) is not true, then there exists a sequence {¢m},
(m=0,1,2,...,; tm — 0), such that

e €
2 H(tm) — zi(tm)] > =; =0,1,2,...,
(3.27) > li(tn) = 5l > i

for some small poéitive number ¢. It then follows from (3.25) that
(3.28) Dty(tm) < —eform=0,1,2,....
If 5 is a sufficiently small positive number such that
tm-1 <tlm -7 <ty
then

(3.29) D*tou(t) < (—€f/2) fort€(tm —n,tm)andm=0,1,2,....
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Since v(t) is uniformly continuous on [0, co) this ensures that 7 can be chosen to be
independent of ¢,,. It will then follow from (3.29) that

(3.30) V(tm) — v(tm — 1) < / "

tm—n

Dty(s)ds < — [%] 7.
Since v is non-increasing with respect to ¢, ¢ > 0, from (3.30)

o(tm) < vltm-1) = [£] 7

(3.31) < W(tm—z) — 2 [g] 1
<o -n[gln

Equation (3.31) implies that, for large m, v(¢,,) will become negative, since v{t)
is finite. Since v(t) > 0, the implied negativity is a contradiction. Hence it follows that
such a sequence {tm} cannot exist. Thus, (3.1) follows, and the proof is complete.

4. DISCUSSION

Since the coeflicients —a;i(t) (1 =1,2, 3, ..., n) are usually considered to repre-
sent the strength of the self-regulating negative feedback effects (intraspecific competi-
tion) and b;(¢) (¢ =1, 2, ..., n) the potential growth rates of the n-competing species
at time {, we have shown the following: in the case of an n-species Lotka Volterra
model with hereditary effects in a periodic environment, the system will be globally
asymptotically stable if, besides condition (1.4), the following hold:

(i) The self regulating periodic intraspecific negative feedback effects — a;;(t)
are instantaneous and dominate the periodic interspecific interaction ef-
fects of all the species (3.2).

(i) The minimum possible growth rates of the i-th species are stronger than
the maximum interspecific effects weighted with the respective sizes of all

species when they are near their potential maximum sizes.

In this sense, if

maxie(o, 5) b5 (1) }
minefo, p) ;5 (%)

min_b;(t) > letg?(?:};]cﬁ(t) [

te[o, pj

then the i-th species can successfully recover when its population is low in the presence
of delayed periodic interspecific interactions of all species when all are at their maximum

sizes.
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In the case of a constant environment the periodic coefficients become constant,
which satisfies the conditions (1.4) — (1.6) and (3.2) — (3.3). Our result implies, in
this case, the existence and global asymptotic stability of a positive steady state of the
system of integrodifferential equations considered by Gopalsamy [4]:

dz; id t
I = :c,'(t) [bi - aﬁ:B{(t) - ng Cij '/_oo k.‘j(i - s)zj(s)ds ,

which is a particular case of the system (1.1).

5. EXAMPLE

The coupled first order differential equations given by (1.1) for the case n = 3
were integrated numerically by using a standard Runge-Kutta-Fehlberg method. The

numerical values used are listed below:

1) [(14 1+ 0.5 cosmt) — (7 4 0.5 cos i)z (1)
— (0.7 + 0.5 cos ) /_ ; exp (=(t — 5))z1(s)ds
— (0.8 + 0.5sin nt) /_ ; exp (—(t — ))z2(s)ds
(0.6 + 035 sin mt) /_ ; exp (~(t — 8))ws(a)ds
L o) [(12 +0.55in7t) — (6 + 0.4 cos m)zs(t)
— (0.8 4+ 0.5 cos ) /_ ; exp (= (t — 8))z1(s)ds
— (0.7 + 0.4sin ) /_ ; exp (—(t — 8))za(s)ds
— (0.8 4 0.5 cos i) /_ ; exp (—(t — 8))zs(s)ds
"% = z5(2) [(9 +0.5sin7t) — (6.5 + 0.3sinmt)z3()

— (0.4 +0.3sin wt)/; exp (—(t — 8))z1(s)ds

—-(0.5+ 0.4sin mt) /_t exp (—(t — 8))z2(s)ds
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t
—(0.4+ 0.3sin 1rt)/ exp (—(t — s))z3(s)ds|.
-—Cc0
The initial conditions, chosen arbitrarily were:
z1(8) =06 (—o0<s<0)
z2(s) = 0.62
1.9
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Figure 1. X1, X2, X3, as a function of time.
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Figure 2. X1, X2, X3, as a function of time (constant coeffi-
cients case).
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Figure 1 displays the results and shows the globally asymptotically stable nature
of the system comprised of individually periodic solutions. Figure 2 illustrates the case
for the same system of differential equations with constant coefficients, obtained from
the original system with the period being set equal to zero.
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