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Abstract. Given three distinct primitive complex characters y;, y,, x3 satisfying some technical
conditions, we prove that the triple product of twisted L-functions L(f"- y;, 1/2) L(f- x5, 1/2)
L(f" x3, 1/2) does not vanish for a positive proportion of weight 2 primitive forms for I'y(g¢),
when ¢ goes to infinity through the set of prime numbers. This result, together with some var-
iants, implies the existence of quotients of Jy(q) of large dimension satisfying the Birch—Swin-
nerton-Dyer conjecture over cyclic number fields of degree less than 5.
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1. Introduction

In recent years, questions about nonvanishing of automorphic L-functions at their
critical point have received considerable attention [BFH, Du, Lul, MM, IS, PS].
One reason for this is their connections with topics such as the Phillips—Sarnak
deformation theory of Maass forms, the conjecture of Birch and Swinnerton-Dyer,
and the theory of liftings of automorphic forms.

This work deals with the nonvanishing for central values of L functions attached
to the family S5(q) of primitive Hecke eigenforms forms of weight 2, for the group
I'o(¢g) with trivial nebentypus. In this context, the proportion of nonvanishing for
the central value of a single L function was investigated first by Duke in [Du]; sub-
sequently, using mollification techniques, his results were improved by E. Kowalski
and the authors in [KM2, V1, KMV1] to yield a large positive proportion of nonvan-
ishing central values.

In their seminal paper [IS] on the Landau-Siegel zero problem, Iwaniec and Sar-
nak demonstrated the importance of establishing, for a positive proportion of primi-
tive forms, the simultanecous nonvanishing of central values of L functions of
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primitive forms twisted by two different characters. They solved this problem (in-
effectively) for the case when the first character is trivial and the second is real. In
[KMV2], using mollification of fourth moments, the question of simultaneous non-
vanishing for the first character trivial and the second arbitrary was solved. The pre-
sent work extends the methods of [KMV2] to treat simultancous nonvanishing for
central values of L functions with three twists and discuss applications connected
to the Birch—Swinnerton-Dyer conjecture for Jy(g).
A primitive form f € S}(¢) admits a Fourier expansion at infinity
N@) =) Nniyp(n)e(nz).
n=1

with Zs(1) = 1. The Fourier coefficients \/nis(n) are real algebraic integers. For y a
primitive Dirichlet character of modulus D, the twist of f by y, namely

(f @) =Y xm)/niy(n)e(nz),

n=1

is a cuspidal modular form of level ¢D? and nebentypus y. If D is coprime with ¢
(which we henceforth assume), f- y is a primitive form. The associated L-function is

-1
L(f g9 = Y220 1—[(1 _ ) | eq<p>x2<p>) |

2s
o ) P P

where ¢, is the trivial character modulo ¢. This has analytic continuation to the
whole complex plane and satisfies the functional equation [Li]

G() _
A 129 = == GG 7:1 =9 (11)
where G(y) is the Gauss sum, ¢r = %1, and
A(f 7, 9) = (qD*)*@r) " T(s + HL(f - 1, 9)-
When ¢ is squarefree, [Li]
&r = Qa2 (q)- (1.2)

Let x;, x5, 13 be three distinct primitive characters of moduli Dy, D,, D3 respectively.
In this paper we consider the simultaneous nonvanishing of the central value

L/ 20 DL 12 LS - 733)

when the level ¢ is prime.

THEOREM 1.1. There exists an effective positive constant ¢ satisfying: for any
Y1s X2» X3 three distinct primitive characters whose conductors Dy, Dy, D3 are square-
free, and such that y3, y3, y3 remain primitive with the same moduli, we have

1/ € 5@ LU~ 11, DL - 12, DL - 13, 9) # 0} = ¢l S5(q)]

for all sufficiently large primes q, where the requisite size of q depends only on
Dl ) D27 D3‘
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As is now standard, this is proved through mollification techniques, combined with
estimates for the twisted fourth moments of L(f- y;, 1/2). Bounds on moments of this
sort are analyzed thoroughly in [DFI12], and indeed we adopt their methods to control
the largest remainder terms. However, for mollification we also need the asymptotics
of these moments. When y; is the trivial character these asymptotics were computed
for the first time in [KMV2], and the bulk of the present paper is spent obtaining
the necessary variant when y; is nontrivial. There is no significant distinction in the
handling of the remainder terms in this case, but the asymptotics are considerably
more intricate (since the Eisenstein series arising from y ® y has square level). The
two assumptions on y in Theorem 1.1 are there to simplify the calculations, not
because we expect the results to be false in other settings. For the applications we
have in mind (see below) the assumptions do not cause us any significant difficulties.

In the course of the proof, we obtain the following precise asymptotic for the
fourth moment:

PROPOSITION 1.2. Let y be a complex primitive character of squarefree conductor
D > 1, such that y* is primitive. If q is prime, then

\L(f- 7. 1/2)1*
2 47T(f 5

feS5(q)
= P,(log(qD*/47)) + 2Re(1(4)C,) + Os.n(g ™"/,

where C, is a constant depending on y only and P,(X) is a polynomial of degree 4,
whose coefficients depend only on y, with leading coefficient

1 2
20 | H Ty 146 DF

This should be compared with Corollary 1.3 of [KM V2] which treated the case of
the trivial character and where the degree of the corresponding polynomial is 6. The
difference in degrees is explained by the fact that the family {L(f" y, $)}se S3(0) is pre-
dicted to admit an ‘unitary’ symmetry (in the terminology of [KS]) when y is com-
plex, and an ‘orthogonal’ symmetry when y is trivial and f is restricted to ‘even
forms’. In both cases our computations fit well with the predictions of Conrey and
Farmer [CF] and Keating and Snaith [KeSn] using random matrix models. Note that
C, and the coefficients of P, can be explicitly computed.

1.1. ARITHMETIC APPLICATIONS

These investigations on simultaneous nonvanishing were motivated by the recent
progress made towards the Birch—Swinnerton-Dyer conjecture for quotients of
Jo(g) (the Jacobian of the modular curve Xy(g)) over abelian number fields. Let K
be an Abelian extension of Q. By the Kronecker—Weber Theorem, K is a subfield
of some cyclotomic extension Q(exp(2zi/D)). Identifying Gal(Q(exp(2zi/D))) with
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(Z/DZ)*, there exists a subgroup Gﬁ(\K) of the Dirichlet characters of modulus D
(which is identified with the group of characters of Gal(K)) such that the Dedekind
L-function of the field K takes the form

1\ -
L(K,s) := 1_[ <1—W) = 1_[ L(Z, ),

peSpec(Ok) 1€Gal(K)

where J is the underlying primitive character of y. For f € S5(g), by successive appli-
cations of the cyclic base change theory (due to Saito, Shintani and Langlands [La])
there is an automorphic form fx over GL,(Ag) called the base change lift of f from Q
to K whose associated L function is given by

Lifx.9)= [] L(f7.9.
ZeG:ll(\K)
Hence, Theorem 1.1 implies the following

COROLLARY 1.3. There exists an effective positive constant ¢ satisfying: let K be a
Galois extension of degree 5 unramified at 5, then for any sufficiently large prime ¢

(depending on K) | {f € S3(q). L(fx.3) # O}| = cIS3(q)I.

The condition that 5 is unramified insures that the conductor of any y € G;l(\K) is
square-free. The corollary fits with the following results proven in [KMV2]:

THEOREM. There exists an effective positive constant ¢ satisfying: let K be a Galois
extension of degree 2 or 3, then for any sufficiently large prime q (depending on K)

[{f € S5(@), L(fk,3) # O}l = c|S5(q)],

if K is quadratic and yx(—q) = 1 (here yg is the Kronecker symbol of K) or if K is cubic.
If K is quadratic and yg(—q) = —1 then

(/€ Sita). ord_yL(fi.5) = 1) > €S} (@)

Note that we have said nothing so far about extensions of degree 4. The following
variant of Theorem 1.1, along with its corollary, takes care of the case of cyclic
extensions:

THEOREM 1.4. There exists an effective positive constant ¢ satisfying: let y, a real
character and y3 a complex character of squarefree conductors Dy, D3 such that x%g is
primitive, then

/€ 59, xo(=q) =1, ord LS, )L - 22, LS - 13, 8) = O} = el SH(@)],

1{f € $5(@). (=) = —1, ordS:%L(f, SIL(S - 222 LS 130 8) = 1} = ¢[S3(9)],

for all sufficiently large primes q (depending on D, D3).
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COROLLARY 1.5. There exists an effective positive constant ¢ satisfying: let K be a
cyclic extension of degree 4 unramified at 2 and such that K is unramified over its
(unique) quadratic subfield K'. Let yx be the Kronecker symbol associated to K, then
for any q prime large enough (depending on K)

I/ € S5(@) ax(=q) =1, 0rd _ 1 L{fx, $) = O}l = cIS3(9)].

11/ € $3(@). 2ic(—a) = =1 ord_iL(fi. ) = )| > eISi(a)]

We will not give the proof of Theorem 1.4 here as it turns out to be easier in many
aspects than that of Theorem 1.1; however we shortly discuss how this variant is
obtained in Section 11.

Remark. The remaining degree four case is that of the biquadratic field. By our
methods this would require precise asymptotics for the twisted sixth moments of
L(f- %, 1/2), which are beyond the reach of current techniques.

Combining these results with the work of Gross, Zagier, Kolyvagin, Logachev,
and Kato, [GZ, Ko, KL, Ru, Sc] we obtain the following theorem:

THEOREM 1.6. Let K be a cyclic extention of Q of degree at most five such that 2
(respectively S) is unramified if [K : Q] = 4 (respectively 5). If K is quartic assume also
that K is unramified over its unique quadratic subfield. There exists an absolute positive
constant ¢ such that for q a sufficiently large prime (depending on K), Jo(q) admits a
quotient J of dimension dim J = ¢ dim Jy(q), whose group of K-rational points satisfies
the weak Birch—Swinnerton-Dyer conjecture. More precisely, denote by Jg the K-
rational abelian variety obtained from J by extension of scalars to K, and by L(Jk, s)
the associated L-function. Then

rankzJ(K) = ord,—| L(J, )
_ { dimJ if K contains K', quadratic, with yx(—q) = —1,
0 else.

Our paper is organized as follows: after introducing some notation and definitions
in Section 2, we show in Section 3 how Theorem 1.1 and its variant 1.4 implies the
Corollaries 1.3, 1.5, and 1.6. In Section 4 we explain how the proof of Theorem 1.1
reduces to the estimate of (mollified) third and fourth moments. The triple moment is
computed in Sections 5 and 6. The computation of the fourth moment is handled in
Sections 7, 8 and 9. In Section 7, we isolate the main terms and compute the easiest
ones, the so-called ‘diagonal’ and ‘off-diagonal’ terms. In Sections 8 and 9 we com-
pute the third main term (which, lacking a better term, we call ‘off-off-diagonal’);
this is by far the most difficult and technical portion of the paper. The key is that,
as in [KMV2], the off-off-diagonal term is defined by a double integral whose inte-
grand is an odd function of both variables (s, ¢ say); hence by contour shift, the OOD
term equals the residue of the integrand at s =t =0 (see (9.5) and (9.10)). Let us
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emphasize that without this rather delicate property, it is not possible to mollify
properly the OOD portion. The mollification (and the completion of the proof of
Theorem 1.1) is sketched in Section 10, most of the techniques being those of
[KMV2] Sections 5 to 7. In Section 11 we discuss the proof of Theorem 1.4. We
end with a series of appendices dealing with some general forms of the Poisson for-
mula and the study of various exponential sums encountered in this paper.

2. Notation and Formulae

We refer the reader to [KMV?2] for background on modular forms. In addition to the
formulae mentioned above, we will also use the multiplicative relation for the coeffi-
cients of Hecke eigenforms in S%(g):

Lz =Y s i) @.1)

d|(m,n)
Mobius inversion then gives the inverse equation
m n
Ar(mn) = £ A -(—)i (—), 2.2
() %%AW@fdfd 22
where ¢, is the trivial character modulo g.

The fundamental formula of this paper is Petersson’s trace formula, which we now
review. Let B(g) be an orthogonal basis of S3(g). Then

Ylmiy ) _ )
ity A4S = Oman + A, 1) (2.3)

with

A(m, n) := —2n Z Stom, m; ¢) Ji (471\6/%5)

4
c=0(q)
>0

L mx + nx
S(m, n; c) = Z e(c )

x(c),(x,0)=1

and

Note that the identity (2.3) is independent of the choice of the basis B,(g); since in
this paper ¢ is prime, there are no ‘oldforms’ and S3(q) is an orthogonal basis of
S3(¢g). In particular we have

1S3(g)| = dim S5(g) = 75+ O(1). (24)

To simplify later discussions, we introduce some notation. Given an Euler
product L(s) =[], L,(s) and an integer A, let L4(s) =[], Ly(s) and LA (s) =
H(p, =1 Lp(s). To avoid confusion, the Ath power of L(s) will be noted L(s)". Given
an integer 4 and a character y of modulus D, we let G(y, h) = ZX(D) 1(x)e(hx/D)
denote the Gauss sum and let G(x) denote G(y, 1). When the modulus of y is not clear
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from the context (for example if y is induced from a character of lower level) we use
the more precise notation G(y, #; D). We let ¥ denote the unique primitive character
inducing y. If D = pr“ﬁ, we factor y() into y(x) := leD %,(*) where y, are charac-
ters of modulus p*.

Because (2.3) will be used for essentially all averaging over forms in this paper,
it will be convenient to introduce the the following notation for the weighted average

of forms:
h
O(f'
DT P
1€83(9) st 4 S)

3. Derivation of the Arithmetic Applications

In this section we show how Theorem 1.1 and its variant, Theorem 1.4, imply 1.3, 1.5
and Theorem 1.6. For K a cyclic extension of degree at most five we let Gal(K)
denote its Galois group over Q and Ggi(\K) its character group. Let y be the genera-
tor of Gal(K). Then for f € Si(¢),

LD DL - 12D #0 = LULYLU - 7. DL - 72,3 #0,
and, since 1, 7, 72, 7, and 7> cover all of Gal(K), we have
Lifx. )= ] LU 19 #0.
16(};1‘(\[()
Thus, Theorem 1.1 implies Corollary 1.3 and similarly Theorem 1.4 implies Corol-
lary 1.5.
Our starting point in the derivation of Theorem 1.6 is the work of Shimura [SH]

on the arithmeticity of central values of L functions: for any ¢ € Gal(Q), f € S3(q),
and character y,

L(f- 2.1/ #0 < L(f7 . 1/2) #0.
When y is real, it follows from [GZ] that

ord (L(f-7,8)=1 <= ord |L(f° -, s) =1
s=5 =3

(here by L(f-y,s) we really mean L(f-J,s), the L-function of the twist by the
primitive underlying character). From this it follows that

[ L0 « [] LU0 1240« [] LU -1.1/2)#0.
7€Gal(K) 1€Gal(K) 1€Gal(K)
since ¢ stabilizes Ggl-(\K). More precisely, if y has order d and a(exp(2mi/d)) =
exp(2ria/d) for (a, d) =1 then y° = y*. It follows that

[l L0212 #0 & VzeGa®. [[ LU -z1/2#0.

—

1€Gal(K) /7 .{oeGal(Q)}
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Let A, denote the subquotient of Jy(g) associated to f by Shimura theory. This is an
Abelian variety of dimension 2dy. Let Af = Resg/qAy/k be the restriction from K to
Q of the extension of scalars of A, to K; this is an Abelian variety over Q of dimen-
sion (deg K)(dim Ay). The set of rational points Aff(Q) is naturally isomorphic as a
Z-module to the set of K-rational points of A;; in particular there is an action of
Gal(K) on Af(g)\ and a natural decomposition of Af(Q) ® C into y eigencompo-
nents for y € Gal(K),

AFQecC= P UfQescCy
1€Gal(K)
By the work of Kato* (see [Ru, Sc] and the discussion in Section 5 of [Me]),
[] L7 x1/2) # 0 implies that dim(4/(Q) ® C)* = 0.
Self?.0eGal(Q)

hence

L(fx. ) # 0 implies that rank A/(K) = 0. (3.2)
If K contains a quadratic field K’ such that y(—¢) = —1, then

LS )L(f - 1k 3) = L(fx,3) =0,
so if we assume that ord% L(fk,s) = 1 when either

L(fip#0 or L(fyx.y) #0,

and that L(f- y, %) # 0 for all the other y € GEIFK), then this argument continues to
hold and for all y € Gal(K) with one exception the corresponding y-eigencomponent
is zero-dimensional. Suppose that the exception is the trivial character: ordvzl

L(f,s) = 1; then from the [GZ, Ko, KL], 2
rank A(Q) =ord 1L(Ay, s) =d,
s=5 - -
hence in this case

ord 1L(fk,s) =1 implies that rankA(K) = dr. (3.3)
- : :

The same argument holds in the case ords_lL(f “Ax»S) = 1 with a minor difficulty:
=2

one needs instead to consider the product Ay x Ay, where Ayr,,, is the subquotient
of Jo(q(condx,(,)z) corresponding to the twisted form /-y € S’z‘(q(cond;{K,)z). From
the hypotheses ord; L(f" yx,s) =1, L(f, %) # 0 we have rankA4, x Az, = dp,,, = dp.

To conclude the derivation of Theorem 1.6, we consider, for K cyclic of degree at
most five, the quotient J = HfAf, where f ranges through a set of representatives of
Gal(Q)-orbits of /'€ S5(g) such that the order of L(fx, s) at s = % is 1 or 0, depending
on whether K does or does not contain a quadratic subfield K such that
1x(—¢q) = —1. From (3.2) and (3.3) J(K) has the expected rank. The condition that

*If y is real, one uses the work of Gross and Zagier and Kolyvagin and Logachev instead.
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K is unramified at 2 or 5 if deg K = 4 or 5, respectively, insures that the conductors of
the characters of Gal(K) are coprime with their order and hence are squarefree, so,
from Corollaries 1.3 and 1.5 we have for ¢ a sufficiently large prime

dimJ > 2¢|S5(q)| = 2¢ dim Jy(g).

4. Principle of the Proof of Nonvanishing

The basic idea of the proof is that for any numbers L;(f), Lo(f), L3(f) one has by
Holder’s inequality

4
3" LiNLaA()Ls(S)
f€85(q)
<[ X 1l X )| D2 1Lt | Yo 1L
= 1E550) 1e55(@) /e55(@)
Ly Ly L3())#0
We take Li(f) = M(f)L(f" x; %) where M;(f) is a ‘mollifier’ chosen so that
()4
LOLOLO) S oy ana 3 BOE o
feS;(q) |S2(q)| fES’Z‘(q) |S2(q)|

where ¢y, ¢y, ¢, ¢3 are positive. In the following sections we will show that
h

Y LNLANLs(S) | = (co+ o(1))(log g) 4.1)

1eS83(q)

and

DL < (e + o(1)(log 9)",
1eS5(q@)
for i =1, 2,3, with 4ky = k; + k> + k3 so that
4 h

“ Lons Y L

./65’2‘(41)
Ly Ly L3())#0

To finish the proof of Theorem 1.1, we must still replace the weight 1/4n(f, f) by
the ‘natural’ weight 1/].55(g)|. This can be done using the axiomatic system of [KM2]
and [KMV2] with no loss in the size of the constants, but since we do not care about
the size of the constants, it is enough to use the inequality (already used by Luo in
[Lu2], in a similar context)

€1€2€3

1/2
/ 12
h

h 1
)BERES DD > A
fesy0 fes5@ 1€55(9) An(f.f)
Ly Ly L3(f)£0 Ly Ly L3()£0

and the upper bound due to E. Royer [Ro]:
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LEMMA 4.1. There exists an absolute constant C such that, for q a sufficiently large
prime,

h 1
> g <Ca
) 4r =
sésiio D)
5. The Third Moment
5.1. EXPRESSION OF THE CENTRAL VALUES AS RAPIDILY CONVERGING SERIES

Let y be a primitive character of conductor D, and let ¢, = —y(—¢)G(x)/G()). Take
f € S5(q) with (¢, D) = 1. Then from (1.1) and a contour shift we have

A 2 (n);
Lif =>4 (I;“l)/ﬂg(”) V<q1721)) teger f(:l)/,g(n) V<q1721))’ (5.1)

n

where

1 _yds
V(y) = 27ri/(3) I'(1+s)(2ny) <

If y is real then

D\ ()
(52) ~G-2h == 24D V(p) (52

For y,, y, two primitive characters of respective moduli Dy, D,, and (g, D1 D) =1,
we denote by

1k =Y i),

nyny=n

their Dirichlet convolution. By (2.1), we get

L(f 0 S 12,8) = LOQs, 1120) Y A )y * go(mpn™

so that
L(f 71, HIL(f- lzzwm n
(f Xl’ 2) (f XZ? 2) - }’ll/z 11 qD1D2 —|—
Ar () * 7o(n) n
+ &8, ; nl/2 v 4D\ D;
= P(f. 1122) + &8, P, Ti 1) (5.3)

say, with
W = i r [ ds
() Zni/(;) (1 + 82 LO1 + 25, 7,7,)(4n2p) ™ =3

Shifting the line of integration, we infer that

YO, Y, () < (1 + )] log | (5.4)

https://doi.org/10.1023/A:1020544429383 Published online by Cambridge University Press


https://doi.org/10.1023/A:1020544429383

SIMULTANEOUS NONVANISHING OF TWISTS OF AUTOMORPHIC L-FUNCTIONS 145

for all j > 0 and all 4 > 0, the implied constant depending on j, A, D, D, only (the
| log y| factor appearing if and only if y; = ¥,). On the other hand, if we shift the line
to Mes = —1/2 we have (if y; # 7»)

WX]XZ()/) = L(XlXZ’ 1) + ODI,DZ(]’I/Z)- (55)

5.2. MOLLIFICATION

Let y;, 12, 3 be distinct primitive Dirichlet characters of conductors D;, D,, D3, and
let ¢ be a large prime with (¢, D1 D,D3) = 1. Since L(f- 7,%) = L(f- 1. 1) we may also
assume that y; # j; for i #j. For each fe S3(¢) and y;, i=1,2,3 we associate a
mollifier M(f) of the form
i =Y x4,

L<L

(Lg)=1
where L := ¢* for some fixed A < 1 and the x;(¢) are complex numbers satisfying
xi(f) « ¢° for all ¢ > 0, the implied constant depending on ¢, Dy, D, D3 only. To
simplify the notations to come we note that (2.1) lets us write

MMM = M = Y ),

with L' = ¢** and the x(¢) satisfying the same bound. To be precise, we have
1
x(£) = — x1(de))x2(dey)x3(d"¢3). 5.6
© Zd,dzdd &;:W;}w 1(den)x(de2)xs(d ) (5.6)

In view of (5.1) and (5.3), it suffices to estimate the sums

h
PM(yy, 720 73) == Y P, 11 02) PUSs 1) M)
f

and
h

PM(11, 12, 73) i= ) erP(fs 11 22) PUS ) M(S)
f

and to take an appropriate linear combination involving the conjugates of y;, y,. We
make an additionial reduction by writing P(f, y3)M(f) in the form

A (£n) Z x(d€)y5(dn) V( dn )

P(f, ) M(f) =)

() d q'?D;
=y l’-:l(/’? (). (5.7)
Note that, in view of (5n.4) and the bound on x(¢),
-4
y(n) K q‘g(l + ql/fm) (5.8)

for all ¢, A > 0 the implied constant depending on ¢, 4, and DD, Djs.
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5.3. EVALUATION OF PM(y;, 12 13)

Since ¢ is prime, we have B(q) = S3(g) and Petersson’s formula provides a decom-
position of PM(y,, y», x3) into the sum of a diagonal term,

y(mm * 7z(m) m
Z /1/2 ((]DID2> (59)

and a nondiagonal term,

ND __ ! X1 % ya(m) m y(n)
PM =-2 Z ZZ 1/2 )(172<qD D2>mx

¢>0,c=0(q)
4n4/mn> (5.10)

x S(m, n; c)Jl(
Now we appeal to the large sieve inequality of [DFI2]:

PROPOSITION 5.1. Let k = 2 be an integer. For n a smooth function supported in
[C.2C) such that 0 «; C~" for all i > 0, set

Ay(n, €) = 2mik Z S(n’f; 2 Ji—1 (4715%)11(&

c=0(q)

>0

Then for any sequences of complex numbers X, yy,

JIN k=3/2 I\ 2 M2
( ) (1+q> <1+q) 11X 111

C
with any ¢ > 0 the implied constant depending on ¢ and k only.

Z Z menA;;(e I’l) <<sk Cs

m<Mn<N

Introducing a smooth partition of unity on the variables ¢, m,n and using
Proposition 5.1 along with (5.4) and (5.8), we find that the expression (5.9) is dominated
by ¢*~(1=%/8 for all ¢ > 0 the implied constant depending on &, Dy, D, Ds.

Remark. It is possible to avoid the use of Proposition 5.1, a rather deep result,
through elementary methods (see [V2], for example) with no loss in the quality of the
estimate. Here we prefer to get the desired result as quickly as possible. O

We thus have (using (5.5))

h
> P 122 P 1) MUS)
7

_ N XAOy * ga(€n)ys(dn) dn tn
B Z deén 4 ql/zD3 WX]XZ qD\D> +o(1). (5.11)

d,f,n
x(d€)y, * o (En)ys(dn dn
= L(x 22> I)Z @Oz, (fezi ) )V< 7D ) +o(1)

d,¢,n

as long as A < 1/6, the implied constant depending on D;, D;, D3, A.
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Before going to the evaluation of the more difficult term PM*(y,, y2, x3), we show
that we are finished calculating the third moment if any of the characters, say y,, is
real. By (1.1),

L(f-11:9) =
since both sides vanish if &r = —¢,,, 50
L(f 21 DL 2. DL 1309)

1
L DL 10 DO 1)+ 0P T,

But, since both sides are zero unless ¢ = ¢,,, we have
(] + ngXl)slzsf: (1 + ngXl)slzsll‘
Thus

1 .
ML(f’le%)

L(f - 11, DL 12 DL~ 1309
= L/~ 20 DL~ 120 P 13) + 8,8, P2 7)),

and both terms can be evaluated by (5.11).

6. Evaluation of PM(xy, 12, X3)

Note that, by appropriate labelling of characters, we may assume that y;y,(—1) = 1.
We define y(n) by

; _ N AW 5~ x(dO7(dm) | dn
P(f, m)M(f)—%: o ? o, d V<q1/2D3)

A
=Y (6.1

We have

PM*(yy, 12, 13)

21 % 1a(m)y(n) m o\ &
= _ﬁz Z 1 mliz}’ll/z lexz <(1D1D2> ; i,(QM)/II(n)

m, n

We use Petersson’s formula to break this into a ‘diagonal’ term,

yar ra(myigm) ., m
- m ne\gDD,)’
- qD1D;

and a ‘nondiagonal’ term,

o 11 % 72(’”) m y(n)
—27'6\/_ Z ZZ ml/2 Wy <C]D D2> Y X

¢>0,c=0(g) m,n

(o)

x S(gm, n; ¢)J|
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By (5.4) and (5.8) the diagonal term is < ¢°(1 4+ ¢! =%8/2)~4 for all &, 4 > 0 and is
thus negligible as long as A < 1/6. Thus we need only consider the non-diagonal
term. Note first that the contribution from when n is divisible by ¢ is
&L ¢ (1 + ¢1=8/2)~4 for all ¢, 4 > 0, and can thus also be ignored. Thus we may
assume that (n, ¢) = 1. We note that S(gm, n; ¢) = 0 unless ¢ divides ¢ exactly once,
in which case, writing ¢ = g¢’ with (¢, g) = 1, we have

S(gm, n; ¢) = S(m, gn; ') S(0, ¢'n; q) = —S(m, gn; ).

Thus

PME — 2n Z y(n) Z le * o (m) S(m, gn; C)X

- = 12 12 ,
VAol Gl ¢

m 4r/mn/q
X Win <qD1D2>J1< : ) + Err.

By Weil’s bound for Kloosterman sums and the inequality J;(x) < x we can ignore
the contribution from large ¢, say ¢ > C for C = ¢'°%. To simplify computations, we
multiply the expression by n(m), where #(x) is smooth, vanishing near the origin, and
equal to one on [1, +00). Note that the sum is unchanged by this step.

6.1. APPLICATION OF POISSON’S FORMULA

We now write S(m, gn; ¢) as a sum of exponentials e((am + agn)/c) and apply Propo-
sition A.2 for the function

4
NEOF(X) = n(x)x—/2 Wi (qD)sz)J1 ( n@)

We can then write PM*? = PM?

main

+ PM;, + Err with

main \/q
G(x,, gn; o
> AR Y () P [Tuwroas

(n,q)=1 c<C,Dsle D
(c,)=1
Gy )L(1, ¥
42 GO 120)
N
(n) ¢\ Gy, qnie) [

Z 12 Z 12 (D_>142 n(x)F(x)dx,
(n,q)=1 ¢c<C,Dilc 1 ¢ 0

(e,q)=1

where Gz, 415 ) = 3y eyt 12(@elagn/c) and
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4n’ y(n) R(my, my, gn; c)
== [, ma, gi; ©)
M = Va 2 ni’2 > 2 e X
q(n,q)=1 c<C my,m 1€2

(e,)=1

X [Oo n(x)F(x) Yy <4n mlm2x>dx+
0 C

1a(=1) »(n) R(my, my, —gn; )
8 - 7
+on NG Z 2 Z Z el x

(n,q9)=1 c< C my,m
(e.p)=1
o0
x / N(x)F(x)Ko (4n ”’“’””)dx,
0 C1C
where R(m1, ma, n; ¢) is the exponential sum defined in (B.1). Using Lemma B.1 we
see that
—12 |y(n)| ((crea/cP)n — qm, ¢)
PMi, < ¢\ Yy it >0 xm) > x
(n.q)=1 c<C m=1

(e.9)=1

/ ~ 1) F(x) Yo <4n /ﬂ>dx
0 [&15)

)2 ,
g Z |J,;(172)| Z Z T(m)((6162/6 )Cz—qum, c)X

(n,q)=1 c<Cm=1
(e.q)=1

/ ~ 1) F(x)Ko <4n /@>dx
0 [&15)

the implied constant depending only on Dy, D,. We bound these terms by the meth-
ods of [KM2] 2.4.6 which gives that the inner sums over the variable ¢, m are boun-
ded by « ¢°~'/?n'/2. Note in particular the singularity for

X +

X

3

n=qm(ciea/)”" = qm/(D1D2)

but from (5.8), as long as 1/2 4+ 3A < 1, it gives a negligable contribution. The net
result is that PM?, is bounded by

< qs—l Z |y(n)| < q8—1/2+3A’
(n.g)=1

which is admissible as long as A < 1/6.

6.2. EVALUATION OF PM?

main

Now we evaluate the two terms of PM? . . First we remove the function #(x) from
the integral at a cost < ¢~!/>t3A (using that J;(x) < x), and we extend the summa-
tion to ¢ > C at a negligible cost. Next we make the change of variable

y = (4ny/n/ /qcD2)x"?. In the definition of W, ,, as an inverse Mellin transform
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we shift the line of integration to ¢ = 1/4, switch this integral with the x-integral and
the ¢ sum (everything is absolutely convergent) and use the identity

> —25 9., 7251—‘(1_3)
/0 Ji(y)y dy =2 Tty

We obtain finally that the first of the two terms of PM?

G(1») y(n) 1
D, L(lu{le); n 2nix

main

s 6.2)

@ D] ds
X ' —9ra+s)L'20 +2s, ;0021 + 25 — ) —,
(1/4) Don/) s

where

Z2=Y 1 )G(XZ,qn cD2)

(e.)=1

We have

- agn
G2 Gn; cD2) = ) Xz(a)e<7>
a(eDy) et

(@0)=1

= 3w Y Az(a)e<““q”)

ulc a(eDy)

= 3 kw0 & Y e (“q”/ («/ “))

ule a(Dz)
c/uln

= G()12(9) Y exa(Nule/e)ia(c/e).
ef=n

ele

We obtain that

Z2s)= Y 1u@p(Ne L. )™
ef=n
(e.q)=1
Note that we can drop the condition (e, ¢) = 1 at an admissible cost since ¢|e implies
that ¢ln, and we have already ruled out that case. Finally, up to an admissible
remainder term, (6.2) equals

G*(12)72(q)

SR L0 07 YN e )

where

Flps o) = 1f1/4)r<1—v>r(1+v)( )le(e)/cz(f)<f) 6
ef=n
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So, up to a remainder dominated by « ¢¢~1/2+34,

n G2 q _
P = I LD 1y, 1+

GCuu@ , . -
+$L(17X1X2)F(Xza}(1’n) .

This finishes our computation of PM*(y,, ya, X3)-

6.3. END OF THE COMPUTATION

We now combine the sums to calculate
h
D LU 0 DI - 100 DerPUf )M
S
h h
=Y PUf 001)e P M) + &80, Y PO 1 70)erPUf. 1) M(S)-
S f
At this point, it is sufficient to compute

Gz(%z)%z(ﬂl)
D;

. G*(x)11 (@)
L(I’Xllz)F(Xth»n)‘i‘%

G*(12)7>(9) - o
+5%1812|: 7322 L(I’XIXZ)ZF(XMXL”I)"'

GZ: i ) _ o
+%L(LX1X2)ZF(X2,X17”):|-

151

L(1, )_(1}{2)217(){2» X17n)j|+
n

(6.4)

By shifting the s contour in (6.3) to ¢ = —1/4 we get a simple pole at s = 0. Making

the change of variable s — —s, we have

F(x1s 70,0 + F(Gip, 21, 1) = 11 % 1o (n).

Using the hypothesis y;,(—1) = 1 and the identity

G(11) G(12)
G(1) G(72)’

we find that (6.4) equals

&y 8p, = X112(9)

Gz(%z)}{z((])
D,

Gz(%l)%l(‘])

D L1, 712)71 * 72(n).
1

L1, 1 72)71 * 72(n) +
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Thus we have proved the following, theorem:

THEOREM 6.1. Let y, x2, y3 be three distinct primitive characters of conductor
Dy, Dy, D3 such that y,y,(—1) = 1. Then for any A < 1/6,

ST L0 HMi)

= PM(yy, 12, 13) + &4,6, PM (%15 72 23) +
+e3sPM(yy, 125 X3) + &3PM* (125 2115 73) + o(1) (6.6)

the implied constant depending on only on Dy, D, D3, A, where
x(d€)y; * y(En)ys(dn) < dn )

PM(y1, 12> 13) = L(1, Xllz)z Z

d,l,n

dén 472D, ©.7)

and

Sl DY 2 (2)22(9) -
PM (115 02:%3) = G TL(LXUQ)ZZ

x(db) * o (€n) 3 (dn) ( dn )
d.t,n q

din 12D,
(6.8)

7. The Fourth Moment

In this section and the following, y is a complex primitive character of conductor D,
such that y? is also primitive of conductor D > 1. We wish to calculate asymptotics
for the fourth moment

h

S CIL(f DM,
We start by calculating a precise asymptotic expansion for the twisted fourth
moment

.\ 4
Ma(0):= 3o o U2 121 240). (7.1)
We can assume in what follows that ¢ is coprime with ¢D.
PROPOSITION 7.1. Let y be a nontrivial complex character of conductor D

squarefree, we assume also that y* is also primitive. For any prime ¢, and any £ < g
coprime with gD, an any ¢ > 0 we have

M4(£) — MD(£)+MOD(Z)+MOOD(£)+ 05,0(618(33/4(1_1/12 +£17/8q—1/4+£q—1/6))
where MP(€) + MOP(¢) is defined in (1.9) and MOP°P(¢) is defined in (8.14).

This proposition is a variant of Theorem 1.2 of [KMV2] and is proved in essen-
tially the same way. Since the analysis of the error terms is exactly the same as in
[DFI2, KMV2] (because D is fixed) we will almost entirely skip it to concentrate
on the evaluation of the main terms. In particular when we refer to an expression
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as being an ‘admissible error term’ we mean that the contribution of this expression
to the whole M4(¢) can be bounded by O, p(g¢(€3/4q=1/12 4 ¢V7/8¢=1/4 4 £g=1/%)).
To simplify notation we define the twisted divisor function
T, (n) = % 7(n) = Y (@)(b)
ab=n
it satisfies
mn m n
T,(m)t,(n) = dl(Xm:n) ep(d)t, <?>, 7, (mn) = dKXm:n) ep(d)u(d)T, (E)TX <a> (7.2)

Let G(s) be a real even polynomial such that G(0) =1 and G vanishes at order at
least 2 at s =1,2,3 (this simplifies some technical aspects of the computation).
We have

T I W(ﬁ)

with
1
W) = / GOT2(1 + )01 + 25)dny) > &
27[1 3) S
We have by (2.1)

M0 = S S S ()~

ab=d m,n

<“d”) Z Jf(m)iaen).

Using (2.3), we split this into
Ma(0) = M) + M™P(0)
with

u(a) T, (aen)t,(n) aen adn
M(6) = szl/zz 172 (b )Z : )1/2/ (qD2>W(W>’

M0 = 2 3 S ) 3 S ()

={ ab=d = O(q)

X W(;Zd )S(m aen; ¢)Ji_1 <44n Zlemn)

We have by (7.2)

T, (en)t,(dn) dn
MP(e) = el DD D (q D2> W(qu) (7.3)

de=t n
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Before evaluating M™P(£), we make a smooth dyadic partition of unity on the vari-
ables x and n by introducing (as with the third moment) #(x), which vanishes near
the origin and is one on [1, +00). We decompose n as 7(x) =D, 7),(x), a sum
of smooth functions #,, which are compactly supported on [M /2, 2M] with deriva-
tives satisfying ¥n?(x) «; 1 for any j. We set

1 X adn
Dx,n)=—W|— |W|— 7.4
Com) Vxn <qu> <qu> .4
and we use the generic notation Fy, y(x, n) or F(x,n) to designate a function of the
form

Fyv(x, n) = ny(ny(m)D(x, n).

We thus have

1 @)
MQVD(E) =21 ) —> —=T,

<3 3 S s A St e

M ,N ¢=0(q) = m,n

(b) x

(4n¢m>
(7.5)

We note that we can remove the contributions from M + N > ¢'** and then from
¢ = C (where C = min(q”/®, ¢*>M'/?)) at an admissible cost, using (5.4) and Propo-
sition 5.1. We apply Proposition A.2 and get

c Z T, (m)F(m, n)S(m, aen; c)

- 5D‘625Re(x(%> G(x. aen; )G L, Xz)) /0 " Fe m) dat

+ Zx(:;:l) Z T(m, Faen; c)ﬁi(m, n) (7.6)
+

m=1

where

Fi(y, n):=-2mn fooo F(x, n)J, (47rcxaen Ki<4n [\c/gy])dx,

K (x) :== —2nYy(x), K (x) := 4Ky(x),
T(m,n; c) ;= Z R(@my, my, n; ¢)

mymy=m

- n by, myry + mpr rrx
— e T B) X sevieme( MR )

r1,r2([e,D])

and
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is the sum studied in Section B.1 of the Appendix. The contribution of the first term
can be shown negligible in exactly the same way as in [DFI2] p. 229 or [KMV2] 3.3,
the only adjustment being powers of D to consider, so we will not cover it in detail
here. This leaves the sum over m, which we break into two cases.

7.1. EVALUATION OF THE OFF-DIAGONAL TERM

We first consider the special case m = (D/(c, D))*aen (the ‘off-diagonal’ term), spe-
cifically its contribution to the ‘4’ part of the sum in (7.6). For notational conveni-
ence, we let D3 = D/(c, D), so that

MOD(p wa) b) x
s 0= ;l/zabd‘/_ by

X Z Z Z‘cl(n)T(aenDyaen c)FM N(D3aen n). (7.7)

M= ¢ T
c<C

From (B.4), we see that T(aenD?Z, aen; ¢) = 0 unless D3 = 1, so D|c. Combining (B.4)

with (B.3), we find that

T(aen, aen; ¢) = r,(aen)db( ),u(Dl)

where D is the largest divisor of (D, ¢) such that (D, ¢/D;) = 1. As in [KMV2] 3.5,
we can drop the constrains ¢ < C and M+ N < ¢'*% at an admissible cost. At
this point (7.7) is almost exactly identical to the off-diagonal terms studied in
[KMV2], Section 3.6, the only difference being the replacement of 7 by 7, and
¢(c) by ¢(c/D)u(Dy). Thus we may follow the steps of that paper precisely, using
the calculation

PGIHDY) (@) 1 {(2s)
q;k- C]+2S - q1+25‘ D C(qD)(l + zs)g(D)(l _ 25) ’

and the functional equation
L) = n2 V21 = 29)I(1/2 — ).

to get an off-diagonal term of

() ylaen) - ( ad
L e (o),

1 200 go(q) D) 472 aen %
X277:i/(‘3) GOI(1 —s)—="(1 = 2s )< 4D’ ) = (7.8)
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We make the change of variable s’ = —s, then shift the resulting contour to the right
up to Nes’ = 3, passing a pole at s’ = 0. After rearranging the «, b, ¢ sums and com-
bining with the the diagonal term (7.3), we obtain that

M2+ MO () = 70 514/2 2 ) gy (5 R

G(S)Fz(l +5)(gD?)’
s(4n2en)’

dl
ATy () ()

up to and admissible error term with

EO(1 + 29)+ (7.9)

) =5 [ GOI+ 9 +29) - 2L 4 29yt T
i J ) q P

Shifting the contour to fes = ¢ gives W*(») <, (v9)°q~", so this second sum is neg-
ligible.

8. The Off-Off Diagonal Term

The ‘off-off diagonal’ term, which we denote MP9P(¢), is the contribution from MV (¢)
when m # D3iaen. As in [KMV?2], its evaluation is by far the most difficult and
technical. We start with a notational adjustment: to any ¢ > 0 we associate the
decomposition D = DD, and the divisor D3;|D;, uniquely defined by the properties

c=¢Dy, (¢, D\D3) =1, (D2/D3)?|c.
Note that this is slightly different than the decomposition in Appendix B, we have
adjusted it because here the only important distinction is between primes dividing
¢ once and dividing it any other number of times. There is no change in the meaning

of D3, but what we now call D, is called D,D; in the appendix.
We first write M29P(¢) as a sum over M and N of terms of the form

MOOD(E) B Z I/ZZIM(a) /(b)X

ah d
Z Z (P D T(m, Faen; O)F;; \(m. n).
= 0(’7) + h#0 m+D2aen=h

Using Equation (B.4), we see that the off-off-diagonal term is provided by the sum
over a,¢,e, M, and N of

10, (=1) D a(=v) D (ks )X

ve{xl1} h#0
by . it
X Z %o, (1) p, (m2)t, (M) R(my, my, —vaen; Dl)FM,N(mlmz, n)

mymy+vDIaen=h

(8.1)
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with

1 _
Romy.my,m: D=3 2" 3~ s, (r)p, (r2)e

(m1r1 +mory +D3(r1r2x+n5c)>
Lx(D1) r.ra(Dy)

D,
Since ¢|c¢’, we can decompose r(/; ¢') as

)= Y p@d + Y @ =" )+ ).

gc'=c(q.8)=1 gc'=c'.qlg
" |h " |h

One can show, exactly as in [KMV2] 4.4, that the r°(k; ¢) portion contributes an
admissible error term so in the expression (8.1) we may replace r(#, ¢’) by r"(h; ¢).
We compute now the sum over the m, m;, n variables. The treatment of remainder
terms and the choice of parameters in what is to come is the same as in [DFI2] and
we refer to that paper (and also to [DFI1]). We apply the §-symbol method [DFI1] to
detect the condition mn, £ D%aen = h, giving

« (—dh *
Z - Z LZ e(T) Z }{Dl(rl);'{D](rg)e<rlDerx> X

D
myma+vD2aen=h 1<r<2R 1 d(r) rir2,x(D1)

miry 4+ mor, dmlmz)
X

x Zyiuz(ml)xm(mz)e( ot

my,ny
X Zr (n)e| vD3ae d_x n | E'(myms, n) (8.2)
a x 3 r D 1772, 78), :

where R is chosen depending on M, N and
E'(x,y)= ﬁ”(x, WA(x + vD%aey —h).

Now we perform Poisson summation using Proposition A.1 of Appendix A: we
obtain

E(+s14+0(I, 1, _ Il v,
ZZ---:ResX:,ZO(iz) S—(I"+1) —2°+L)(n +1IT") ) +Err,
my, ma,n [r, D] (s+1) s s t t

(8.3)

where

e +00
E(+s,1+0)= f/ E'(x,y)x"y dxdy,
0

1 _ r181 +rasy  dsysy
Iy = Io(d, r1,12) = %0, ()% (Sz)€< +
[r. D x],xz(X[r:,D]) : ’ D r
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1 d X
1y = 1ly(d, x) = m Z )_((sl)x(sz)e(Dgae<; — Di)MSz),

s1,82(7, D) 1
1 _ . r181+r28y  ds1sy I'[ s
or, 2 ‘DZ(S‘)/*DZ(”)@( o )UT\mnl))

s1.52([r. D))

S B ol NN (T (o
I =1 (d’X)_[rvD]2sl,52(;D])X(SI)X(SZ)Q(D3ae<r D]>S1sz>( F([r,D]))

and I't, It are defined similarly with —I""/T'(s»/[r, D])*. The portion called ‘Err is
the sum of 8 more terms (see (A.2)) involving sums of the (discrete) Fourier trans-
forms of the functions

I =I"(d,r,rn)=

S171 + $ary  dsyso
+ ,

(1052) = T e (M :
1 7

- d x
(1052) = Zontone( vDhae(§ = 5 Jous)

weighted by certain Bessel transforms of E'. Summing back over the variables
d, r, ry, x one obtains sums of Kloosterman sums to which one applies Weil’s
bound. The details work precisely as in [DFI2], so we skip the rather tedious calcu-
lations involved. This shows, as in [DFI2] p. 229-231, that Err contributes an admis-
sible remainder term to the fourth moment, so that the main term comes from the
contribution of the pole at s = r = 1 of the Hurwitz zeta functions.

8.1. COMPUTATION OF Iy(d, r1, r2)

Since y? is primitive, either y3, is nontrivial or D> = 1. Summing over s, we see that
Iy(d, ry, ry) is zero unless D, = 1 and D|r. In this case the sum becomes

1 7181 + 128y dsys 1 dr'rr
hod rir) == 3 e( B ;2) =;e(— D”) (8:4)

51,82(r)

with r = ¥'D.

8.2. COMPUTATION OF Ily(d, x)

Summing over s;, then over sy, we find that [/, is zero unless D;||r and ﬁ)] is
trivial. The same holds for D, and ;{%7, so, since yp is assumed non-trivial, we
have

1Iy(d, x) = 0. (8.5)

*Note that in order to factor out the term y(v) we have (implicitly) made the changes of variables
sh = vs; for ITI" and s} = vs; for II*, so that these expressions are now independent of v.
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8.3. COMPUTATION OF I~(d, ri, )

Once again, the sum is zero unless D|r and (D, r/D) = 1. Let r = Di’. Decomposing
s> as 5o =5, + Dt, with 0 <t < 7/, we get 51 = 0(+') and

Zp,(1") = Doi'ris1+Darpsy+dsy s, I /s
FZD Z XDZ(SI)/{Dz(SZ)e< ) _?<B> )

s1,52(D)

I (d rl,VZ)—

The s, sum is now a Gauss sum equalling
D, ZDz (D_] dsl)G(XDz)éxlE—c?Dzl‘z(Dl)’

SO

7n.(Dydr’
I(dr,rn)= %G(XDZ) Z 7%2 (V r151>( 1)< C;))

s1(D)
s1=—dDary(Dy)

Since —dD5r is coprime with Dy, the exponential term is constant, and we can detect
the congruence through multiplicative characters y of modulus D, namely

> PNLETISIDY w(sl)@,(sl)( s )).

51(D) ‘/’( )i 1<s<D
Slzdezl‘z(D])

Using (A.9) we obtain

7D7(D1dr) F1V2V'ch_l G(xp,)
I (d,r,rn)= :
@r,r)= "D D, @(D1)
x > Y(=dDyry)Res,—o D L(Y75,. 1 +9). (8.6)
¥(D1)

The same holds for I't(d, r1, 1) except that y and  exchange places.

8.4. COMPUTATION OF II-(d, x)

Summing over s, shows that the sum is zero unless D;||r, and more generally we see
that the sum is zero unless every prime factor of (r, D) divides r exactly once. Thus
we may factor r into r = r/(r, D) with (+, D) = 1. Summing over s, = s5 + Dt with
0 <t <7 gives zero unless s; = 0 modulo »'/(ae, '), so

1(r'/(ae, v’ d r
1) =" S tsunone( D (g ) )

s1(D(ae,r"))
$2(D)

1"/ S1
% <_ T (D(ae, r’)))
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The s, sum now equals

ae D e - ae D /%
G<X’D§(ae py <d(Dr)—Dzr x)sl;D) =x(D§(ae » <d(Dr)_D2r X)Sl)G(X);

note that this is zero unless D; = 1, so DJc. Using (A.9),

o (defy — Dar'¥) )
D

It (d, x) = (ae, ') X< GG L@, ). (8.7)

Again, the same applies for I17(d, x) except that y and ) exchange places.

8.5. COMPUTATION OF THE CROSS-TERMS

Next we need to compute

A(h, c;r) = DL Z*e<_7dh> X

L)

xS o 07 (e BEE ) o(d, ri,r2) Y I (d, )
D LD D1 ) ) 5
ri,2,x(Dy) +
B(h,c;r) = I/DIZ*e(_dh> X
a0 r
* _ rrx

x FIJ;(DKDI(rl)xDI(m)e( )Y P Y i)

By Section 8.4, these terms are zero unless D3 = 1, and that ¢ only affects A(%, ¢; r)
and B(h, c; r) through the decomposition of D into D, and D,.

8.5.1. Computation of A(h, c; 1)

As seen in Section 8.1, A(h, ¢; r) is zero unless D; = D and D|r, so the sum over r,
r is

Z X(Vl)}_((rz)€<m2(xD_dr/)> =0,

r1,72(D)

since y? is nontrivial. So A(h, ¢; r) = 0.

8.5.2. Computation of B(h, c; r)

By Section 8.3, B(h, ¢; r) is zero unless r = Dr’ with (¥, D) = 1. For notational pur-
poses, we let r(1):=ry, r(—1): = ry, so that for ¢, & € {—1, 1},
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F(d. ry. 1) = 1, (D1 d)G()_{i)z)e<—mr2r Dzd) 1

D5 D, o(Dy) x
X Y W(=Dadr(e))Res,— D' L35, 1 + ).
(D)

IIF(d, x) = (ae, 1) GG LG, 1).

1 (2 d = Dar'®))
r
Thus we can define

B(h,c;r) = B*(h,c;r), (8.8)

g8

with

B e r>:=DIZ*e(_r‘”“) ) yDlol)m(zz)e<”’2x)ls(d ) (d, )

Ve Frx(D))

oDz ((55) G JGEOLG D)y

r*/(ae.r') o(D))

x Y Y(=Dy)Res,—o D' LYy, . 1 +5)x

¥(Dy)

* dh . . o

x Z e<_r>(‘//XD2)(d)X (d—Dyr'x)x

N
X Z XDI(VI)ZD,(FZ)IL(l‘(e))e('m(xDﬂ)

ri.ra(Dy) 1

The r; and r, sums give

2 70(rin (rz)l/'/(r(a))e(W,;ler))

r1,12(Dh)
= 5y ODNG(E i, (x — ' Dsd),

SO

Loy )7, (D207 (225 ) GGG VLG DLG 1)

B cin=— 12/ (ae, 1) )
x Z <— )(/CDIAD; N ” (1 (dx — Dar).
d(r)
x(Dy)

We next compute the sum over d and x. It factors over moduli into the
product S(+')S(D1)S(D;) of 3 sums. We let d = D1D,d + ¥'Dydy + ' D,d,, so the
first sum is
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* dh
S ! = _—— =
() Ze( r) r(h; ')
da@)
and the third sum is
ete () * doh £+s & e+e
S(D2) = 1) Y e =4 ) (D) = 15 (D1 )G (i i D).
d(D>) 2
The second sum is more complicated:
* dlh —¢ e+¢
Sy = > e Dy ) o' D75} (0 (xeir' Dy = D).
dy,x(Dr)

Making the variable change x’ = xd, lets us factor this into a Jacobi sum over x and
a Gauss sum over d, giving

S(D1) = 15, (=" DGO b DOy« 2)-
Combining the various sums thus yields

B”"(h, cr)

LoV, (D)7 (25 ) GGG LG, DL 1)
- r2/(ae, ")
x 1l ) (DG s D (DGO s DV I 755
PO (25 ) GEIGE VLG DLG  rth: )
- r2/(ae, 1) x

x GO by D)y’ s 1),

X

The two cases ¢ = +¢’ contribute in slightly different ways. If ¢ = ¢, then

B (h, ¢; 1) = TGt 157 >y( Z)G(T)zG(xz*’,h; D) x

ae
(ae, 1)
, h; 1)
Lo, 1m0 .
X (X 4 ) rz/(ae’ r,) (8 9)
However, if ¢ = —¢', then J(x}", yDIP) = w(Dy), so

r(h; r)

e ) (8.10)

B(hcir) = u(D»f( 2) L2 D

ae
(ae, 1)
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8.6. THE MAIN OFF-OFF-DIAGONAL TERM

Since A(h, ¢; r) vanishes,

Z Z .= E'(1, 1)y(v)B(h, ¢; ) + Err

my,ma,n

where Err is admissible and v € {£1}. Following [DFI1] p. 215, we have
E"(l 1) = f/ F(x VA, (x+vD3aey h)dxdy
= / F"(h — vD%aey,y)dy + Err,
0

since A, approximate well the Dirac distribution. Hence

D3 =B ¢ r)/ F'(h — vD3aey, y)dy + Err, (8.11)

mp,np,n

where in both equations Err is an admissible error term. Collecting all the terms (ie.,
summing over M, N), we find that the main off-off diagonal term is given by

MOP(e) = y(~1) ZZ M) M ) ¢

1
i R e e o —
x Y = > > B e V() + V()]
c=0(¢D) r=0(D) h#0
c<q? (D,r/D)=1
with 4 = 100, say, and

VE(h) = -2 //:o 511=Faey>0Ki (47‘5 @) Ji (47‘5 7)6(616)/)) X

c

x n(xn(y)D(x, y)dxdy,

where D is defined by (7.4). Since " (h; ¢’)B(h, c; r) is even in h, we can replace & by its
absolute value, as in [KMV2], with the effect of replacing [V*(h) + V~(h)] by (com-
pare [KMV2] (35))

h'/? _ dhy hy Vhxy
)1/2//( xy) 1/2W<gD2> W<€qD2>n(x)n(E)J1 (47z c )x

X |:—27r Yy (47r ';IX(CH)})) — 216,51 Yo <4n hx(f_l)) +

+40,1Ko (47r M) :| dxdy.

One can show, exactly as in [KMV2] 4.1, that we may, up to an admissible error
term, drop the constraint ¢ < ¢? and replace n(x) and 17(1”) by 1. Following
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[KMV2] 4.1-4.3, but with slightly simpler calculations because there are no loga-
rithms, we find that (8.13) equals

16(616)_1/2 D) (¢D) 125 (gD
(27r1) /1 (1.7) /(0 6)C (1+ 290570 + ZI)( ) d (47T2) .
% GS)GOT(1 +)T(1 — (1 + HT(1 — 1) x

’2 )F(l+s)cos(n—) (i — )dVd’

Plugging this into (8.12) we obtain, up to an admlsmble error term,

1 @)1 1 26)¢9P)(1 1 20 L(¢
1/2(2m) /17)/(06)5 (I + 2907 (1 4 20 L(E, 5, 1)

x G(s)GOT(1 + 5)T(1 — )L (1 + HT(1 — ) x

xcos(n%)l"(l—i—s)cos(n—) (t— )det

X COS(

(qDZ)Xth
(@n?)’

MOOD(Z) /

where

L(e, s, 1) = y(— 1)2“(%(17)( ) > ﬁx

abe={ ¢=0(¢D)

X Z ZhS”r’”(h; B, c; r) (8.15)

=0(D) h>1
(D,r/D)=1

and B(h,r;c) is given by (8.9) and (8.10). This concludes the proof of Propo-
sition 7.1. ]

9. Computation of M°°P(¢)

We next need to evaluate MP9P(¢). The largest remaining step is to compute the for-
mal L series L(¢, s, t) and its contribution to the off-off-diagonal term. Up to the
symmetry y — 7 it is enough to compute L1T(¢, s, 1) and L™(¢, s, 1), defined as in
(8.15) but with BT+ (h, ¢; r) and B~ T (h, c; r) instead of B(h, c; r).

9.1. COMPUTATION OF L*t(¢,s, f)

We want to factor LT (¢, s, £) over relatively prime moduli as much as possible. We set
h=nhn", W,D)=1, H'|D*;
c=cDy='DD3D, D'| DS, (¢",D)=1;
r=¥D, #,D)=1,

so that

”m(h; C’) — rm(h/h//; C”D%D/) — I‘m(/’l/; CN)}"(/’ZN; D%D/)

n4 -
5 i) = 1) 7 e ) D 1, 1)

AN2T (2 1)
x G2, h' D)G(/f)f)i(zlf’l)_
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Hence we have

GO’L 1)

L++(£, s, 1) = D2

Jp,- 1D, - 2 2
x | 7(=1) B AL W= r(h; D;D)YG(y”, h; D) | x
2oy (03D m;c ’

)y \D‘X’

(X M) e T B P )

abe=¢{ c=0(q)

3 Byt e (b c)’—f>

h>1
G’ L(z2, 1)

where the Y means sum over integers coprime with D.

Lo, s, )L+, 5, 1) 9.1)

9.1.1. Computation of LP>*+(¢, s, 1)
We follow [KMV2], (43) through (45): using (8.2) we have (setting 4 = ae)

L(D),++(£’ s, 1)

1 /
= Z Tx(b)AmCA(l +21)° Y(A) Z ;(fz)y X

Ab=t (g.9)=1
n(v)x (U) 2((1‘1 uw))(A4, ow) (h)
620(;[) 25202 Z w L;;l ’

The g sum is (“?(1 + 25)~!. We separate variables using the identity

Zf(c, w) Z g(h) = Z w(u) Zf(uxc uxw) Zg(cwu xh).

c,w c,wlh c,w

We factor the resulting ¢ and / sums to obtain (compare with [KM V2] (43))

LPHH(e, s, 1)

) ) 5
(@OLG t+ LG 1 =) 1 N B
= - E 7,(b)A 14207 ' y(4)x

qs-HC(qD)(l +25) ZtAb:e (D)4 4( )~ x(A4)

M(U (U) ) N~ ) )2 (4, wowx))(A, uvwx)
Z Zx1+t+s(2): u1+2t27 (w) s
u,q
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Next we factor u = uju, with uj|A4, (up, A) = 1, replace A by u; A, sum over uy,
and write ;b = B to obtain

LPHH(e, s, 1)
_ 1OF@LG, 1+ )LEE, = 5) y
S+tC(’1D)(1 +2S)C(qD)(l +21)
¢ M(U (v) 2 (x) 7((A, vwx))(4, owx)
T Z £ Z meﬂ;xz( w) wlHi—s

AB=¢t

We factor v = vjv; as we did for u, replacing 4 by Av,, so the v; sum equals
Lo, (0%, 2)L(*, 2)~!. We combine the product xw into a single variable w, and use
the relation

DA WA W) f (A, w) = ZE%(E)LE(X% DY S(EA, Ew),

Aw Aw

together with

o25(Ew) 032(E) 52,(0)
; (Ew)s (E W)_Z ( ); e ( E, CIW)

to end up with
L(D)’-H—(E 5, 1)
2(C])L(/2 1+ 14+8)L(2, 1+t —85)LG2, t+5) L0, t—s)
v+IL(/{4 2)((610 (1+2S)C(4D)(1+22‘)

/{(E) Z Ve’ 4 2 1) E[O'zs(E)H(a)/( (a)L E(}{z, 1)_1LaAE(X472)- (9.2)
aAEll

9.1.2. Computation of L}*(¢,s, 1)

Since y? is primitive, r(h; D3D")G(y?, h; D) is zero unless h = 1 and D3D’ = 1, so that
D, = D. This simplifies calculations considerably, leaving us with

I 1)GG) _ o GG

LT, s, 1) =y(-1 —
D ( ) 7( ) Dl+2S G(X)2

(9.3)
9.1.3. Computation of the off-off diagonal term I

Using (8.14) (9.1), (9.2), and (9.3) we see that the contribution of Lt*(¢Z,s, ) to
MO°P(¢) is

7@ Gy Lo 1)

£1/2 G( )4 L(74 2)

/ / LA 1+t + LA 1+t —$)LG2, t + 5)x
(2n1) (1.7 J(0.6)

MOOD,++(£) —
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x L7, z—s)(Dz)t x G(s)G(OT(1 + )T(1 — $)[(1 + HT(1 — )%

X cos(n %) I'(¢t+ s)cos (n %)F(t —5)X

O S gy PDROLD s
aAE|e

dsdr
x Laar(x’, 2)—

X

Since y? is primitive and y?(—1) =1, L(¥?,s) satisfies the asymmetric functional
equation

2<%>SCOS(ES/2)F(S)L(Z2, $) = GGALGZ2 1 — s).

Applying this twice we obtain

MOOD’++(£)
_e D LGA
61/2 G(X)4 L(X472)

4
PPy G()G ra ra 21
X(2ni)2/1.7)[o,6) (s) (t)l_[ (I £9)I( j:t)jl;[EL(,(, +rts)x

/(g) Yo AL DT E GZS(E) M(a)i D L2 sl 2=
aAE|L

ds dt

9.4)
Let @(s, ¢, £) be the multiplicative function

2

O, 60 =~ 3 AL 1) B2 “(a)7 D e D) LG ).
gtaAEll E

One can check (compare with [KMV2] 4.3.1) that ®(s, f; £) is an even function is both

s and t: obviously we may assume that £ = p* for some prime p/D. Evenness in s is

obvious, but evenness in ¢ requires a case-by-case breakdown of whether p divides

each of the variables. More precisely we rewrite

A _10 a)y“(a -
(D(S, £ g) — Z ( ) L ( 2 1) 1 ZJ(Ev):u( )/C ( )L E(X29 1) lLaAE(X472)
acAE=t "9¢
and we split the sum according to three cases which are even in s and ¢:

e If p|E, we have

UZA'(E) 1
ES 1 + /2(ﬁ)

( ) La(A D7 LA 17!

EtU=t B=t

E>1
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e If £=1, and either 4 = £ or ac = £, we have

. 1 » - XZ _E’—i—@“

——+t = .
() 22(p) ()
1428 p(1+_xlgp) I +4

e If F=1, and p|4 and plac, we have

1 A\ — wa)r(a) _
1+X2(P) Z <E) Z TLd(szl) !

p AB=t/p? ac=Bp
2 4
= .
1+ A;p) AB=t/p? B

From (9.4) it follows that the integrand in M99P-++(¢) is an odd function of s and .
Thus, by shifting the contours in s and ¢, we find that M29P++(¢) equals one-fourth
of the residue at s = t = 0 of the integrand (since the polynomial G(s) vanishes at
s = %1, the I" factors contribute no poles). The same holds for L= (s, #; £) with
exchanged for x, thus

D* L(z*. 1) 1 (0)
G(Xl;)4 L(X487 2) EI/Z

MOOD,SS(E) _ }—:Qf:(q) (I)*(E) (95)

with

~2€
00 = 3 LG O D L2 1) L), 9.6)
aAE|L

9.2. COMPUTATION OF L~*(¢, s, #)
Next we compute

L™, s, 1)

lu(a) e\! 1
= 7(=DILGA DY = ,0) (- s X
a;g a (ab) L‘EOX(q:D) col+2

_ r(h; ¥ D)(ae, r')
XYY R (Dy)y(ae)y((ae, ) =5
D=l h>1 D(r")
The calculation is again done by factoring over primes and grouping those pri-
mes’into three disjoint sets: those dividing D, those dividing ¢, and those divi-
ding’neither. The last set requires exactly the same computations as were done in
[KMV2], except slightly simpler since there are no logarithms involved, and we wind
up with
qfsftg(q(iD)(l + 2S)71£((/£D)(1 + 21)71C(43D)(2)71

< [P0 5+ 0lep(t £ 9). 9.7)
+
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The product over primes dividing £ is similar both to the calculations of the pre-
vious’section and to those of [KMV2]. Introducing the same variables to account
for the divisibility conditions on / and the various common divisors, we wind up
with

(1= p =291 = p 1)1 = p?)
Ol g mma =i

or(EYUE) (a)7(a)’
£ a

ple

1 -
x5 ) AL )TE
akEAle

Lae(7 1) s, (98)

Let W(s, t; £) be the multiplicative function of £ given on the second line of (9.8).
Once again, one can check that W(s, ¢; £) is even in both s and ¢. From (9.7) and (9.8),
the contribution from all primes not dividing D is now

%CW% +29) 7 01+ 20712
< [P0 £5+ 0P £ 9)¥(s. 1 0). 9.9)
+

It thus remains to calculate the contribution from primes dividing D. Since
(D, £) = 1, several things simplify, and we are left with

Ly, n= Y “,(]?215) > (ks )r(h D)/D,

Dlc|D> hID®

where ¢ = ¢/D, DD, = D with D, = (D, ¢). Again, this sum factors over primes.
The important distinction is whether a given prime divides ¢ exactly once (in which
case it divides D;), or more than once (in which case it divides D). The first case

yields
1+s—1 .
e - —2-2sP -1 e, 1=p
p 2 ZAM(p)Zp/(S t)r(pl;p)z_p 2 231_4ps—t=_p 1—s tl_—ps_,»
=0

while the second yields

prk(uzs)l’ —1 Z DDl Y = (1= p 1) T

’ s—1 —s—t "
k=2 P S 1—p 1—p—s

Combining the terms, we have

—25-2t (1 _p71,S+[)(1 _p71+x+z)
(1 =p=H(1 — p=79)
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From this last equation and (9.9) we obtain that the full product is
1(0) 1(=DILGE, DI

(gD (9P(1 4 25)9P)(1 + 20)

(O s+ 01+ )
S E )

Again, LT~ is the same except with y and 7 switched.

L=t s, 1) = (P2)yx

W(s, t; £).

9.2.1. Computation of the Off-Off-Diagonal Term II

Putting this back in (8.14) and using the functional equation

Fexs)l(t£s) (1= (=£9)
Qn)*  2cos(n(t £ 5)/2)

we find that the contribution of B~ is

00p—+ gy _ 4 H=DILGZ, 1)? 10
M (E) - C(D)(z)(znl) /1 n [06) 61/2 (S t E)X

ds dl

x G(s)G(t)l_[F(l + (1 £ t)l—[C(D)(l £ )=
and since the whole integrand is now evidently odd in s and ¢ we have

H=DILGE, D (6)
P en

MO%P=+(¢) = Res,_,—o W(s, t; £)x

XMHF(I £9TA£) [ [P0 £s£0). (9.10)
st o +,+

9.3. COMPUTATION OF THE ‘PURE’ FOURTH MOMENT

We now analyze the case ¢ = 1 in greater detail. From Proposition 7.1 we have for all
e>0

My(1) = MP(1) + MOP(1) + 2Re(MOOPHH (1) + MOPP~F(1)) + O, p(g~"/1*1).
where MP(1) + MPP(1) is given by the first term of (7.9), and the other terms are

given by (9.5), (9.10). Shifting the #-contour in the integral defining W(n/gD?) to
Met = —1/2 we see that, up to an admissible remainder term, MP(1)+ M°P(1)

equals
2 2
Res._,_ob GG+ )1 +1)
st
D2 S+t "
x (qn—2> (P14 29 P(1 420> ;EYL.
n>l
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Since

(O + 5+ 1),

ZfX(n)2 LA L+ s+ OLGA L +s+ 1)
= nlts+t é'(D)(2 425+ 21)

we see that MP(1) + MOPP(1) is a polynomial in log(¢D?/4n*) whose highest degree
term is given by

qu s+t
GO (D)) ILGA, D ()
4 Res, ;o g——2——
C(D)(z) st(s + 1)*2s2t
_ LG OP =1p) (gD
122 H(l—i—l/p) (4n2>'

From (9.10), 2ReM?°P=*(1) is a constant depending on y only, while from (9.5),
D> Lz, 1)6>
G(X)4 L(X4? 2) .

This concludes the proof of Proposition 1.2.

2%e MO+ (1) = 2% (22(51)

10. Mollification

In this section we evaluate the mollified moments, using the asymptotics already cal-
culated. Following the notation of [KMV2], Section 5, we introduce the following
conventions:

e For z=(z1,22,23,24) € C* we use v(s, t, z, £) for any arithmetic function of the
form

v(s, t,z,0) = 1_[(1 +})f(s, t,z, p)>

ple

with |f(s, £, z, p)| = O(p*/*) uniformly for s, ¢, z in the domain s, ¢, Rez; > — 1/4.
e We use #(s, ¢, 7) to denote any Euler product of the form

2
n(s, t,z) = H(l +}) s, 1, z,p)>

P

absolutely convergent and bounded (together with its low partial derivatives) for z
in the domain Rez; > —1/4.

e Our notations are ‘generic’ in the sense that the exact value of v(s, ¢, z, m) or
n(s, t, z) may change from line to line.

The idea is that factors of this nature appear naturally in mollified moments but do
not affect the degrees of any poles at the origin, so we can ignore them unless we
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need to compute the exact values of the residues. Their main advantage is that any
Euler product that occurs below will be considered as a factor of type #(s, ¢, z) times
a product of degree one Euler products. In the event that we would want to know the
proportion of non-vanishing precisely, we would want to be very careful with the
exact value of such functions (especially at the origin, where we will be evaluating
everything), but since the goal of this paper is merely to prove the existence of such
a constant, we can afford to be a little bit less precise.

The mollifiers we use will have the following form: for R > 1 fixed (independent of
%1s X2 x3) let Pr be the product of primes less than R. We set

o, if (6,Pg) # 1,
xx(ﬁ)—{X(g)u(g)p(log(g/L)), else; !

with L = ¢ for some fixed small A. We take

Py(x) = ! / e_”dz
" o 27l 3) z" ’

a degree-(n — 1) polynomial on (—o0, 0) which is zero identically on [0, 00).

(10.1)

10.1. THE THIRD MOMENT

We use Theorem (6.1). Suppose first that all three characters are complex. The lead-
ing term of the mollified third moment will come from PM(y,, y», x3), the other three
PM-type terms contributing lower powers of log ¢. In order to cover all four terms at
once, we consider the general expression

x(dl)y 4 * yp(En)y (dn) dn
din q'?Ds)’

PM(y4. 18- 1) = L1, 2 425) Z
d.t,n

where y 4, x5, and y are distinct non conjugate characters to be determined later.
Using (10.1) we see that
PM(y.4. 18 )

Xa* xs€n)yc(dn)
:L(LXAXB)Z A Bdg < x
d,t,n n

1
X;m Z Z 11 (di€10) 12 (d €2) 33 (d3€3) (i 1) p(ddy €2) (3 €3) X
1,43 5354—(155152—(13@4

1 2D\’ LatRts dsdzidzad
x—_4////r(l+s)q ) STEERES (10

(2mi) dn ) di""RdPe03T s 2y 2y 2y
Since the only important issue is the presence of poles, it is enough to assume that
d\dsdtn is square-free—all other terms can be collapsed into # functions. Thus, given

a prime p, it is enough to consider the contributions to first order when it divides
each of d, ¢, n, d; and d5. Some straightforward analysis gives
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PM (345 718> Xc)

- s op

X L(xaxc: 1+ $)L(xprc. 1 + )%
y LA2F5 (g p00 L+ 21 + 22) Ly 130 L+ 210 + 23)L(paxs. L + 22 + 23)
1_[1 LGz V+ 20 L(ixgs 1V + 20 L(xixe, 1+ 2i+9)

ds dz;dzpdz;

s )2z

(10.3)

for some (s, z1, z2, z3). Now we evaluate by shifting contours to the left. Since we are
assuming ¢ to be much larger than L, we can first shift s to Rs = —1/10 and each z;
to Mz; = 1/10, and bound the resulting contour integral by ¢~'/?°L3/10  which is
small enough to ignore. The only pole we cross in the process is at s = 0, and it is
a simple pole since y,, yp, and y are distinct and non-conjugate. Thus we have,
up to negligible error,

PM(y 4, 185 %)
L DL , DL )1 224z
(tazps DLGaxe, DL(pxc )//szl+“2+“3n(zl,22,23)><

(2mi)?
Lo L+ 21 + 22) Ly x3, 1 + 21 + 23) Lo )3, 1 + 22 + z3) dzydzadz;
[T LGzas 1+ 200t T+ 20 Lz 1+ 2) iy
(10.4)

Now we shift the z contours to the left, one at a time. Were we to assume the
Riemann Hypothesis for these L-functions, this would be simple, we could shift each
to Nez; = —1/10 without hitting any poles. However, as discussed in detail in
[KMV2], we don’t need the Riemann Hypothesis to bound the resulting contour
integrals if we just shift to a contour lying to the right of all the zeros of the arious
L-functions. Since nonvanishing of these L-functions has been proved in small ran-
ges of the critical strip, this is enough (again, see [KMV?2] 5.3 for a detailed discus-
sion of how to bound the contour integrals). Thus all we have left is the residues at
z1 = zp = z3 = 0, and it is here that we need to be more careful about poles. For rea-
sons discussed while analyzing the fourth moment, we will always be taking n; = 4.

Suppose first that the characters are all complex. If all of the L-functions in the
denominator come from nontrivial characters, then all the poles are degree 4, and
the leading term goes as (log L)°’. However, if (for example) y, = 77, the z; pole is
only a triple pole, so the lead term goes at most as (log L)®. Thus the largest term
in (6.6) when all of the characters are complex is the one coming from
PM(y,, 72, x3), not from any of the conjugates, and that main term is

1(0,0, 0)

9
FﬁﬂLqilfbgL)' (10.5)

PM(yy, 225 13) =
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It remains to see that 7(0, 0, 0) is bounded away from zero for all choice of charac-
ters. Had we written #(z, z3, z3) out explicitly, it would have been an Euler product
over primes not dividing Pg of terms of the form

L+ p 201, 120 235 Ps 214 22, 23),

with f bounded, times some nonzero factors from primes dividing Pz (namely, cer-
tain factors from the { and L-functions). The latter is a finite product of nonzero
terms, each of which is between 1 —p~' and 1+ p~!, and the former’s logarithm’s
absolute value is dominated by ¢z > p~2 for some constant cg, and thus it also can-
not be zero. Thus #(0, 0, 0) is bounded away from zero by a constant depending only
on R, not on the characters or their conductors. In practice, it turns out to be enough
to take Pgr =2 x 3 x 5 x 7, but for the sake of the proof it is enough to show that it
exists.

If any of the characters are real, this isn’t quite right, since then L(x%, 1) is infinite.
Everything we have derived through (10.4) is still correct, so it is just a matter of
evaluating the degree of the various poles (in particular, so long as the characters
are distinct we get no poles from the shift of the s contour, so logg never appears
in the formula). As we have just seen, if any of the characters are complex then
we only get contributions to the main term from those PM’s in which they appear
unconjugated. Thus in the remaining analysis, we can assume that y, = y; and so

forth.
Now suppose for a moment that y; is real but y, and y; are complex. Then (10.4)
becomes
PM — L(Xl}fz»1)L(X1X3»1)L(X2%3»1)///LZ‘+ZZ+Z”I(21,22,23)X
(2zi)’ Lo, (1421)

o LG V+z14+22) LGxs 1 +21+23) Lo xz, 1 +22+23) o
L(t1 10 120 LG 23 V20T L 1420 L2, 1420 Lz, 1+20)
dZ]dZQdZ3

144
Z\Z525

(10.6)

The z; and z3 contours can be shifted as before, giving the same powers of log L, and
the z; contour can also be shifted, and also gives only a triple pole, since the
{p, (1 + z1)~! provides a zero. Thus we wind up with a main term of

$(D1)/D,

T2 nrr T lee D’ 10.7
02 DLGE ) og D) (10.7)

PM = 5(0,0,0)

Similarly, we will always get a main term of the form

—1

n(o,o,O)]_[d)f") [T D] (ogrLy . (10.8)
EEAVAS!

7=l
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where there are r real characters and ¢ complex characters. Since we are only con-
cerned with the existence of such a constant, not its precise value, this is enough.

10.2. THE FOURTH MOMENT

We now assume that y is complex, of squarefree level D > 1, such that %> is still
primitive. We wish to compute (and bound)

h
M) = Y IL(- 1 /21 M N1, (10.9)
JeS85(q)
where the coefficients of M, (f) are defined by (10.1). Using (2.2) (and (¢, ¢D) = 1)
we have
1 _
M, (NI = — 4/ L2 U+ 21 4 23) L0 1+ 20+ 24) X
@2ni)" Jeyt
A
% 1_[ C(D)(l +zi + zj)n(z) x Z Z}:(/2) v(z, £) X

ij (¢.gD)=1
(iN#(1,3),(2,4)

pmy )pu(ma)u(ms) u(my) L"'dz
m1 m2 m3 m4 "

<| D0 amims)imamy)

L=mmyx
msmy

Thus |M,()|* =3 if€)x(€)e~'> with x(¢) only supported on £ < L%
(¢, gDPg) = 1. Shifting the z; contours to Nez; = ¢/4 shows that x(¢) <, £¢ for any
& > 0. Proposition 7.1 implies that

M= Y M X(O[MP(£) + MOP(2) + MO ()] + op(1)
< LA
(¢,gD)=1

so long as L < ¢'/%=9 for some fixed .

10.3. THE DIAGONAL AND OFF-DIAGONAL TERMS

We recall from (7.9) that the diagonal and off-diagonal terms take the following
form:

MP(0) + MOP(¢) = R aCl 4. / G()GOT>(1 + )21 + nP(1 + 25)x

=0 02 2

dn)t,(en) (qD? H’dt
2 3 s (47

4n2 st
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We have

T (dn)t,(en) 1 u(a)r,(b) 7, (adn)t,(n)
Z s ot Zl pltsti Z ds ql+s+2tpt ; nltst+t

so that, using the identity 7,(p"**) = x(»*)t,(?*) + 7", (¥*) — 1T,

fo(adn)fx(n) (P’ LG2, )L 5)

= {P(29)
L)Ly (12, 9)
x fz(p“)+x(p“)<1 —H))
Hence
MP(0)+MOP(¢)
= Resszo%% / G()G(OT*(1+9)T2(1+ )P (1 +25) 9P (1 4+ 20) x
C(D)(l +5+02L(A 1+ s+ DL 14+s41) <qD2>”’dt
Vs, 1, 0)
(P)(2+25+21) st
with
oy 1 @), (b)
¥ (S’ 5 g) T e, & gl +st2ipt X
” ” (1 +s+ 0L, 1 +S+Z)>>
. 1— .
X an<”(p )+ up )( L2 +25+20

(10.10)

One can show that W¥'(0, 0, £) = P(0, 0, £) where ¥(0, 0, £) is the multiplicative func-
tion defined in Section 9.2 (see (9.8)), this is important for the problem of computing
an explicit lower bound for the proportion of non-vanishing.

Inserting (10.10), we find that the contribution of the diagonal and off-diagonal
terms to the fourth moment takes the form

4 1
MDOD(},) _2711/ RessOW/ n(s, t, z)G(s)G(z)F2(1 + S)F2(1 + )%
L(y 1421+ 23) LGP 1+ 20+ z) L% L+ s+ LGP 1 + s+ t)
L, LG D' 1454 2) L2 1+t +27)

(O + 54 0XP1 + 25)09P(1 +20)
< 11 (O + 2+ 2)° > >
i [T, P + 5+ 2)C P (1 + 1+ 2)
(i.)#(1,3),(2,4)

qD? Hrdzde
x [ = —.
472 7" st
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We shift the z contours to fMez; = 1/4 and the t-contour to Ret = —1/4, passing a
pole at ¢t = 0. The resulting integral is bounded by « Lg~'/* which is admissible.
Thus we have

(6] 2/4 2)S+1 s s
= Resg—— 711(9 t, 2)G(S)GOI (1 +)I (1 +1)x
(2n)" Jyt st

L(/2 1+21+23) LG L+ 20+ 2a) L2, 1+ s+ LGP, 1+s+t)
TTL, (LG 1 454+ 2) L2 1+ 14 2)
< [ Pa+zi+z)x
(i‘i)#(llfé),(l‘t)
(O + s+ 02D +25)c9P)(1 +21) L3dz
ML (P +s+2)PA+t+z) @

MDOD(X) —

(10.11)

As in [KMV2] 5.3, everything can be evaluated by shifting the z; contours just past
the line Mz; =0, the only important contribution coming from the following 5
sequences of poles

(21 :0,22:0,2320,2420),

(21 =0,20 = —2z3,24 = 23,23 = 0),
(z1 = —22,23 = 22,22 = 0,24 = 0),
(21 ==22,23=0,24 = 25,2, = 0),
(z1 = —23,20=0,24 = 23,23 = 0).

All other sequences contribute lower powers of log g, so long as n > 4. The impor-
tant question is what power of log L ~ log¢ comes out of this calculation. This is
simply a matter of counting poles: the { functions in the numerator contribute eight
poles, those in the denominator remove eight, and the combined powers of s, ¢, and
z; contribute 4n + 2. Thus the leading power of logg or log L will be (log q)4"*4.
Thus, taking n = 4, the fourth moment is dominated by (log¢)'* times a constant
of the form

CL(K, DLGZ. DLGZ DLGE. 1) 0 ()45D(1> L(Dip(1) e
[Th, LGAY, DLGAEY, 1) ML, oo(Mip() LG DI

where ¢ is bounded from above independent of y. Recall, (10.5), that the main term
of the third moment was proportional to (logg)’ times a constant of the form
¢ /L(y3, 1)L(x3, 1)L(33, 1) when all the characters are complex.
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10.4. THE OFF-OFF-DIAGONAL TERMS
Using (9.5) and (9.6), we have
§00D () - L@HDIGGICRLG 1" 1

L(y*, 2)D? @ni)* Jay
LA, 1+ 21+ 23) LG 1+ 22 + 24)

n(z)x

X
[LG2 1+ z)LG2 1+ 2P + 2)P(1 + 25)]
< I1 §<D>(1+z,-+zj)L;dz. (10.12)

i</
(@)#(1,3),(2,4)

Again, all we need is bounds in terms of powers of log L arising from poles in the z
variables, since there are no powers of logg coming from the s or ¢ residues. The
numerator gives four { functions, the denominator eight, so when combined with
the powers of z; there are a total of 4n — 4 poles in four variables, giving a leading
term of (log L)~ = (log L)® for n = 4. Note that this is a lower power than we
got from the diagonal and off-diagonal terms.

Next we consider the +— term, which from (9.10) is

2
MOOD Ay — 2(=DILGA DI 1
w (D) <2ni)4/ /(2>“ *

x Res, —on(s, t, z)@ﬂ T £9TA )] [P0 £s+0)x
+ +,+

8 L2 1+ 21+ 23)LG0 L+ 22+ 24) y
[Te LGA U4+ 21 £ OLGA, 1+ 23 £ )LGA 1+ 220 £5)LGA, 1+ 24 £ 5)

x [Ticiz.3.00 70 +2i+2) Lidz
[Tl +z £ +z3 £5)(1 + 2 £ (1 +z4 1) 2.

(10.13)

Using the same arguments, it is enough to count the factors of log L arising from tak-
ing the various s, ¢, z poles, which is 4n — 4. Thus for n = 4 the off-off diagonal terms
produce a main term proportional to (logL)'? times a constant of the form

¢/ (1LGE D).

Remark. It is instructive to note that althought the off-off-diagonal terms are the
most complicated of the main terms, they contribute less: for the untwisted fourth
moment of Proposition 1.2, the contribution of these terms is by 4 powers of logg
smaller than that of the diagonal terms. For the mollified fourth moment, setting
L = ¢* we see that the diagonal and off-diagonal terms contribute by (essentially)
~ log'? ¢, while the MP°P++ terms contribute by <« A®*log® ¢ which is negligeable,
and MOP9P—+ by ~ A!?log'? ¢ which althought contributing, becomes smaller for
smaller A (note that for Theorem 1.1 we cannot take A arbitrarly small in view of the
third moment). Note also that, the discrepancy in the contributions of the M?°P—+
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and the M29P++ terms can be guessed already by looking at (8.9) and (8.10): in (8.9)
there is an oscillating factor G(y?, h; D) which is not present in (8.10).
10.5. CONCLUSION OF THE PROOF OF THEOREM 1.1

Thus, under the assumption that all the characters are complex, we have shown that
that there exist mollifiers M;(f) such that

h
D LU0 DMIN) L A2 DM 73, DM3(S)
f

(log L)’

> (co + o(1))
T 262 )

(10.14)
and
h

NV _(ogg)?
; \L(f i PMAOI < (ei 4 0(1)) IL(z7, DI

where ¢, ¢; are absolute constants, ¢y > 0, and L = ¢* for some positive fixed A.
This proves that

h 424

+ o(1), (10.15)
SAL(f i 1/2)#0
i=1,2,3

and we conclude the proof as explained in Section 4. Suppose now that y; is the tri-
vial character but y, and y; are complex: from (10.7), we have

(log L)*
IL(3. DL DI

h
> LU DML 12, DML 13, HM(f)| = (co + 0(1))
7

The necessary upper bound on the fourth moment for the trivial character is provi-
ded by [KMV2], Theorem 1.4, which gives (with our present choice of mollifier)

h
D ILA DM < (er + o(1)(log 9).
e

Since 4 x 8 = 8 + 12 + 12, we still have (10.15).

11. Variant for Real Characters

Finally, we discuss the variant, Theorem 1.4. Recall that this involves the case in
which y; is trivial, y, is real, and y; is complex. We assume also that D,, D; are
squarefree and that y3 is primitive. For ¢ prime such that y,(—¢) = 1, the first case
of Theorem 1.4 follows from the inequality
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4
h
> Lia(NLs()
SeS5(q@)
2
h h h
< Yoot DD P | DD 1m0, (11.1)
Je€S5(q) feS5(q) f€S5(q)

Li2(/)L3(/)70

where

Lio(f) = Mi(NM(NL DL A2 9)

and

Ly(f) = M3(/)L(f .73, 3)-

The only remaining question is to evaluate the second moment
h
D WS DL 2. DY o (0).
I

This calculation winds up being quite similar to the one we have already done, but
avoids many of the pitfalls that we have encountered above because now 1 * y,(n)
represents the coefficients of an Eisenstein series of square-free level (for example,
it is instructive to compare the calculations of Appendix B.2 which is used here with
those of Appendix B.1). The remainder terms have exactly the same size as before,
and the main term, gets contributions from the diagonal, off-diagonal, and off-
off-diagonal which gives that the averages of |L; »(f)|* goes as (log ¢)®, which is pre-
cisely the correct power to make the proportion of nonvanishing triple products go
as a constant: recall that the lefthand side of (11.1) goes as (log L)"**, and the last
factor of the right-hand side goes as (log ¢)'?. Rather than reproduce all the calcula-
tions here and lengthen this paper even further, we merely present the asymptotics
for the case £ = 1, which has independent interest. The average (using the harmonic
weights) of the square of the kth derivative of A(f, %)A(f. L2 %) is the sum of an error
term of the usual size, plus two main terms MPP + M990 where

pon AR [ [ GOT(+ 0 L(mwzz)( )F
/3) /(2) (F(s. 1)+

(27'[1) S/Hrl tk+1

+ (=) F(—s, £))dsdt,

where

F(s, 1) = GOT (1 + 5 L5, 1 + 29) (q—Dz>SX

L +s+ NP1 4 s+ DLy, 1 + 5+ 1)
Ly, 2+ 25 +21) ’
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and

00D 4(kv)2L(m, 1)? GG [T £ £ t)
. {(2)(27i)? ,/(3) /(2) s

X( b + b )HC(li(S—i-t))L(y 1+ (s—1)+
b(l+s+0 pl—-s—0/)1, (2> :

+ N(_ )< D—s+t + Ds—t )X
B0 =s+0 G +s—1)

x [ ] LG 1 £ s+ )1 £ (s - z))} dsd.
+

Notice that in both cases, the parity of the integrands is odd precisely when the rele-
vant derivative can be nonzero, that is, when y(—¢) =1 for even k and when
7(—q) = —1 for odd k. Thus these expressions can be evaluated by taking residues
at s=0 and then r=0 in the usual fashion. In particular, for £k =0 and
1(—¢) = 1, the asymptotics go as P,,(log q), where P,, is a quadratic polynomial with
coefficients depending on y,.

Appendix A. Summation Formulae

In this section we derive a Poisson-like summation formula for the convolution of
two distinct primitive Dirichlet characters. These results are standard but we
couldn’t find them in the existing literature with the required degree of generality.
Our methods essentially follow those of [J] but there are other ways to obtain this
formula. We first start with a very general proposition obtained by double applica-
tion of Poisson summation.

PROPOSITION A.l1. Given ¢y, c; = | two integers and G a complex valued function
on (Z/c\L) x (Z/cyZ). Let

H(my,m) =" " G(n, rz)e(’”l” ’”2’2> (A1)

ri(er) ra(ce2) €

denote its discrete Fourier transform, and assume that H(—m,, —m,) = vH(my, m,) for
some v € {X1}. Let F(x) be a smooth function on (0, 00), vanishing in a neighborhood of
0, such that F and all its derivatives have rapid decacy at co. Then

Z G(my, my)F(mimy)

my,my =1

= Res;—;

F(1+5) (H(O 0)
S2

N
(cre)'™ (H H )>
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o¢)
+—— 3" H(mimy) / F(x)J"(4n /w>dx+
Cci1C Cc|1C
1 2m|.’”2>1 0 1¢2

1 o0 ! mimayx
—_— H(my, — Fx)K'( 4 dx, A2
S Hom,—my) /0 ) (n )x (A2)

162 my,my =1 €12

where I:“(s) is the Mellin transform of F, ¢; = [¢, D1], ¢ = [¢, D3],

~Erann(F()

ri(er) ra(e2)

L reen(E)

ri(er) ra(c2)
JT(x) = =2nYy(x); J (x) =2miJo(x); KT(x) =4Ky(x); K (x)=0.
Proof. We rewrite the sum as
Y Gomum)Fmimy) = Y Y " Glri,ra) Y Y Fimmy).
my,ny ri(c1) ra(ca) Mmi=ry my=r,

Taking the Mellin transform of F and using the Hurwitz zeta function
Us,) =) (m+2)~,
m=1
this becomes
4. & 1 r r
>3 6ty [ RO (s e 2 (A3)
=1 Fp— (c1c2) A 2

We shift the contour to the left, crossing over poles at s = 1, then use the functional
equation of {(s, ) to convert to convergent sums.

A.1. THE POLES AT s =1

If s is near 1,

{(s,0) = ——E(zx)—i—O(s— 1).

The portion of (A.3) coming from the pole is thus
C1 (&)

1 1 F’ r
Z ZG(H,M)RGSX IF(S)(c )’ ((s— 12 s—1 <? <a> -

rn= 1}”2 1

’—J|'_J

(2)

(A.4)
giving the first term in (A.2).
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A.2. THE SHIFTED INTEGRAL

We recall the functional equation (see [Da])
_2I(1 —) i sin 2n(mo + s/4)
- (27_6)173‘ ml=s :

m=1

{(s, o)

Thus upon shifting the contour in (A.3) to fes = —2 and replacing s with 1 — s, we
have the following contour integral:

: Z Z Glr1. 1) f Fo—9re?(35) 3 L o
o 1, 2) 57— - —_— . .
€1e2 ri=1r=1 2mi (3) 4n? my,ny nmynt,
1 : : A
_§+m1r1+myz +e E_I’Vlﬂ’]_mﬂ‘z Le mlrl_mzr2 n
4 2 a o 2 o o a o
+€<— mn + m2r2>>ds. (AS)
C1 (&)

Note that H(—my, —m;) = vH(m;, m;), so the contour integral’s contribution to
(A.3)is

1 1 n 162 s
— F(1 = () ——=— V(o) H
16 Z 2mi J 5 ( HI(s) (4n2m1m2> (c"(s)H(m,, mp)+
my,my 3)

+ (1 +v)H(my, —my))ds, (A.6)
with, ¢ (s) = 2 cos(ns), and ¢~ (s) = —2isin(ns). We then shift the integration contour

to Res = 1/8, open the Mellin transform 1:"(1 — 5) and use the formulas (see [EMOT]
Vol 1. 7.3 (17), (19), (23)), valid for 0 < ¢ < 1/4,
1

— | T(s)x"*ds = 2K, (2/%), Zim /

. 2(s) cos(ns)x*ds = —n Yo (2v/X),
21 J ) (@)

1
— [ T(s)sin(ms)x*ds = nJo(2/X).
2mi (@)

This completes the proof of Proposition A.1. O

A.3. CONVOLUTION OF DIRICHLET CHARACTERS
We apply Proposition A.1 to the case
G(my, ma) = y,(m)y,(m:)

for y, and y, two primitive Dirichlet characters.

PROPOSITION A.2. Given y,, y, distinct primitive Dirichlet characters of con-
ductors Dy and D;, respectively. Let F(x) be a smooth function on (0, 00), vanishing in a
neighborhood of 0, such that F and all its derivatives have rapid decay at co. Given ¢ a
positive integer, and a coprime with c,
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Z 11 *yz(m)e( )F(m)

mz=1
_ 5D2|C
c

oDyl "\ - _ o0
220 (5 )@ Tz [ R

1
+/{lf:21(cz ) Z H(a, m;, my; ¢)x

my,my

xf F(x)Ji(4n /l?’l]l’ﬂzx ’dx—}—XZ(_l)x
0 cre c1e2

X Z H(—a, my, my; ¢)x

my,ny

x / ” F(x)Ki<4n mlmzx)dx, (A.7)
0

12

L1 (Diz> 1(@)G () L(1, Xl;‘(z)/o F(x)dx+

where

=01, ca=l[.Di], c=lc D,

Hia om0 = 3 5 raatroie( 0+ 722 ) (1), (A8)

@) () © ¢

JT(x) = 2nYy(x), J(x)=2miJy(x), K'(x)=4Ko(x), K (x)=0.

Proof. This is immediate from Proposition A.l1 and the following two
lemmas. O

LEMMA A.3. If y, and y, are primitive characters modulo Dy and D,, respectively,
and (a,c¢) = 1, then if y; = y, and Di|c,

[e.D1][e¢, D3]
Z Z nnae(*12) = 1<a)c< l)¢>(D1)

but otherwise the sum is zero.

Proof. If ¢ :=[Dy,c] > ¢, we may write r; =cs;+ 1, with 1 <17 <c¢ and
0 < 51 < ¢1/c, and the s; sum takes the form > y;(cs; + r1) = 0 since y; is primitive
modulo D;. Thus we have ¢; = ¢, and by symmetry we also have ¢, = ¢, so D and
D, must both divide ¢. We now write r; = Dys; + ¢, with 1 <¢# < D; and
0 < 51 < ¢/Dy, so that the s; sum is

ar,s1 Dy c
D e — ) =Dt

s1<c/Dy
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Thus the complete sum is

D D as>ty
Zme/z(vz ) (Dl)

11 1 5=

This vanishes unless (D, ¢/D;) = 1, which is to say D,|D;. Since the original expres-
sion was symmetric in D; and D,, we must also have D|D,, so D; = D,. The ¢; sum
is then

D1 a
le(zne(
n=1

leaving us with the expression

St _
ljll) = T1(as2)G(1,).

51 ( )yl(a)G(mZm(sz)mz)

Szl

which is zero unless y; = . ]

LEMMA A.4. With notation as above,

- Z Z /Cl(’l)/(2(”2)€<arlr2> (}C_i) = Op,leC1/) (D:

ri(cr), ra(c2)

)zz(a)G(m)L(l, 17

if 11 # 1o, and

om0

ri,r

= 5pyec P2 (Dil)zma)G(xl)aog(Do L+ WD)

D,
} 1
if 11 = 22, where ¥(D1) = 3, 2L

Proof. We perform the r, sum first, and in a manner similar to the previous proof
we obtain that the sum is zero unless D;|c in which case we are left with

DDy /(c,Dv)

r/
mm( )72(61) > /X_()?(m>

s=1
We now use the identity, obtained using

(o) 1
_F(oc) o +Z

k=1

>« )<_%(L)> = res;—g (D

1<r<cD

k+oc

Jros (A.9)

Ly, 1 +5).
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Thus if y; # y, the sum is

Cc D1D2
D (D1, ¢)

G <Diz)72(a)L(l, X172)s

the desired result, and similar if y; = y,. O

Appendix B. An Exponential Sum

In this section we study the average of the exponential sum H(a, m;, m»; ¢) defined in
(A.8). Recall that y,, y, are primitive characters of conductor D;, D,. We again let
¢y = [¢, D1] and ¢, = [¢, D;]. We study the average

ROmy, ma, s ¢) = —— 3 ( )H(a my, my; ¢)
C1C2 @) c

miry I’}’lzi’z arira
- Sy ( )z/loome( n )
162 c c

a(c) ry(ey)
()

(B.1)
LEMMA B.1.

|R(my, my, n; ¢)| < (D1Dy) (—n — mymy, ¢ )

Proof. For p a fixed prime number, we define the exponents d|, >, k, ki, ky by
P ID1Lp®Da, pHlle, philler, p2llea. We set ¢, = ¢/p¥, with ¢;, and ¢, defined
analogously. Let y;, denote the p-primary component of y; By the Chinese
Remainder Theorem we can factor R(my, my, n; ¢) over primes to get local sums
(after some changes of variable) of the form

72 -
k—ky—k * [€1,pC2,pCpNd mr
prhah E e(ipk E 11 p(re e X

a(pk) r(p1)
nmory ar r
x Z X2,p(”2)e< e a—" )
o (ko b y4
r2(p*2)

Since the context is now clear, we henceforth write y; instead of y;,. We also set
D, = cl,pcz,p/cﬁ. If k <d, +d> the sum is trivially bounded by p3“+%) so we
may assume that k > d; + d», so that ky =k, =k and D, = cic2/c*. We now break
into cases.

B.0.1. The Case p f DD,
This is the generic case; the sum takes the form

T T A ),

a(pr) r1(pk) r2(ph)
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yielding the Ramanujan sum

x ((Dpyn —mymy)a .
Z e<(pk12)> < (D[,I’l _ mlmz,]?k)-
a(pk) P
B.0.2. The Case p ) Dy, p|D>
We have

P e(P) 3 (M) 3 ()

a(ph) r1(pF) r2(p)

% _
(Dyn — mymy)a _
= Z f?(pk 11(—amy) L Pd' /Z(Dpn - mlmz,pk),
) P
since this is a Gauss sum.

B.0.3. The Case p|D; and p|D;
We have
_~—x* [(Dyna myry (my + ary)ry
X)X nene(") 3 e,
ah NP P o P
The r, sum equals

h—d _ (my + ary
P G(Xz)(spk"iZ [(my+ar ) X2 (P’fd) .

Since k — dy = d; we may replace y,(r1) by y;(—mza) and the sum equals
—dh—k1 —kr * (D n—mlmz)é _ _ nys
PR Gy (<) 3 e("—k 10:@ S Falspse( 222
a") 4 51(%) P
L p (D —mymy, pr).

)

B.1. THECASE v, =%,

We now restrict to the particular case y; =y, =y, with D, the conductor of y,
square-free. We also suppose that (rn, D) = 1, which will always be the case in our
applications. We have
c x [(nx - miry +myry  rirXx
Ko=) 5 {2 1)
[e, D]2 % ¢ rl,r;[ch]) [e. D] ¢
¢ 9 .
—— Y 2%

= 2
[C, D] (p([c’ D]) xa”l ,"2([C,D])
(x,cD)=1

<m1r1 +mory  rirax + nfc)
e )

[¢, D] ¢
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We factor the sum over primes, setting

D= D1D2D3 and c¢= D]CQC3
with

(3. D)=1.  Dille.p| D2 = p*ler. (e3, D) = 1.
Then [¢, D] = ¢3Dic,D3. We have

R(my, my, n; ¢) = R(my, my, n; c3)R(my, my, n; c2)R(my, my, n; D1)R(my, may, n; D3),

where (after some simple changes of variable)

1 * D X
R(my, my, n; ¢3) = C_Z Z e(mm + mary + Ds(rirx + nx))’

C
33(e) romaes) 3

1 * _ myry 4+ myr;
R s D = 1)y e i
(my, my, n; D3) +(D3)D; E E 1, (7 1)/{D3(r2)€< s )

2 X(D3) r1,r2(D3)

<m1 r1 4+ mors + D3(rirax + n)‘())
(&) ’

1 * _
R(my,my, n; ¢2) = C—Z Z XDZ(”I)XDZ(rz)é’

2 x(c2) riraer)

R(my, my, n; Dy)

: : 1 miry +mary + Dy(rirx 4 n¥)
:D_Z Z XDI(VI)XDI(Vz)e< = '
! x(Dy1) r1.r2(Dy) 1

To evaluate the first sum, we sum first over ry, getting
R(my, my, n; ¢3) = r(mymy — D3n; ¢3) = r(mumy — (D/(c, D))*n; ¢3).
The second sum can also be evaluated by doing the r; sum first, getting
R(my, my, n; D3) = yp,(=Dxp,(m)yp,(m2). (B.2)

The third and fourth sums are slightly more complex. Since they are multiplicative in
their modulus, we can factor over primes, reducing to the evaluation of

(mlrl + myry + D3(rirx + n)’())

 J— _
R(m1,mz,n;p“)=ﬁz Z Lp(r)7p(r2)e e

x(p*) ri.r2(p*)

B.1.1. The Third Sum (x> 1)

First note that if p|mm;,, then R(my, my, n; p*) = 0, as can be seen by summing over
r; if p|m;. Thus we may assume that p } m;m,, so we get

R(my, my, n; p*) = 7,(my)y,(mo)r(1, 1, mymn; p*).
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Next we set r; = x; + py; with x; < p yymod (p*~'). Summing over y; we get
1 +rx =0(p*"). Letting 1+ rox = zp*~!, we sum over x|, then over z, getting
Gauss sums, and finally over x, getting

R(mi, ma, n; p*) = 7,(m) g, (mo)r(mymz — D3n; p*).

B.1.2. The Fourth Sum (¢ = 1).
Note that if p|mm;,

1)z, (mimy —nD)G(zy)  if p | my

R(my, my, n; p) = _
( p) XZ(ml)X[)(mlmz - nD%)G(XI%) lfp | ny

When (p, mym;) =1 we have R(my, my, n; p) = Zp(m)y,(m2)R(1, 1, nmymy; p) and
some simple computations then give

R(mi, my, n; p) = 1,(=D7,(m)z,(m2) Y 7,(x(1 + nD3mmzx))y,(1 + x).
x(p)

An interesting case occurs when mm, = nD%, in which case
R(my, my, n; p) = —J,(m1)y,(m:). (B.3)
This is the source of the ‘off-diagonal’ term in the main text.
To summarize, we have
R(my, my, m; ¢) = yp,(—Dr(mymy — D3n; )p, p, (M) 1p,p,(m2)R(my, ma, n; Dy)
(B.4)
where the variables are defined by

D = D,D,Ds, c=¢Dy, (¢, D\D;) =1, D}|c.

B.2. THE CASE y, =1

Finally, we consider the case when y; is trivial, so D; = 1 and [¢, D] = ¢. To simplify
notation, we use y rather than y, to denote the non-trivial character. We wish to sum

1 x (na myry +aryry | mpr
R Lo) = - / '
(ml , My, 1 C) [C, D] % €< ¢ > Z A(}’Z)é’( C + [C, D])

ri(c)
r2([e,D])

Performing the r; sum gives

¢ « (na mor
[C, D]Z €<7> Z 5m1+ar2=0(c)X(r2)€([0’2D2]>'

ae) r2([¢.D])

Since D is squarefree, we can write [¢, D] = ¢D,, with D, = D/(c, D) and (D>, ¢) = 1.
We factor y = y; %, such that the conductor of y, is D,. We split r, over relatively
prime moduli as r, = s;¢ + s, D, to make the sum
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1 * na mss1 nsso
D_zz e(?) > Z5m1+aDzsz:0(c)X1(SzDz)Xz(SlC)e( D, T )

a(c) s1<D3 s3(c)

Note that the s, sum only contributes one term, s, = —m;aD,. The s; sum is a Gauss
sum, so the entire expression is

T ey -y YoM @),
2 a(c) ¢
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