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EXISTENCE THEOREMS FOR
VECTOR VARIATIONAL INEQUALITIES

ARIS DANIILIDIS AND NICOLAS HADJISAVVAS

Given two real Banach spaces X and Y, a closed convex subset K in X, a cone
with nonempty interior C in Y and a multivalued operator from K to 2L<-X< Y), we
prove theorems concerning the existence of solutions for the corresponding vector
variational inequality problem, that is the existence of some x0 £ K such that
for every x € K we have A(x — XQ) ^ — intC for some A G Txo. These results
correct previously published ones.

1. INTRODUCTION

Let X, Y be real Banach spaces, K be a closed, convex subset of X and L(X, Y)
be the set of all continuous linear operators from X to Y. Let further T: K —>
2L(X>Y) \ {0} be a multivalued operator and C: K —> 2y be a multivalued mapping
such that for each x £ K, C(x) is a cone with nonempty interior int C(x). The purpose
of this paper is to study the existence of solutions for the vector variational inequality
problem (VVIP):

(1) 3x0 G K: Vz G K, 3A € Tx such that A(x - x0) £ -intC(s;o)-

In case Y = R, C(x) = R + , the VVIP reduces to the well-known variational inequality
problem [13]. The VVIP was introduced by Gianessi [8] for the case Y = Rn and was
subsequently studied by many other authors [2, 3, 4, 14, 17] in connection with vector
optimisation. Theorems asserting the existence of solutions of the VVIP are contained in
[3, Theorem 2.1] for single-valued, monotone operators T, where Y has a constant cone
C (that is, not depending on x), in [2, Theorem 2.1] for T a single-valued, monotone
operator, where Y is equipped with a non-constant C(x) and in [14, Theorem 2.1] for
multivalued, pseudomonotone operators T, with C(x) constant. However, the proofs
of all these theorems contain a mistake: a certain set defined in these papers in asserted
to be weakly compact, while this is not the case (see Remark 2 at the end of the present
paper for details).

In the following paragraph we prove the existence of a solution of the VVIP for a
multi-valued, monotone operator [9] with constant cone C (Theorem 3). We also prove
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the existence of solutions for multivalued, pseudomonotone or quasimonotone operators
with values consisting of completely continuous operators.

We now recall some definitions and fix our notation. A cone C in Y is a non-
empty, convex, proper subset of Y, such that for all A ̂  0, y £ C, we have \y £ C.
The dual cone C* of C is the set of all / in the dual space Y* such that f(y) ^ 0,
for all y £ C.

If C is closed, then

(2) y £ C o f(y) 2 0, for all / £ C*.

On the other hand, if int C ^ 0, then

(3) y £ int C <* / (y) > 0, for all / £ C* \ {0}.

Note that in both cases we have C* ^ {0}. We refer the reader to [11] for these and
other properties of cones.

Now let C: K —• 2Y be a multivalued mapping such that for each z £ K, C(x)

is a cone with nonempty interior. A multivalued operator T: K —» 2L(X'Y^ \ {0} is
called:

(i) monotone [9], if for all x,y £ K and all A £ Tx, B £ Ty we have
(B-A)(y-x)eC(x).

(ii) (weakly) •pseudomonotone [14], if for all z, y £ K and 4 £ Ta;,
A(y — x) ^ — int C(a:) implies B(y — x) ^ — intC(x) , for all (for some)
BeTy.

(iii) (weakly) quasimonotone, if for all x,y £ K and 4 £ T z , ^ ( y — x) £

-C(x) implies B(y - x) $ - i n t C(x), for all (for some) B £ Ty.

It is obvious that (weak) quasimonotonicity is implied by (weak) pseudomonotonic-

ity, which in turn, is implied by monotonicity. These notions generalise the well-known

corresponding ones for the case Y — R [12, 15].

The strong operator topology (SOT) on L(X, Y) is the weakest topology for which
the functions L(X, Y) B A —> Ax £ Y are continuous, for every x £ X. The multi-
valued operator T is called upper hemicontinuous, if its restriction on line segments is
SOT-upper semicontinuous. An operator A £ L(X, Y) is called completely continuous,
if it maps weakly convergent sequences to strongly convergent ones [5]. Any compact
operator is completely continuous. The converse is not true, since the identity mapping
in l\ is completely continuous without being compact [6]. If Y is finite-dimensional,
all elements of L(X, Y) are obviously completely continuous operators.

A point xo £ K is called an inner point [10] or relative quasi-interior point [1] of
K, if for all / £ X*, we have

Vz £ K, j(x - x0) > 0 => Vz £ K, f(x - z0) = 0.
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In other words, xo is an inner point of K if every closed hyperplane which supports K
at XQ , necessarily contains K.

The set of inner points of K is denoted by inn K. Note that interior points of K
are also inner points, since in this case the above implication holds vacuously. In fact,
whenever int K ^ 0, it can be shown that int K = inn A'. However, for any separable
K we have inn if ^ 0, even if int K = 0 [1, 10]. In [1, 10] it was also shown that
inn K is lineally full in K, that is for every x £ inn K and every y £ K, we have
{tx + (l-t)y:t£ (0, 1]} C inn K.

For any 5 C L(X, Y) a.nd x £ X, S{x) will denote the set {Ax: A £ 5 } .

2. THE MAIN RESULTS

In what follows, X and Y will be Banach spaces. Unless explicitly mentioned, we
shall always consider the weak topology on X, the norm topology on Y and the strong
operator topology on L(X, Y). K will be a nonempty closed, convex subset of X and
C: K —» 2Y a multifunction, such that C(x) is a cone with nonempty interior for each
x 6 K. We set D{x) = Y\ ( - int C{x)) and for any operator T': K -> 2L<-X<Y) \ {0}
we define the multifunctions:

(4) G(y) = {x £ K:3AeTx such that A(y - x) e D{x)}

(5) F(y) = {xEK:3B£Ty such that B(y - x) £ D{x)}.

Let S be the set of all x £ K such that relation (1) holds, that is, S is the solution
set of the VVIP. We note that 5 = f| G{y).

y€K
We begin with some lemmas:
LEMMA 1. Let K be (weakly) compact. Then f) G{y) ̂  0.

K

PROOF: According to K. Fan's lemma [7], it is sufficient to show that for any

x = f) Xixit with Xi £ G(xi), Xi £ [0, 1], f) A< = 1, we have x £ \J G{xi). Indeed,
» = 1 > = 1 i = l

were this not the case, we would have x £ G{xi) for all i's, so for all A 6 Tx we
would have A(xi — x) £ — intC(x). Since — intC(x) is convex, this would imply

n
0 = 5Z ^iA{xi — x) £ — int C(x), a clear contradiction. U

i=l

LEMMA 2 . Let T be upper hemicontinuous. Then f) F(y) C f| G(y). If, in
y€K y£K

addition, inn K ^ 0 and T has compact values, then f\ F(y) = f] F(y) .
y€K y&nnK

PROOF: Assume first that there exists x £ f] F[y) such that x $ p| G(y).
y€K yGK

Then there would exist y £ K such that (Tx)(y - x) C - int C(x). Set xt = ty +
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(1 — t)x, t E (0,1). Since — int C(x) is open and T is upper hemicontinuous, there
exists 6 > 0 such that (Txt)(y - x) C - i n t C ( x ) , for all t £ (0, S). Since t(y - x) =
xt — x and — intC(x) is a cone, we deduce that (Txt)(xt — x) C — intC(x) , that is
x ^ F(xt), a contradiction. This proves the inclusion.

Now suppose that inn K ^ 0. Suppose that there exists x £ f] F(y) such
Sf€inniC

that x £ Pi F(y). Then for some y £ K, we would have

(6) (Ty)(i/-aOC-intC(a!).

Since (Ty)(y — x) is compact by assumption, relation (6) implies that there exists e > 0
such that

(7) (Ty)(y - x)+Be + BcC-int C(x)

where Be = {x £ X: \\x\\ ̂  e } .

We choose z £ inn if and set yt = tz + (1 — t)y, t £ (0, 1]. Since inn K is lineally
full, we have yt £ inn if, so x £ F(yt). We also have

(8) (Tyt)(yt - x) C (Tyt)(y - x) + (Tyt)(yt - j,).

Upper hemicontinuity shows that for t sufficiently small, (Tyt)(y — x) C (Ty)(y — x) +
Be. On the other hand, since T has compact values and is upper hemicontinuous, the
image of any line segment by T is compact; hence, for small t we have: (Tyt)(yt — y) =
t(Tyt)(z -y)CBc. Hence, relations (7) and (8) imply (Tyt)(yt - x) C - int C(x), that
is, x 0 -F(j/t), a contradiction. This shows that 0 ^ ( 1 / ) = f| F(T/). D

LEMMA 3 . Suppose that K is compact and for some y £ K, T(y) is norm
compact and its elements are completely continuous operators. Suppose further that
the graph of D is sequentially closed in X x Y. Then F(y) is closed.

PROOF: Let x £ F(y). By Eberlein's theorem, there exists a sequence (»n)nepf C
F(y) converging to x. Then for any n £ N , there exists Bn £ Ty such that
Bn(y — xn) £ D(xn). Since Ty is norm compact, we may assume with no loss of
generality that (•Bn)ngN norm-converges to some B £ Ty. Since B is completely
continuous, we have Bxn —> Bx, so using a standard argument, we conclude that
Bn(y — xn) —> B(y — x). The sequential closedness of the graph of D implies that
B(y -x)£ D(x), that is x £ F(y), so F(y) is closed. D

LEMMA 4 . Suppose that T is weakly quasimonotone and upper hemicontinuous,
with compact values. Then for all y £ inn K we have G(y) C F(y) U S.

PROOF: Let x £ G(y) be such that x $ F(y). We shall show that x £ S. The
assumption on x implies that there exists A £ Tx such that A(y — x) ^ — intC(x).
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In addition, A(y — x) £ —C(x), since otherwise the weak quasimonotonicity would
imply that x € F(y). Hence A(y — x) belongs to the boundary of —C(x), so by the
Hahn-Banach theorem there exists an / £ Y* such that f(A(y — x)) ^ f{z), for all
z 6 — C(x). Since — C{x) is a cone containing A(y — x), we easily deduce that

(9) ( / o A){y - x) = 0 ^ / ( * ) , for all z £ - C ( x )

so, in particular

We now show that

(10) ( /

Indeed, suppose to the contrary, that (/ o A)(z) > ( / o A)(x) for some z 6 K. Set
j/« = is + (1 - t)y, < £ (0, 1). Obviously (/ o A){yt - a:) > 0, for all t £ (0, 1), so (9)
implies A(yt — x) ^ —C(x). Using the weak quasimonotonicity, we get

(11) (Tyt)(yt-x)nD{x)?Q.

On the other hand, x £ F(y), which means that (Ty)(y — x) C — int C(x). Using the
same argument as in the second part of the proof of Lemma 2, we conclude that for t
sufficiently small we have x ^ F{yt), a contradiction.

Hence (10) holds. Since y 6 inn K, we deduce that (f o A)(x) = (f o A)(y) =

(/ o A)(z), V.z £ K; that is, (/ o A)(z - x) = 0, Vz € K. According to (9), / belongs
to the polar cone of C(x), hence relation (3) implies A{z — x) ^ — int C(x), for all
z £ K, that is, x £ S. D

THEOREM 1. Suppose that T is upper hemicontinuous and for all y € K, T(y)
is norm compact and its elements are completely continuous operators. Let the graph
of D be sequentially closed in X xY and K be compact. Then in each of the following
cases, the WIP has a solution:

(a) T is weakly pseudomonotone,

(P) T is weakly quasimonotone and inn K ^ 0.

PROOF: (a). If T is weakly pseudomonotone, then for all y £ K we have: G{y) C

F(y), so invoking Lemma 3 we get G(y) C F{y). Combining now Lemmas 1 and 2 we

get

0 ± n °M Q n F M
 g n

y€K

hence S is nonempty.
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(fl). Let T be weakly quasimonotone. Suppose 5 = 0. Then Lemmas 3 and 4
show that G(y) C F(y), for all y £ inn K. Hence an application of Lemmas 1 and 2
gives

y€\nnK jEinn K

which is a contradiction. Thus 5 ^ 0 . D

Theorem 2 replaces the hypothesis of (weak!) compactness of K by a coercivity
condition. We assume for simplicity that X is reflexive.

THEOREM 2 . Let X be a reflexive Banach space. The conclusion of the Theorem

1 still holds if the assumption "K is compact" is replaced by the following coercivity

condition:

"There exists an R > 0 such that for all x £ K, \\x\\ ~£ R, there exists a z 6 K,

\\z\\ < R, such that {Tx){z-x) C -C{x)."

PROOF: Define K\ — {x £ K: \\x\\ ̂  R}. Then K\ is a nonempty, convex,
compact subset of X.

We consider two cases:

(a) If T is pseudomonotone, then by Theorem 1 the VVIP on K\ has a
solution Xo • By the coercivity condition, there exists a z 6 K, \\z\\ < R,

such that

(12) {Txo){xa-z)QC{xo)

(if ||zo|| < R, w e rnay take z = XQ). NOW given x £ K, there exists
t £ (0, 1) such that xt = tz + (1 — t)x 6 K\. By the definition of XQ ,
there exists A 6 Txo , such that A(xt — xo) £ — intC(a;o)- Combining
the latter with (12), we easily deduce that tA(x0 — z) + A(xt - x0) ^
— int C(xo), that is, A(x — XQ) £ — int C(xo). Hence xo is also a solution
of the VVIP on K.

(fl) Let T be quasimonotone and inn K ^ 0. Since inn K is lineally full,
there exists z £ inn if such that ||z|| < R. Then it is easy to prove that
z £ inn K\ (see also the proof of Theorem 3.1 in [10]), so inni£"i ^ 0.
Hence, by Theorem 1, the VVIP on K\ has a solution XQ , which is in
fact, as in the previous case, a solution on K. Q

Note that for a pseudomonotone operator T, the assumption of the norm com-
pactness of Ty may be replaced by that of compactness. Indeed, if the latter is the
case, we set

*i (») = {x £ K: (Ty)(y -x)CD(x)},yE K.
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Then obviously
Fi(y) C F(y), Vy 6 K.

Hence Lemma 2 gives

n KM c n
An analogous proof to that of Lemma 3 shows that -Fi(y) is closed for all y £ K.
Finally, the proof of Theorem 1 goes through if we consider Fi(y) instead of F(y).

If the cone C does not depend on x and T is monotone, then the existence of
solutions for the VVIP is a trivial consequence of the analogous theorem for the (scalar)
variational inequality problem, as the following shows:

THEOREM 3 . Let T: K -> 2L ( J f ' y ) \ {0} be a monotone, upper hemicontinuous
operator with compact values and let C be a cone with nonempty interior in Y. Suppose
that K is compact or that X is reflexive and T satisfies the coercivity condition of
Theorem 2. Then the WIP

Vy e K,3Ae Tx such that A(y - x) £ - int C

has a solution x on K.

PROOF: Choose / £ C* \ {0}. Then the operator / o T: K -> 2X' \ {0} is
obviously monotone, upper hemicontinuous with •u;*-compact values, so there exists a
solution a: £ if of the variational inequality

Vy £ K, 3« £ (/ o T)(x): (u, y - x) ^ 0

(see, for instance, [16]). Obviously, u = f o A for some A £ Tx and this according
to relation (3) shows that A(y — x) £ — intC, that is, x is also a solution for the
VVIP. D

REMARK 1. In the case Y — R , the set of solutions for the (scalar) V.I.P. of the
pseudomonotone operator is known to be convex. This does not hold for the VVIP
even if the operator T is constant, as the following example shows: Let X = Y = R 2 ,
C(x) = C -B?+, K = {x £ R 2 : | |z| |2 ^ 1} and Tx be the identity operator for all
x £ K. Then xx - (0, - 1 ) and x2 - ( - 1 , 0) are solutions for the VVIP while all
convex combinations of them are not.

REMARK 2. The set F(y) defined by relation (5) is not compact under the assumptions
of Theorem 3, as it is asserted to be in the proof of Theorem 2.1 in [3, 2, 14] (where
it is denoted by ^ ( y ) ) . Here is a counterexample: Let X = Y = £2 and let B be the
closed unit ball. Let ( e n ) n £ N be the canonical basis of I2 and K = e\ + B. For each

https://doi.org/10.1017/S0004972700021882 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021882


480 A. Daniilidis and N. Hadjisavvas [8]

x G K, let C(x) = C, where C is the cone |J A(ei + (1/4)5) . Note that intC ^ 0.

For any y, z in B the scalar product (ei + y/4, ex + z/4) is positive; it follows that
the scalar product of any two elements of C is nonnegative. Hence, C C C*, so
in particular int C* ^ 0. (This was an additional assumption in [3, Theorem 2.1]).
Finally, let T: K -> 2L(-t*'ii'> be such that Tx is the identity operator on l2 for each
x £ K. Then T is of course single-valued and monotone. One may immediately check
that F(0) = K \ int C. It follows that for all n > 1 we have ex + en 6 .F(O) (indeed,
otherwise we would have e\ + en = A(ei + z/4) for some z £ B; this is impossible,
since the norm of (1 — A)ei + en is easily seen to be greater than A/4). However, ei
is the weak limit of e\ + en; on the other hand, since ei G int C, we have ei
that is, -F(O) is not weakly closed.
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