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Abstract. Close encounters or resonances overlaps can create chaotic motion in small bodies
in the Solar System. Approaches that measure the separation rate of trajectories that start
infinitesimally near, or changes in the frequency power spectrum of time series, among others,
can discover chaotic motion. In this paper, we introduce the ACF index (ACFI), which is
based on the auto-correlation function of time series. Auto-correlation coefficients measure the
correlation of a time-series with a lagged duplicate of itself. By counting the number of auto-
correlation coefficients that are larger than 5% after a certain amount of time has passed, we
can assess how the time series auto-correlates with each other. This allows for the detection of
chaotic time-series characterized by low ACFI values.
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1. Introduction

Fidelity, which measures the degree of similarity between two quantum states, has
been employed to detect chaotic behavior in quantum computing Frahm et al. (2004),
Pellegrini & Montangero (2007), Lewis-Swan et al. (2019). In the saw-tooth map,
Pellegrini & Montangero (2007) determined fidelity values for quantum pure states in
chaotic and integrable dynamics. In general, fidelity began at one, decreased until it
reached a saturation point, and then oscillated about it. The saturation value for chaotic
dynamics was substantially nearer to zero than for integrable systems, permitting the
two forms of behavior to be distinguished.

In this research, we present a study about detecting chaotic behavior using the auto-
correlation function. The correlation coefficient R between two time-series, as described
by Pearson (1895), indicates how strong the association is. R near to 1 indicates strongly
correlated series, R close to -1 indicates anti-correlated series, and R
 0 indicates
uncorrelated series †.

The auto-correlation function (ACF ) is obtained by computing values of R for the
series with a lagged copy of itself. In essence, R values are computed for the series at

† Contrary to the case of quantum fidelity, anti-correlated series can have negative R values.
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lag 0 in relation to the series at lag 1, 2, and so on. ACF depicts a range of R values
connected with various time-lags. Most R values will be close to 1 for substantially
auto-correlated time-series. Unpredictable series, such as white noise, would display the
majority of R values near to zero once a sufficient amount of time has passed. After
some time delay, which is a free parameter of the method, we can count the fraction of
auto-correlation coefficients that are larger than the 5% value, which is commonly used
for auto-regressive functions to set the null hypothesis level of negligible correlation. This
new approach is called ACFI, which stands for auto-correlation function index. To test
ACFI, in this work we will apply it to the well-understood Hénon-Heiles dynamical
system Skokos et al. (2016), and compare its outcome to those of other chaos indicators,
like the Smaller Alignment Index (SALI) approach Skokos et al. (2004).

2. Methods

Correlation coefficients can be defined in a variety of ways, but Pearson’s approach is
the most frequently used (Pearson (1895)). If the i-th term of the series in x and y is
defined as xi and yi, then:

R=
cov(X, Y )

σXσY
, (2.1)

where cov(X, Y ) denotes the covariance between the two series, which is defined as:

cov(X, Y ) =
1

N2

N∑
i=1

N∑
j=1

1

2
(xi − xj)(yi − yj). (2.2)

The number of terms in the two series is N , and the standard deviation of the xi series
is σX , which is defined as:

σX =

√√√√ 1

N

N∑
i=1

(xi − μx)2. (2.3)

Here μx = 1
N

∑N
i=1 xi is the series mean value, and an analogous expression exists for σY .

The correlation function of a time series with a lagged copy of itself is the auto-correlation
coefficient of the series. Assume we have built a time series with a lag of one, yi = xi−1.
Equation 2.1 will be used to calculate the auto-correlation coefficient for this yi. For lags
of 2 (yi = xi−2), 3 (yi = xi−3), and so on, analogous auto-correlation coefficients can be
found. The spectrum of auto-correlation coefficients for several values of the time lag is
the auto-correlation function (ACF ) of xi. The auto-correlation function is useful for
determining the predictability of a series temporal behavior.

Figure 1 depicts two ACF for time series of semi-major axis a of a regular (left panel)
and chaotic (right panel) particle in the Veritas orbital region. The regular particle
exhibits a significantly higher proportion of auto-correlation coefficients outside the null
hypothesis levels of ±0.05 than the chaotic one, especially for time lags greater than
200. On short time scales, it becomes impossible to predict the time behavior of the a
series for the chaotic particle. We can create a chaos indicator built on the ACF , the
auto-correlation function index (ACFI), based on these considerations:

ACFI =
1

ifin − iin

i=ifin∑
i=iin

ni(|R|)> 0.05), (2.4)

where ni(|R|)> 0.05) denotes the number of auto-correlation coefficients greater than
5% in absolute value. In our instance ifin − iin = 500 − 200 = 300, and we only consider
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Figure 1. The ACF of a normal asteroid in the Veritas family orbital region is shown in the
left panel. The ACF of a somewhat chaotic orbit is shown in the right panel. The vertical line
shows a 200 time-step lag. The area between dashed horizontal lines represents the region where
auto-correlation coefficients are less than 5% and represents negligible auto-correlation.

Figure 2. A (x, y) projection of a normal orbit (left panel) and its ACF , shown in the panel in
the center left position. The values of the iin and ifin parameters are represented by the vertical
red lines. The panels on the center right and right positions display the same quantities, but for
a chaotic orbit.

coefficients between 200 and 500 to avoid include auto-correlation at short time-frames.
The values of iin and ifin were chosen after experimenting with lower and upper bounds
in the ranges of 100 to 300 and 300 to 1000, respectively. Changing either of the given
parameters has a maximum effect on ACFI values of 0.04 for regular particles and of 0.01
for chaotic ones. By adjusting either parameter, the mean values of ACFI are modified
by less than 1%.

We will apply ACFI to the Hénon-Heiles system in the next section to see how well
this method may be utilized to detect chaotic behavior in a well-known system.

3. The Hénon-Heiles Hamiltonian system case

The Hamiltonian of the Hénon-Heiles system (HH) is:

H(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) +

1

2
(x2 + y2) + x2y− 1

3
y3, (3.1)

The Hamiltonian was integrated in such a way that the trajectory passes across the x-
axis 1000 times. A (x, y) projection of the orbit and the ACF of a regular (left side) and
chaotic (right side) orbits for this system are shown in figure (2). Here, we set the iin and
ifin free parameters of ACFI to 1000 and 2000, respectively. The HH system’s regular
orbits have higher ACFI values.
We first utilize the Smaller Alignment Index (SALI) approach, which uses the area of
a parallelogram generated by two deviation vectors in the tangent space of the orbit to
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Figure 3. The 2D Hénon-Heiles system with H = 0.125PSS. The SALI algorithm is used to
classify orbits in the left panel. The PSS values of ACFI are shown in the right panel.

assess the effect of applying ACFI to this system. The SALI method’s definition is as
follows:

SALI(t) =min(d−, d+)

d− =‖ w1(t)

‖w1(t) ‖ − w2(t)

‖w2(t) ‖ ‖ (3.2)

d+ =‖ w1(t)

‖w1(t) ‖ +
w2(t)

‖w2(t) ‖ ‖

w1 and w2 are two deviation vectors that start off orthogonal and point in two ran-
dom directions. We refer interested readers to Skokos (2001), Skokos et al. (2003), and
Skokos et al. (2004) for more details on this method.

The Poincaré Surface of Section (PSS) in the (y, ẏ) plane for the Hénon-Heiles system
with Hamiltonian H = 0.125 is shown in figure (3). For all of the orbits evaluated, we set
x0 to 0 and varied y0 from -0.43 to 0.65 with a 0.001 step. We then changed the value of ẏ0
from -0.5 to 0.5 with a 0.005 step and estimated the value of ẋ0 using eq. (3.1). The PSS
is made up of the spots on the x-axis where the trajectories cross. On each revolution,
each orbit passes over the Poincare section twice, but only the one with positive y velocity
is considered. In the PSS, a quasi-periodic orbit appears as a set of points on a smooth
closed curve. Chaos, on the other hand, will result in scattered locations on the map.
The SALI approach clearly differentiates between regular and chaotic behavior. In our
example, a value of SALI = 10−6 is used to distinguish between the two types of motion
(see left panel of Fig. (3)).

After that, we compute ACFI for each orbit in the system. In the right panel of
Fig. 3, we show our findings. A greater value of ACFI is associated with most regular
behavior, and the two techniques appear to give qualitatively identical outcomes. The
advantage of SALI for this system is that it can distinguish between chaotic and regular
behavior with a single value, whereas the ACFI distribution is more subtle. We can see
that, unlike the SALI method, there is no distinct value distinguishing the regular and
chaotic motions; however, a high value of this indicator can characterize the majority of
the regular motion in the system. With a very low ACFI value, certain small islands of
regular orbits appear on the map, and the SALI indicator detects these as regular zones.
This might alter if integration times were extended. However, exploring these areas in
greater depth is not the main focus of our research. Despite this, ACFI appears to be
able to recognize all of the chaotic regions in the SALI PSS.

More detailed results on the theory and applications to small bodies dynamics of ACFI
can be found at Carruba et al. (2021).
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4. Code availability

The Python code for identifying chaotic behavior is available at the GitHub repository:
https://github.com/valeriocarruba/ACFI-Chaos-identification-through-the-autocorrela-
tion-function-indicator.
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