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HURWITZ GROUPS OF INTERMEDIATE RANK

M. VSEMIRNOV

Abstract

This paper is concerned with (2, 3, 7)-generated linear groups of
ranks less than 287. In particular, sixty new values of n are found,
such that the groups SLn(q) are Hurwitz for any prime power q. This
result provides the next step in deciding which classical groups are
Hurwitz.

1. Introduction

A group is called (2, 3, 7)-generated if it can be generated by two elements such that they
have order 2 and 3, respectively, and their product has order 7. Finite (2, 3, 7)-generated
groups are also known as Hurwitz groups. In other words, the Hurwitz groups are precisely
the non-trivial finite homomorphic images of the triangle group

T (2, 3, 7) = 〈X, Y | X2 = Y 3 = (XY)7 = 1〉.
The problem of determining which groups are quotients of T (2, 3, 7) has attracted many
researchers. We just mention a recent survey [10], where an overview of the known results
is given. Particular attention is paid to the case of classical groups over various rings,
especially over finite fields or the ring Z of integers; see [3, 6, 7]. As is shown in [3], many
linear classical groups of rank less than 18 are not Hurwitz. On the other hand, for all
sufficiently large ranks, the groups SLn(q), Sp2n(q), SU2n(q) and �+

2n(q) for any prime
power q, and SU2n+1(q) and�2n+1(q) for any odd prime power q, are known to be Hurwitz;
see [6, 7]. For example, Lucchini, Tamburini and Wilson proved the following theorem
[7, Corollary 1].

Theorem 1.1 (see [7]). (1) For each prime power q and each integer n � 287, the group
SLn(q) is a Hurwitz group.

(2) For each integer n � 287, the group SLn(Z) is (2, 3, 7)-generated.

In fact, the above theorem was a consequence of the following – more general – result,
which was established in [7, Theorem A]. Given a ring R with identity, let En(R) denote
the group generated by the set of elementary matrices

{I + reij : r ∈ R, 1 � i, j � n, i �= j}.
Here, I is the identity n× nmatrix and the eij denote as usual the elements of the standard
basis of the matrix algebra Mat(n, R).

Let r1, . . . , rm ∈ R. By Rr1,...,rm , we denote the subring of R (maybe without unity)
generated by r1, . . . , rm (that is, the set of all (finite) Z-linear combinations of monomials
r
k1
1 · . . . · rkmm , k1 + . . .+ km � 1). If R = Rr1,...,rm , we say that r1, . . . , rm generate R.
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Hurwitz groups of intermediate rank

Theorem 1.2 (see [7]). Let R be a ring that is generated by elements t1, . . . , tm, where
2t1 − t21 is a unit of R of finite multiplicative order. Then En(R) is (2, 3, 7)-generated for
any n � 287 + 84(m− 1).

In the case of intermediate ranks, however, the problem remains open. The statement
of Theorem 1.1 is not the best possible and, as the authors of [7] have already noted in
the remark at the end of [7, Section 4], a more careful inspection of their proof shows that
SLn(q) and SLn(Z) are (2, 3, 7)-generated for any n in the set

S = {14m+ d : m � 6, d ∈ D} ∪ {42 + d : d ∈ D}, (1)

where

D = {36, 42, 57, 77, 115, 135, 136, 142, 144, 165, 180, 187, 195, 216}.
There are 93 integers less than 286 in the set S. These are:

78, 84, 99, 119, 120, 126, 134, 140, 141, 148, 154, 155, 157, 161, 162, 168,

169, 175, 176, 177, 178, 182, 183, 184, 186, 189, 190, 196, 197, 199, 203, 204,

207, 210, 211, 213, 217, 218, 219, 220, 222, 224, 225, 226, 227, 228, 229, 231,

232, 233, 234, 237, 238, 239, 240, 241, 242, 245, 246, 247, 248, 249, 252, 253,

254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 266, 267, 268, 269, 270, 271,

273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285.

The aim of the present paper is to investigate groups of other intermediate ranks. Our
main result is the following theorem.

Theorem 1.3. Let R be a ring that is generated by an element t . Assume that 1 belongs to
the subring of R generated by 2t − t2. Let n be in the set

{49, 57, 63, 64, 70, 77, 85, 91, 92, 93, 98, 100, 105, 106, 108, 112, 113,

114, 121, 127, 128, 129, 133, 135, 136, 142, 147, 149, 150, 156, 163, 164,

165, 170, 171, 172, 180, 185, 191, 192, 193, 198, 200, 201, 205, 206, 208,

212, 214, 216, 221, 235, 236, 243, 244, 250, 257, 265, 272, 286}.
Then En(R) is (2, 3, 7)-generated. In particular, the groups SLn(Z) and SLn(q) for any
prime power q are (2, 3, 7)-generated.

Using a slightly different technique, which goes back to [7], M. C. Tamburini indepen-
dently obtained a special case of Theorem 1.3 for n = 49, in work that is as yet unpublished.

Another purpose of this paper is to provide general results about new ways of building
linear representations of T (2, 3, 7) from the known ones. For this reason, we state some
auxiliary lemmas in a slightly more general form than we actually need here. They will be
used in a future research on low-rank Hurwitz groups.

2. Obtaining new representations via handles

Let R be a commutative ring with unity. We are mostly interested in two cases, namely,
R = Z and R = Fq , a finite field with q elements. Let �, where |�| = n, be the canonical
basis for the free R-module 〈�〉 = Rn consisting of row vectors of size n. In what follows,
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Hurwitz groups of intermediate rank

we consider the action of Sym(n) on � and GLn(R) on 〈�〉 on the right. We will identify
Sym(n) with the subgroup of GLn(R) consisting of permutational matrices.

A very efficient tool for building new permutational representations of T (2, 3, 7) using
coset diagrams is due to Higman. Further developments of these ideas can be found in the
papers by Conder [1] and Stothers [9]. They used different language, but the terminology
introduced by Conder is now common. For this reason, we refer to [1], where the notion of
a handle appeared for the first time.

Definition 2.1. Let ψ : T (2, 3, 7) −→ Sym(n) be a permutational representation of the
group T (2, 3, 7), and let i ∈ {1, 2, 3}. An ordered pair (a1, a2), where a1, a2 ∈ �, a1 �= a2,
is called an i-handle for ψ if:

(i) ψ(X) fixes both a1 and a2;

(ii) a1(ψ(X)ψ(Y ))
i = a2.

We write (a1, a2)i to indicate that the pair (a1, a2) is an i-handle.

The key step was the following result.

Lemma 2.2 (see [1]). Suppose that |�| = n and |�′| = n′, and that � and �′ are disjoint.
Let

ψ : T (2, 3, 7) −→ Sym(n) and ψ ′ : T (2, 3, 7) −→ Sym(n′)

be two transitive permutational representations of T (2, 3, 7). Assume further that (a1, a2)i
and (a′

1, a
′
2)i , where a1, a2 ∈ � and a′

1, a
′
2 ∈ �′, are i-handles for ψ and ψ ′, respectively.

Then, putting

ψ̃(X) = ψ(X)ψ ′(X)(a1a
′
1)(a2a

′
2) and ψ̃(Y ) = ψ(Y )ψ ′(Y ),

we define a transitive representation ψ̃ : T (2, 3, 7) −→ Sym(n+ n′).

Remark 2.3. More precisely, Conder [1] also considered representations of the group

T ∗(2, 3, 7) = 〈X, Y, S | X2 = Y 3 = (XY)7 = S2 = (XS)2 = (YS)2 = 1〉,
which contains T (2, 3, 7) as a subgroup of index 2. For this reason, he used representations
whose coset diagrams have a vertical axis of symmetry, and imposed a certain symmetry
condition in the definition of a handle. However, this symmetry is irrelevant to representa-
tions of T (2, 3, 7), and an analysis of Conder’s proof shows that Lemma 2.2 remains valid
if handles are defined as above. See also an alternative approach in [9].

Later, Lucchini, Tamburini and Wilson [6, 7] extended the notion of a 1-handle to the
case of linear representations. We modify their definition slightly to include a more general
case.

Definition 2.4. Letψ : T (2, 3, 7) −→ GLn(R)be a representation of the groupT (2, 3, 7).
An ordered pair (a1, a2), where a1, a2 ∈ �, a1 �= a2, is called a handle for ψ if

(i) ψ(X) induces the identity on 〈a1, a2〉 and fixes 〈� \ {a1, a2}〉;
(ii) a1ψ(Y ) = a2 and

〈� \ {a1}〉ψ(Y ) ⊆ 〈� \ {a2}〉. (2)

Remark 2.5. Instead of condition (ii), a stronger condition was used in [6, 7], namely that

(ii′) ψ(Y ) acts as (a1, a2, a3) for some a3 ∈ � and fixes 〈� \ {a1, a2, a3}〉.
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Clearly, any 1-handle in the sense of Definition 2.1 is also a handle in the sense of
Definition 2.4.

The following lemma describes how to build new representations using handles. In
contrast to [6, Lemma 1, case (1)], where two handles are required, we need only one.

Lemma 2.6. Let ψ : T (2, 3, 7) −→ GLn(R) be a representation of the group T (2, 3, 7),
and let (a1, a2) be a handle forψ . Assume that b1, b2 ∈ 〈�\{a1, a2}〉, and that the following
properties are satisfied:

(i) ψ(X) fixes b1 and b2;

(ii) b1ψ(Y ) = b2.

Let U ∈ GLn(R) be the matrix that induces the identity on 〈� \ {a1, a2}〉 and acts on a1
and a2 as follows:

a1U = −a1 + b1; a2U = −a2 + b2.

ThenU andψ(X) commute,U andUψ(X) are involutions, andUψ(X)ψ(Y ) is conjugate
toψ(X)ψ(Y ). In particular, we can define a new representation ψ̂ : T (2, 3, 7) −→ GLn(R)
by setting ψ̂(X) = Uψ(X) and ψ̂(Y ) = ψ(Y ).

Proof. Clearly,U is an involution. Now, note thatUψ(X) andψ(X)U act on 〈� \{a1, a2}〉
in the same way as ψ(X) does. In addition, for i = 1, 2:

aiUψ(X) = −ai + bi; aiψ(X)U = −ai + bi.

Therefore, Uψ(X) = ψ(X)U and (Uψ(X))2 = U2(ψ(X))2 = 1.
Next, for any v ∈ 〈� \ {a1, a2}〉 we have vUψ(X)ψ(Y ) = vψ(X)ψ(Y ) and

vψ(X)ψ(Y ) ∈ 〈� \ {a1, a2}〉ψ(X)ψ(Y ) ⊆ 〈� \ {a1, a2}〉ψ(Y )
⊆ 〈� \ {a1}〉ψ(Y ) ⊆ 〈� \ {a2}〉, (3)

whereas

Uψ(X)ψ(Y ) : a1 
→ −a2 + b2 
→ a2ψ(Y ); (4)

ψ(X)ψ(Y ) : a1 
→ a2 
→ a2ψ(Y ). (5)

Let�′ be the basis of Rn obtained from� by substituting −a2 +b2 for a2. By (2), we have
a2ψ(Y ) ∈ 〈� \ {a2}〉. This inclusion and (3)–(5) imply that the matrix of Uψ(X)ψ(Y )
with respect to the basis�′ coincides with the matrix ofψ(X)ψ(Y )with respect to�. This
completes the proof.

Remark 2.7. If b1 = b2 �= 0, then assumptions (i) and (ii) of Lemma 2.6 imply that
the subspace 〈b1〉 is 〈ψ(X),ψ(Y )〉-invariant; hence it is 〈ψ̃(X), ψ̃(Y )〉-invariant. Since we
are mostly interested in irreducible representations, we will consider only the case when
b1 �= b2.

Remark 2.8. A special case of Lemma 2.6, namely when b1 = tc1 and b2 = tc2 for some
handle (c1, c2) with c1, c2 ∈ � and for some t ∈ R, appears in [2, 6, 7].

The following lemma gives us some useful information about the behaviour of the
commutator [

ψ̃(X), ψ̃(Y )
] = ψ̃(X)−1ψ̃(Y )−1ψ̃(X)ψ̃(Y ).
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Lemma 2.9. Under the assumptions of Lemma 2.6, set C̃ = [ψ̃(X), ψ̃(Y )] and
C = [ψ(X),ψ(Y )]. Then the following statements hold.

(i) a2 is fixed by C and C̃.

(ii) Set a3 := a2ψ(Y ), a4 := a3ψ(X), b3 := b1ψ(Y
−1) = b2ψ(Y ) and b5 := b3ψ(XY)

= b1ψ(Y
−1XY). Suppose further that

a3, a4 ∈ � \ {a1, a2} (6)

and

〈� \ {a1, a2, a3}〉 is fixed by ψ(Y ); (7)

〈� \ {a1, a2, a3, a4}〉ψ(X) ⊆ 〈� \ {a1, a2, a3}〉. (8)

Then

b3 ∈ 〈� \ {a1, a2, a3}〉. (9)

Finally, under the above assumptions we have vC = vC̃ for any v ∈ � \ {a1, a4}, whereas

a1C = a4ψ(Y );
a4C = a3;
a1C̃ = −a4ψ(Y )+ b1ψ(Y

−1XY) = −a1C + b5;
a4C̃ = −a3 + b2ψ(Y ) = −a4C + b3.

Proof. (i) Recall thatψ(X−1) = ψ(X),U−1 = U and the matricesU andψ(X) commute.
Thus C̃ = ψ(X)Uψ(Y−1)Uψ(X)ψ(Y ). Now we have

a2
ψ(X)
−→ a2

ψ(Y−1)
−→ a1
ψ(X)
−→ a1

ψ(Y )
−→ a2,

a2
ψ(X)
−→ a2

U
−→ −a2 + b2
ψ(Y−1)
−→ −a1 + b1

U
−→ a1
ψ(X)
−→ a1

ψ(Y )
−→ a2,

which proves part (i).
(ii) To prove inclusion (9), recall that a1, a2, a3 ∈ � and they are pairwise distinct. Write

b3 = α1a1 + α2a2 + α3a3 + w,

wherew ∈ 〈� \ {a1, a2, a3}〉. By the definition of a3 and b3, Definition 2.4 and assumption
(7), we have

b1 = b3ψ(Y ) = α3a1 + α1a2 + α2a3 + wψ(Y ),

b2 = b3ψ(Y
2) = α2a1 + α3a2 + α1a3 + wψ(Y 2),

where wψ(Y ) and wψ(Y 2) are in 〈� \ {a1, a2, a3}〉. Since b1, b2 ∈ 〈� \ {a1, a2}〉 by the
assumptions of Lemma 2.6, we conclude that α1 = α2 = α3 = 0; that is, inclusion (9)
holds.

Now we are ready to prove the main claim of statement (ii). The case v = a2 has already
been settled in part (i). Take v ∈ � \ {a1, a2, a4}. First, we show that

vψ(X) ∈ 〈� \ {a1, a2, a3}〉, (10)

and, in particular, that

vψ(X) ∈ 〈� \ {a1, a2}〉. (11)
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For v �= a3, both inclusions are obvious by statement (8). If v = a3, then vψ(X) = a4.
Therefore, (11) follows from (6). Since ψ(XY) has order 7, we have a4 = a3ψ(X) �= a3,
which – together with (6) – implies that inclusion (10) holds in this case, too.

By inclusion (11),

vψ(X)U = vψ(X) and vψ(X)Uψ(Y−1) = vψ(XY−1)

for any v ∈ � \ {a1, a2, a4}, while (10) and (7) imply that

vψ(XY−1) ∈ 〈� \ {a1, a2, a3}〉 ⊆ 〈� \ {a1, a2}〉.
Therefore,

vψ(X)Uψ(Y−1)U = vψ(XY−1)

and

vC̃ = vψ(X)Uψ(Y−1)Uψ(XY) = vψ(XY−1XY) = vψ(X−1Y−1XY) = vC.

Finally, we have

a1
ψ(X)
−→ a1

ψ(Y−1)
−→ a3
ψ(X)
−→ a4

ψ(Y )
−→ a4ψ(Y );

a4
ψ(X)
−→ a3

ψ(Y−1)
−→ a2
ψ(X)
−→ a2

ψ(Y )
−→ a3;

a4
ψ(X)
−→ a3

U
−→ a3
ψ(Y−1)
−→ a2

U
−→ −a2 + b2
ψ(X)
−→ −a2 + b2

ψ(Y )
−→ −a3 + b2ψ(Y );

a1
ψ(X)
−→ a1

U
−→ −a1 + b1
ψ(Y−1)
−→ −a3 + b1ψ(Y

−1)
U
−→ −a3 + b1ψ(Y

−1)

ψ(X)
−→ −a4 + b1ψ(Y
−1X)

ψ(Y )
−→ −a4ψ(Y )+ b1ψ(Y
−1XY);

for the second occurrence of U in the last chain, we use (9). The proof is complete.

Lemma 2.10. Under the assumptions and notations of Lemma 2.9, suppose further that:

(i) {a1, a4} ⊆ � ⊆ �, where both 〈�〉 and 〈� \�〉 are invariant under C;

(ii) |�| = s and C acts on � as a cycle of the following shape: (a1, . . . ,︸ ︷︷ ︸
k

a4, . . .︸ ︷︷ ︸
s−k

);

(iii) b3 and b5 are in 〈� \�〉;
(iv) both vectors b5C

k − b3 and b3C
s−k − b5 are annihilated by the matrix f (C), where

the polynomial f is given by

f (z) = (zr − 1)/(zgcd(r,s) − 1) for some r.

Then C̃rs = Crs .

Proof. By Lemma 2.9, C̃ and C act in the same way on 〈� \�〉. Since 〈� \�〉 is invariant
under C, we find that

vC̃� = vC� for any v ∈ 〈� \�〉 and for any � � 0. (12)

By (ii), � = {a1C
−s+k+1, . . . , a1, . . . , a1C

k}, and a1C
k = a4. Using Lemma 2.9, we

obtain a1C̃ = −a1C + b5, a1C
kC̃ = −a1C

k+1 + b3, and a1C
lC̃ = a1C

l+1 if l �≡ 0, k
mod s. Therefore, a1C

lC̃i = a1C
l+i , provided that i = 0 or i � 1 and the sequence

l, l + 1, . . . , l + i − 1 contains no number congruent to 0 or k (mod s). Taken together
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with equation (12) and assumption (iii), this implies that, for j = 0, . . . , s− k−1, we have

a1C
−j C̃s = a1C

−j C̃j C̃s−j = a1C̃
s−j

= (−a1C + b5)C̃
s−j−1 = −a1CC̃

k−1C̃s−j−k + b5C
s−j−1

= −a1C
kC̃s−j−k + b5C

s−j−1 = (a1C
k+1 − b3)C̃

s−j−k−1 + b5C
s−j−1

= a1C
s−j − b3C

s−j−k−1 + b5C
s−j−1

= a1C
−j + (−b3 + b5C

k)Cs−j−k−1,

while for j = 1, . . . , k, we have

a1C
j C̃s = a1C

j C̃k−j C̃s−k+j = a1C
kC̃s−k+j

= (−a1C
k+1 + b3)C̃

s−k+j−1 = −a1C
k+1C̃s−k−1C̃j + b3C

s−k+j−1

= −a1C
sC̃j + b3C

s−k+j−1 = −a1C̃
j + b3C

s−k+j−1

= (a1C − b5)C̃
j−1 + b3C

s−k+j−1 = a1CC̃
j−1 − b5C

j−1 + b3C
s−k+j−1

= a1C
j + (−b5 + b3C

s−k)Cj−1.

In addition, assumptions (i) and (iii) imply that both −b3 + b5C
k and −b5 + b3C

s−k are in
〈� \�〉. Therefore, for any j we have

a1C
j C̃s = a1C

j + ujC
αj , (13)

where αj is a non-negative integer, uj is annihilated by f (C), and

uj ∈ 〈� \�〉. (14)

Let�d(z) denote, as usual, the dth cyclotomic polynomial. Over any field of character-
istic 0, we have

zrs − 1 =
∏
d|rs

�d(z)

=
∏
d|s
�d(z)

∏
d|r
�d(z)

( ∏
d| gcd(r,s)

�d(z)

)−1

h(z)

= (zs − 1)(zr − 1)(zgcd(r,s) − 1)−1h(z)

= (zs − 1)f (z)h(z),

All the polynomials�d are polynomials with integer coefficients, and thus h is too. There-
fore, the decomposition

zrs − 1 = (zs − 1)f (z)h(z)

holds over every ring with unity. Now, using (13), (14), assumptions (i) and (iii), and the
fact that C and C̃ act in the same way on 〈� \�〉, we deduce that

a1C
j (C̃rs − I ) = a1C

j (C̃s − I )f (C̃)h(C̃)

= ujC
αj f (C̃)h(C̃)

= ujC
αj f (C)h(C)

= ujf (C)h(C)C
αj

= 0.

Hence, C̃rs induces the identity on 〈�〉. Clearly, Crs does the same. Therefore, C̃rs = Crs

on Rn.
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Lemma 2.11. Conditions (iii) and (iv) of Lemma 2.10 are satisfied, for example, if b3 = tc3,
b5 = tc5 with {c3, c5} ⊆ �′ ⊆ (� \ �), C acts on �′ as a cycle of length r = |�′|, and
one of the following conditions holds:

(i) r = s and c5C
k = c3, where k is the same as in Lemma 2.10;

(ii) gcd(r, s) = 1.

Proof. Clearly, in the first case, f (z) = 1 and −b3 + b5C
k = −b5 + b3C

s−k = 0. In the
second case, f (z) = 1 + z+ . . .+ zr−1 Hence

b3f (C) =
r−1∑
i=0

b3C
i = t

∑
v∈�′

v =
r−1∑
i=0

b5C
i+k

= b5C
kf (C).

In a similar way, b3C
s−kf (C) = b5f (C).

3. Some generation lemmas

In this section we prove several auxiliary results about generating sets for the groups
Alt(n) and En(R). The technique is due to A. Lucchini, M. C. Tamburini and J. S. Wilson;
see, for example, [6, 7]. Most of the statements in this section may be regarded as non-trivial
refinements of similar results in [6] and [7].

Lemma 3.1. Let H be a subgroup of Alt(k) × Alt(m), where k > max{m, 4}. Let πi ,
i = 1, 2, be the natural projections from Alt(k)×Alt(m) to Alt(k) and Alt(m), respectively.
Assume that π1(H) = Alt(k). Then H = Alt(k) × B, where B = π2(H). In particular,
Alt(k)× 〈1〉 � H .

Proof. We have ker π2 ∩H � H . Consequently, π1(ker π2 ∩H) � π1(H) = Alt(k). The
assumption that k > 4 implies that Alt(k) is simple; therefore, either: (i) π1(ker π2 ∩H) =
〈1〉, or else (ii) π1(ker π2 ∩ H) = Alt(k). But ker π2 ∩ H � Alt(k) × 〈1〉. In particular,
ker π2 ∩H = π1(ker π2 ∩H)× 〈1〉. Thus, in case (i) we have ker π2 ∩H = 〈1〉, and

| Alt(m)| � |π2(H)| = |H | � |H |
| ker π1 ∩H | = |π1(H)| = | Alt(k)|,

a contradiction of the assumptions of the lemma.
In case (ii), we have Alt(k)×〈1〉 = ker π2 ∩H � H and |H | = | ker π2 ∩H |·|π2(H)| =

| Alt(k)| · |B|. Now the claim follows from the trivial inclusion H ⊆ Alt(k)× B.

As we agreed before, Sym(n) is identified with the group of permutation matrices. If
σ ∈ Sym(n), the corresponding permutation matrix

∑n
i=1 ei,iσ is denoted by gσ . We write

Ik for the k × k identity matrix. Let r ∈ R. Recall that by Rr we denote the subring of R
(maybe without unity) generated by r: that is, the set of all sums c1r + c2r

2 + . . . + clr
l ,

where l, c1, . . . , cl are integers. If R = Rr , we say that r generates R.

Lemma 3.2. For n � 3, we have SLn(R1) � En(R). In particular, En(R) contains Alt(n)
and all diagonal matrices with entries ±1 and determinant 1.

Proof. The ring R1 is isomorphic to either Z or Z/mZ. Therefore, SLn(R1) = En(R1) �
En(R), provided that n � 3 (see [4, 1.2.11 and 4.3.9]).
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Lemma 3.3. (i) Let Q be the block diagonal matrix

Q = diag(P, In−h−2), (15)

where

P =

 −1 0 r1 . . . rh

0 −1 s1 . . . sh
0 Ih


 ,

and ri , si ∈ R, for i = 1, . . . , h. Let E be the group generated by Q and Alt(n). Then we
have E � En(R).

(ii) Let n � h + 5. Suppose that for some j0, 1 � j0 � h, the element rj0 generates R
and sj0 = 0. Then

In + reij − reik ∈ E (16)

for any r ∈ R and any pairwise distinct i, j , k, where 1 � i, j, k � n.

(iii) Let n � h+ 5 and j0 be as above. Set

ρ = rj0(2 − r1 − . . .− rh) (17)

and assume that 1 ∈ Rρ . Then E = En(R).

Proof. (i) By Lemma 3.2, diag(−I2, In−2) ∈ En(R) and Alt(n) � En(R).
Now, the identity

Q =
h∏
i=1

(In + rie1,i+2)

h∏
i=1

(In + sie2,i+2) diag(−I2, In−2)

implies that Q ∈ En(R). Thus, E � En(R).

(ii) Without loss of generality, we may assume that j0 = 1. (Otherwise, replaceQ by its
conjugate g−1

σ1
Qgσ1 , where σ1 = (3, j0 +2)(h+3, h+4); note that σ1 ∈ Alt(n) if j0 > 1.)

In particular, s1 = 0. Let σ2 = (3, h+ 3)(h+ 4, h+ 5). A direct calculation shows that

Qg−1
σ2
Qgσ2 =

(
In − 2e11 − 2e22 + r1e13 +

h∑
i=2

rie1,i+2 +
h∑
i=2

sie2,i+2

)

×
(
In − 2e11 − 2e22 + r1e1,h+3 +

h∑
i=2

rie1,i+2 +
h∑
i=2

sie2,i+2

)

= In + r1e13 − r1e1,h+3.

Consequently,

In + r1e13 − r1e1,h+3 ∈ E. (18)

Conjugation by gσ3 , where σ3 = (h+ 3, 3, 2), gives us

In + r1e12 − r1e13 ∈ E. (19)

Taking σ4 = (1, 2)(h+ 4, h+ 5), we have the following identity:
[
In +

h+3∑
i=2

αie1i , g
−1
σ4

(
In +

h+3∑
i=3

βie1i

)
gσ4

]
= In +

h+3∑
i=3

α2βie1i , (20)

which is valid for any α2, . . . , αh+3, β3, . . . , βh+3.
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Starting from the matrices (18) and (19), and repeatedly applying identity (20) several
times, we see that In+rj1 e13−rj1 e1,h+3 ∈ E for every positive integer j . But r1 generatesR,
and therefore In + re13 − re1,h+3 ∈ E for any r ∈ R. Since n � 5 and Alt(n) is (n− 2)-
transitive, by conjugating by a suitable gσ we find that (16) holds for any r ∈ R and any
i, j, k, where i �= j , i �= k and j �= k.

(iii) As in part (ii), we may assume that j0 = 1. Now consider σ5 = (1, 3, h+3). We have

Qg−1
σ5
Qgσ5 =

(
In − 2e11 − 2e22 + r1e13 +

h∑
i=2

rie1,i+2 +
h∑
i=2

sie2,i+2

)

×
(
In − 2e33 − 2e22 + r1e3,h+3 +

h∑
i=2

rie3,i+2 +
h∑
i=2

sie2,i+2

)

= In − 2e11 − 2e33 − r1e13 +
h∑
i=2

(ri + r1ri)e1,i+2 + r2
1 e1,h+3

+
h∑
i=2

rie3,i+2 + r1e3,h+3.

Therefore, In + 2r1e13 − ∑h
i=2 r1rie1,i+2 − r2

1 e1,h+3 = (Qg−1
σ5
Qgσ5)

2 ∈ E. Multiplying
the matrix (Qg−1

σ5
Qgσ5)

2 by a suitable product of matrices of the form (16), namely by

(In − 2r1e13 + 2r1e1,h+3)

h∏
i=2

(In + r1rie1,i+2 − r1rie1,h+3),

we see that E contains

In + ρe1,h+3, (21)

where ρ is defined by (17). Hence E also contains

In + ρe1,2 = g−1
σ6
(In + ρe1,h+3)gσ6 , (22)

where σ6 = (2, h+ 3)(h+ 4, h+ 5). As above, starting from the matrices defined by (21)
and (22), and repeatedly applying (20), we deduce that In + ρj e1,h+3 ∈ E for any j � 1.
The assumption that 1 ∈ Rρ implies that In+e1,h+3 ∈ E. By (16), In+ re12 − re1,h+3 ∈ E
for any r ∈ R. Using a special case of (20), we have

In + re1,h+3 = [In + re12 − re1,h+3 , g
−1
σ4
(In + e1,h+3)gσ4 ] ∈ E.

Conjugating by suitable permutational matrices, we find that E contains In + reij for any
r ∈ R and any i, j , where 1 � i �= j � n. Thus it coincides with En(R).

Now we consider the situation described in Lemma 2.6, and we introduce some further
notation. From now on, we assume that ψ : T (2, 3, 7) −→ Sym(�) ⊆ GLn(R) is a
transitive permutational representation of T (2, 3, 7), and that {a1, a2} ⊆ � is a 1-handle
with respect to ψ . Suppose that b1, b2 ∈ 〈� \ {a1, a2}〉, where b1 �= b2, and they satisfy
assumptions (i) and (ii) of Lemma 2.6. Thus we may apply Lemma 2.6 to define a new
linear representation ψ̃ . Let �1, �2 ⊆ � be the supports of b1 and b2 respectively; that is,
�i is the smallest subset of the basis � such that bi ∈ 〈�i〉. Since ψ(X) fixes both b1 and
b2 and acts as a permutation on �, we have �iψ(X) = �i , i = 1, 2. Finally, we define �
as follows:

� = {v ∈ �1 ∪ �2 : vψ(X) �= v}. (23)
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Lemma 3.4. Under the assumptions and notations of the preceding paragraph, suppose
further that for some �0 ⊆ �, the following conditions are satisfied:

(i) |�0| � 3;

(ii) �0 contains at least two points from an orbit of ψ(Y ) and �0 \ � contains an orbit
of ψ(X) of length 2;

(iii) Alt(�0) is a subgroup of 〈ψ̃(X), ψ̃(Y )〉.
Let � be a maximal subset of � with respect to the following properties:

�0 ⊆ � and Alt(�) � 〈ψ̃(X), ψ̃(Y )〉. (24)

Then �ψ(Y ) = � and (� \ �)ψ(X) ⊆ �.

Proof. Assumption (ii) yields � ∩ �ψ(Y ) �= ∅. Recall also that ψ(Y ) = ψ̃(Y ). By
condition (i), |�| � |�0| � 3 and |�ψ(Y )| = |�| � 3. This, together with (24), implies
that

Alt(� ∪�ψ(Y )) = 〈Alt(�),Alt(�ψ(Y ))〉
= 〈Alt(�), ψ̃(Y−1)Alt(�)ψ̃(Y )〉 � 〈ψ̃(X), ψ̃(Y )〉.

By the maximality of �, we have � = �ψ(Y ).
Now let {w1, w2} ⊆ �0\� be an orbit ofψ(X) of length two, which exists in accordance

with condition (ii). Take v ∈ � \ �. Clearly, if v = w1 or v = w2, then vψ(X) ∈ �. Thus
we may assume that v �= w1, w2. Hence (v,w1, w2) ∈ Alt(�).

Recall that a1 and a2 are fixed points of ψ(X), while w1 and w2 are not. We may also
assume that ψ(X) does not fix v; otherwise vψ(X) ∈ � by trivial reasoning. By the choice
of w1, w2 and v, we have v,w1, w2 /∈ �. By the definition of �,

�1 ∪ �2 = � ∪ {v ∈ �1 ∪ �2 : vψ(X) = v}.
Therefore, the above observations imply that v,w1, w2 /∈ �1 ∪�2 ∪ {a1, a2}. In particular,
none of v,w1 andw2 lies in the support of a1ψ̃(X) = a1ψ̃(X

−1) or a2ψ̃(X) = a2ψ̃(X
−1)

(the corresponding supports are �1 ∪ {a1} and �2 ∪ {a2}, respectively). Therefore,

ψ̃(X−1)(v,w1, w2)ψ̃(X) = ψ(X−1)(v,w1, w2)ψ(X) = (vψ(X),w2, w1).

Note thatw1 andw2 lie in the support of (vψ(X),w2, w1) and in�. Since |�| � |�0| � 3,
we find, using (24), that

Alt(� ∪ {vψ(X)}) = 〈Alt(�), (vψ(X),w2, w1)〉
� 〈Alt(�), ψ̃(X−1)Alt(�)ψ̃(X)〉 � 〈ψ̃(X), ψ̃(Y )〉.

By the maximality of �, we have vψ(X) ∈ �.

Corollary 3.5. Under the assumptions of Lemma 3.4, suppose further thatψ is a transitive
permutational representation, and that |�1| = |�2| = 1. Then 〈ψ̃(X), ψ̃(Y )〉 contains
Alt(�).

Proof. If |�1| = |�2| = 1, then it follows from (23) that� is empty. Let� be a maximal set
with respect to the property described in (24). By Lemma 3.4,�ψ(Y ) = � and�ψ(X) =
�. By the transitivity of 〈ψ(X),ψ(Y )〉 on �, we have � = �.

The above corollary has already appeared as a part of the proof of [7, Theorem A],
although it is not stated explicitly there.
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4. Proof of the main theorem

Proof of Theorem 1.3. We start from twenty basic permutational representations, which are
labelled A, . . . , T . The corresponding generators XA, YA, . . . , XT , YT , together with their
degrees and available handles, are listed in Appendix A. The first fourteen representations
(A, . . . , N) are extracted from Conder’s list of coset diagrams [1]. The remaining ones are
actually mentioned in [9], although the generators are not written there explicitly.

Here we present the general scheme of the proof, while all the necessary computational
details can be read from Appendix B. The calculations were performed using the Magma
package. Related libraries are provided in Appendix C.

Let n be one of the numbers listed in the statement of Theorem 1.3, and let

� = {v1, . . . , vn}.
To simplify the descriptions of permutation generation below, we identify� with {1, . . . , n}
in a natural way. Connecting some of the basic diagrams as described in Lemma 2.2, we
build a permutational representation ψ : T (2, 3, 7) −→ Sym(�) of degree n with at
least two 1-handles, say {a1, a2} and {c1, c2}. We use the following notation. For example,
G(1)E(2)D means that the representations G and E are joined via 1-handles, and the
resulting representation is connected to D via 2-handles. For a basic representation D of
degree d,

X
[k,k+d−1]
D and Y

[k,k+d−1]
D

denote the results of the natural embeddings of XD and YD , respectively, into
Sym({vk, . . . , vk+d−1}). Set also Xn = ψ(X) and Yn = ψ(Y ). Thus, in the above
example the corresponding Hurwitz generators can be written as

X92 = X
[1,42]
G (25, 68)(26, 69)X[43,70]

E (52, 71)(55, 74)X[71,92]
D ,

Y92 = Y
[1,42]
G Y

[43,70]
E Y

[71,92]
D ,

while the free handles are (a1, a2) = (1, 2)1 and (c1, c2) = (13, 14)1.
Let t be an element of R that satisfies the hypothesis of Theorem 1.3. In particular, one

can take t = 1 if R = Z, and any generator t �= 2 of Fq if R = Fq . Letting b1 = tc1 and
b2 = tc2, we apply the transformation described in Lemma 2.6, and we obtain new Hurwitz
generators ψ̃(X) = Uψ(X) and ψ̃(Y ) = ψ(Y ) = Yn. Set

G = 〈ψ̃(X), ψ̃(Y )〉.
We claim that in each case under consideration,G = En(R). Clearly,ψ(Y ) andψ(XY) are
even permutations, as their orders are odd. So ψ(X) is also even. Notice that U is a product
of two elementary matrices and a diagonal matrix with entries ±1 and determinant 1. Thus,
by Lemma 3.2, En(R) contains ψ(X), ψ(Y ) and U . Hence, G � En(R).

Our next aim is to prove the converse inclusion in each case. Reading the data from
Appendix B, we see that in each case the assumptions of Lemmas 2.9 and 2.10 are satisfied.
In fact, conditions (7) and (8) hold automatically, since ψ is a permutational representation
acting on� such thatψ(Y ) permutes a1, a2 and a3, andψ(X) permutes a3 and a4 and fixes
a1 and a2. Let C = [ψ(X),ψ(Y )] and C̃ = [ψ̃(X), ψ̃(Y )] be the commutators introduced
in Lemma 2.9. Using Lemmas 2.10 and 2.11, we find d such that C̃d = Cd and the support
of Cd is large enough. Set S1 = Cd and S2 = Y−1

n CdYn, and let K be a subgroup of
Sym(n) = Sym(�) generated by S1 and S2. Let �0 be the largest orbit of K , and let �1
be the union of all other non-trivial orbits (that is, orbits containing at least two points). We
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denote by S̄i , i = 1, 2, the restriction of Si to �0. It turns out that in all the cases below,
both S̄1 and S̄2 are even permutations. If �1 is not empty, then the restriction of Si to �1
is given by SiS̄

−1
i . Since S1 and S2, as powers of commutators, are even, both S1S̄

−1
1 and

S2S̄
−1
2 are also even. Therefore, K � Alt(�0) × Alt(�1). Set K̄ = 〈S̄1, S̄2〉. In each of

the cases under consideration, we will find an element W of K̄ , some power of which is
a cycle of a prime length � with |�0|/2 < � < |�0| − 3. The first inequality guarantees
that K̄ is primitive on �0, and hence the second inequality, combined with a well-known
theorem of Jordan [5] (see [11, p. 39]) implies that K̄ = Alt(�0). It turns out that in all the
cases under consideration, |�1| < |�0|. If �1 = ∅, then Alt(�0) = K̄ = K . Otherwise,
Alt(�0) � K , by Lemma 3.1. In any case, we conclude that Alt(�0) � G.

Next, we will check (see the relevant data in Appendix B) that �0 satisfies the assump-
tions of Lemma 3.4 and Corollary 3.5. Thus, Corollary 3.5 implies that

Alt(�) � G. (25)

Therefore, G contains ψ(X) and U = ψ̃(X)ψ(X). Conjugating U by a suitable permuta-
tional matrix, we find that G contains a matrix Q of the form (15), where the block P is
given by 


−1 0 t 0

0 −1 0 t

0 0 1 0
0 0 0 1


 .

Using (25) and Lemma 3.3, we obtain the desired inclusion: En(R) � G. Hence En(R) = G.
To complete the proof, we collect the relevant data from Appendix B. For each n listed

in the statement of Theorem 1.3, the following information is presented:

• the description of the representation ψ ;

• the generators Xn and Yn;

• 1-handles (a1, a2) and (c1, c2), as well as a3 = a2ψ(Y ), a4 = a3ψ(X), c3 = c2ψ(Y )

and c5 = c1ψ(Y
−1XY) = c3ψ(XY);

• the cycle structure of the commutator C = [ψ(X),ψ(Y )] (to avoid any confusion
with the name of one of the basic representations, we write [ψ(X),ψ(Y )] for the
commutator in Appendix B); in addition, a1, a4, c3 and c5 are printed in bold;

• the values of r and s used in Lemmas 2.10 and 2.11 (if r = s, then k such that
a1C

k = a4, c5C
k = c3 is also indicated);

• the degree d such that Cd = C̃d ;

• the set �0 and the lengths of other non-trivial orbits of K (if any);

• an orbit {w1, w2} of ψ(X), and two pointsw3,w4 from an orbit of ψ(Y ) lying in�0;

• the cycle structure of S̄1 (which coincides with the cycle structure of S̄2);

• an elementW of K̄ , represented as a word in S̄1, S̄2, together with its cycle structure
(a cycle of large prime length is printed in bold).

To represent the cycle structure of a permutation, we use the following notation:

σ = (i1, i2, . . .)(j1, j2 . . .)�
α1
1 . . . �αss

means thatσ has cycles (i1, i2, . . .), (j1, j2 . . .) and alsoαh cycles of length �h,h = 1, . . . , s.
An analysis of the data in Appendix B finishes the proof.
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To complete this section, we discuss the range of applicability of the method described
in the proof of Theorem 1.3. For this purpose, we deduce from a result of Scott [8], an
inequality similar to the well-known genus formula.

Let ψ : T (2, 3, 7) −→ Sym(�) ⊆ GLn(C) be a transitive permutational represen-
tation. By dX, dY , dXY we denote the dimension of the subspace of C

n fixed by ψ(X),
ψ(Y ), and ψ(XY), respectively. In addition, let d be the dimension of the subspace fixed
by ψ(T (2, 3, 7)). Since ψ is a transitive representation, we have d = 1. Since ψ is a
permutational representation, it coincides with its dual. Thus, Scott’s formula [8] becomes

dX + dY + dXY � n+ 2d = n+ 2. (26)

On the other hand,

dY � n− 2
⌊n

3

⌋
, dXY � n− 6

⌊n
7

⌋
.

The above proof of Theorem 1.3 requires at least two 1-handles, so ψ(X) fixes at least four
points in �. On the other hand, ψ(X) = ψ(XY)ψ(Y−1) must be an even permutation.
Therefore,

dX � n− 2

⌊
n− 4

4

⌋
.

By (26), we have

2n− 2 � 2

⌊
n− 4

4

⌋
+ 2

⌊n
3

⌋
+ 6

⌊n
7

⌋
. (27)

The only numbers n � 286 that satisfy (27) but whose status still remains open, are
21, 28, 36, 42, 56, 72, and 144. For example, the representation S(2)M of degree 144
has two 1-handles, but the commutator C does not satisfy assumption (ii) of Lemma 2.10.
This case deserves special treatment.

Appendix A. Basic representations and their generators

1. Representation A of degree 14; one handle: (1, 2)1.
XA = (3, 4)(5, 7)(6, 10)(8, 12)(9, 14)(11, 13)(1)(2),
YA = ∏3

i=0(3i + 1, 3i + 2, 3i + 3)(13)(14).

2. Representation B of degree 15; one handle: (4, 8)3 or (1, 4)2 or (8, 1)2.
XB = (2, 6)(3, 9)(5, 11)(7, 12)(10, 13)(14, 15)(1)(4)(8),
YB = ∏4

i=0(3i + 1, 3i + 2, 3i + 3).

3. Representation C of degree 21; two handles: (1, 2)1 and (8, 14)3.
XC = (3, 4)(5, 16)(6, 20)(7, 18)(9, 10)(11, 13)(15, 21)(17, 19)(1)(2)(8)(12)(14),
YC = ∏6

i=0(3i + 1, 3i + 2, 3i + 3).

4. Representation D of degree 22; one handle: (1, 4)2.
XD = (2, 6)(3, 10)(5, 7)(8, 13)(9, 19)(11, 20)(12, 14)(15, 16)(17, 18)(21, 22)(1)(4),
YD = ∏6

i=0(3i + 1, 3i + 2, 3i + 3)(22).
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5. Representation E of degree 28; two handles: (26, 27)1 and (10, 13)2.
XE = (1, 28)(2, 7)(3, 4)(5, 12)(6, 19)(8, 23)(9, 14)(11, 15)(16, 20)(17, 22)(18, 25)

(21, 24)(10)(13)(26)(27),
YE = ∏8

i=0(3i + 1, 3i + 2, 3i + 3)(28).

6. Representation F of degree 30; one handle: (1, 4)2.
XF = (2, 6)(3, 10)(5, 7)(8, 13)(9, 27)(11, 20)(12, 14)(15, 16)(17, 21)(18, 26)(19, 22)

(23, 24)(25, 28)(29, 30)(1)(4),
YF = ∏9

i=0(3i + 1, 3i + 2, 3i + 3).

7. Representation G of degree 42; three handles: (1, 2)1, (13, 14)1 and (25, 26)1.
XG = (3, 4)(5, 11)(6, 7)(8, 40)(9, 12)(10, 37)(15, 16)(17, 23)(18, 19)(20, 41)(21, 24)

(22, 39)(27, 28)(29, 34)(30, 31)(32, 42)(33, 35)(36, 38)(1)(2)(13)(14)(25)(26),
YG = ∏13

i=0(3i + 1, 3i + 2, 3i + 3).

8. Representation H of degree 42; two handles: (1, 2)1, and (24, 27)3.
XH = (3, 4)(5, 10)(6, 7)(8, 30)(9, 11)(12, 14)(13, 16)(15, 34)(17, 25)(18, 21)(19, 23)

(20, 28)(22, 32)(26, 33)(29, 41)(31, 39)(35, 37)(38, 40)(1)(2)(24)(27)(36)(42),
YH = ∏13

i=0(3i + 1, 3i + 2, 3i + 3).

9. Representation I of degree 57; two handles: (4, 7)2, and (36, 39)2.
XI = (2, 12)(3, 15)(5, 9)(6, 13)(8, 11)(10, 18)(14, 24)(16, 55)(17, 19)(20, 27)(21, 22)

(23, 56)(25, 30)(26, 33)(28, 40)(29, 37)(31, 35)(32, 50)(34, 38)(41, 52)(42, 43)
(44, 48)(45, 51)(46, 47)(49, 54)(53, 57)(1)(4)(7)(36)(39),

YI = ∏18
i=0(3i + 1, 3i + 2, 3i + 3).

10. Representation J of degree 72; two handles: (1, 2)1, and (62, 63)1.
XJ = (3, 4)(5, 12)(6, 8)(7, 10)(9, 15)(11, 30)(13, 36)(14, 16)(17, 31)(18, 21)(19, 24)

(20, 27)(22, 23)(25, 33)(26, 28)(29, 39)(32, 42)(34, 38)(35, 57)(37, 60)(40, 45)
(41, 54)(43, 56)(44, 49)(46, 51)(47, 48)(50, 52)(53, 58)(55, 64)(59, 71)(61, 69)
(65, 67)(66, 72)(68, 70)(1)(2)(62)(63),

YJ = ∏23
i=0(3i + 1, 3i + 2, 3i + 3).

11. Representation K of degree 72; one handle: (1, 2)1.
XK = (3, 4)(5, 10)(6, 7)(8, 24)(9, 11)(12, 15)(13, 33)(14, 16)(17, 27)(18, 21)(19, 30)

(20, 22)(23, 56)(25, 39)(26, 48)(28, 69)(29, 63)(31, 52)(32, 34)(35, 37)(38, 40)
(41, 46)(42, 43)(44, 45)(47, 51)(49, 54)(50, 67)(53, 55)(57, 59)(58, 62)(61, 65)
(64, 68)(66, 70)(71, 72)(1)(2)(36)(60),

YK = ∏23
i=0(3i + 1, 3i + 2, 3i + 3).

12. Representation L of degree 102; one handle: (1, 4)2.
XL = (2, 6)(3, 10)(5, 7)(8, 13)(9, 20)(11, 24)(12, 14)(15, 16)(17, 63)(18, 35)(19, 27)

(21, 30)(22, 26)(23, 48)(25, 81)(28, 32)(29, 64)(31, 41)(33, 34)(36, 38)(37, 40)
(39, 82)(42, 43)(44, 45)(46, 95)(47, 49)(50, 52)(51, 61)(53, 58)(54, 55)(56, 57)
(59, 86)(60, 62)(65, 75)(66, 69)(67, 78)(68, 72)(70, 74)(71, 79)(73, 84)(76, 77)
(80, 91)(83, 85)(87, 88)(89, 94)(90, 92)(93, 99)(96, 98)(97, 100)(101, 102)(1)(4),

YL = ∏33
i=0(3i + 1, 3i + 2, 3i + 3).
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13. Representation M of degree 108; two handles: (1, 2)1 and (82, 85)2.
XM = (3, 4)(5, 14)(6, 7)(8, 10)(9, 15)(11, 24)(12, 31)(13, 17)(16, 21)(18, 25)(19, 64)

(20, 22)(23, 47)(26, 28)(27, 53)(29, 33)(30, 76)(32, 34)(35, 37)(36, 49)(38, 43)
(39, 40)(41, 42)(44, 46)(45, 50)(48, 98)(51, 89)(52, 56)(54, 68)(55, 61)(57, 58)
(59, 60)(62, 67)(63, 65)(66, 94)(69, 70)(71, 73)(72, 91)(74, 78)(75, 84)(77, 79)
(80, 88)(81, 86)(83, 87)(90, 92)(93, 100)(95, 102)(96, 103)(97, 101)(99, 105)
(104, 106)(107, 108)(1)(2)(82)(85),

YM = ∏35
i=0(3i + 1, 3i + 2, 3i + 3).

14. Representation N of degree 108; two handles: (1, 2)1 and (33, 35)3.
XN = (3, 4)(5, 10)(6, 7)(8, 14)(9, 11)(12, 25)(13, 17)(15, 59)(16, 20)(18, 44)(19, 23)

(21, 28)(22, 26)(24, 67)(27, 82)(29, 31)(30, 34)(32, 37)(36, 62)(38, 40)(39, 63)
(41, 43)(42, 98)(45, 46)(47, 49)(48, 88)(50, 55)(51, 52)(53, 54)(56, 58)(57, 89)
(60, 84)(61, 65)(64, 68)(66, 94)(69, 71)(70, 74)(72, 86)(73, 80)(75, 76)(77, 78)
(79, 83)(81, 85)(87, 93)(90, 92)(91, 102)(95, 103)(96, 100)(97, 104)(99, 101)
(105, 106)(107, 108)(1)(2)(33)(35),

YN = ∏35
i=0(3i + 1, 3i + 2, 3i + 3).

15. Representation O of degree 7; one handle: (5, 6)1 or (1, 5)2 or (1, 6)3.
XO = (2, 4)(3, 7)(1)(5)(6),
YO = ∏1

i=0(3i + 1, 3i + 2, 3i + 3)(7).

16. Representation P of degree 15; one handle: (1, 2)1.
XP = (3, 4)(5, 10)(6, 7)(9, 11)(12, 13)(14, 15)(1)(2)(8),
YP = ∏4

i=0(3i + 1, 3i + 2, 3i + 3).

17. Representation Q of degree 21; two handles: (1, 2)1 and (15, 18)2.
XQ = (3, 4)(5, 9)(6, 11)(7, 10)(8, 21)(12, 16)(13, 17)(14, 19)(1)(2)(15)(18)(20),
YQ = ∏6

i=0(3i + 1, 3i + 2, 3i + 3).

18. Representation R of degree 22; one handle: (1, 2)1.
XR = (3, 4)(5, 12)(6, 7)(8, 20)(9, 10)(11, 17)(13, 18)(14, 15)(16, 19)(21, 22)(1)(2),
YR = ∏6

i=0(3i + 1, 3i + 2, 3i + 3)(22).

19. Representation S of degree 36; two handles: (1, 2)1 and (14, 17)2.
XS = (3, 4)(5, 35)(6, 7)(8, 10)(9, 36)(11, 22)(12, 13)(15, 16)(18, 19)(20, 24)(21, 33)

(23, 25)(26, 31)(27, 28)(29, 30)(32, 34)(1)(2)(14)(17),
YS = ∏11

i=0(3i + 1, 3i + 2, 3i + 3).

20. Representation T of degree 66; one handle: (1, 2)1.
XT = (3, 4)(5, 12)(6, 7)(8, 33)(9, 10)(11, 13)(14, 42)(15, 16)(17, 19)(18, 30)(20, 57)

(21, 22)(23, 28)(24, 25)(26, 27)(29, 31)(32, 34)(35, 60)(36, 37)(38, 48)(39, 40)
(41, 43)(44, 46)(45, 52)(47, 49)(50, 51)(53, 61)(54, 55)(56, 58)(59, 62)(63, 64)
(65, 66)(1)(2),

YT = ∏21
i=0(3i + 1, 3i + 2, 3i + 3).
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Appendix B. Data used in the proof of Theorem 1.3

n = 286. Representation J (1)G(1)G(1)E(2)L.
Y286 = Y

[1,72]
J Y

[73,114]
G Y

[115,156]
G Y

[157,184]
E Y

[185,286]
L

X286 = X
[1,72]
J (62, 73)(63, 74)X[73,114]

G (97, 115)(98, 116)X[115,156]
G (139, 182)(140, 183)

X
[157,184]
E (166, 185)(169, 188)X[185,286]

L

a1 = 85, a2 = 86, c1 = 127, c2 = 128, a3 = 87, a4 = 88, c3 = 129, c5 = 131
[ψ(X),ψ(Y )] = (78, 82, 95, 85, 89, 109, 79, 84, 113, 88, 87, 92, 81)

(120, 124, 137, 127, 131, 151, 121, 126, 155, 130, 129, 134, 123)
292162152132122115825219

r = s = 13, k = 6, d = 13
�0 = {130} ∪ {132, . . . , 144} ∪ {146, . . . , 149} ∪ {151} ∪ {153, 154} ∪ {156, . . . , 286}
|�0| = 152; lengths of other non-trivial orbits: 94
w1 = 157, w2 = 184, w3 = 157, w4 = 158
S̄i = 292162152112110

W = [S̄1, S̄
2
2 ] = 1311111110

n = 272. Representation F(2)E(1)G(1)G(1)J (1)E(2)F .
Y272 = Y

[1,30]
F Y

[31,58]
E Y

[59,100]
G Y

[101,142]
G Y

[143,214]
J Y

[215,242]
E Y

[243,272]
F

X272 = X
[1,30]
F (1, 40)(4, 43)X[31,58]

E (56, 59)(57, 60)X[59,100]
G (83, 101)(84, 102)

X
[101,142]
G (125, 143)(126, 144)X[143,214]

J (204, 240)(205, 241)X[215,242]
E

(224, 243)(227, 246)X[243,272]
F

a1 = 71, a2 = 72, c1 = 113, c2 = 114, a3 = 73, a4 = 74, c3 = 115, c5 = 117
[ψ(X),ψ(Y )] = (64, 68, 81, 71, 75, 95, 65, 70, 99, 74, 73, 78, 67)

(106, 110, 123, 113, 117, 137, 107, 112, 141, 116, 115, 120, 109)
13212101141028252110

r = s = 13, k = 6, d = 13
�0 = {116} ∪ {118, . . . , 130} ∪ {132, . . . , 135} ∪ {137} ∪ {139, 140} ∪ {142, . . . , 272}
|�0| = 152; lengths of other non-trivial orbits: 80
w1 = 157, w2 = 151, w3 = 157, w4 = 155
S̄i = 1261121028252112

W = [S̄2
1 , S̄

6
2 ] = 10112123116.

n = 265. Representation J (1)M(2)I (2)E.
Y265 = Y

[1,72]
J Y

[73,180]
M Y

[181,237]
I Y

[238,265]
E

X265 = X
[1,72]
J (62, 73)(63, 74)X[73,180]

M (154, 184)(157, 187)X[181,237]
I (216, 247)

(219, 250)X[238,265]
E

a1 = 1, a2 = 2, c1 = 263, c2 = 264, a3 = 3, a4 = 4, c3 = 262, c5 = 253
[ψ(X),ψ(Y )] = (1, 5, 28, 31, 15, 4, 3, 9, 17, 26, 12)

(240, 257, 263, 253, 241, 245, 255, 262, 260)
551162132122112847262542214

s = 11, r = 9, d = 99
�0 = {4} ∪ {6, . . . , 14} ∪ {16, 18, 19, 21, 25, 26, 28} ∪ {30, . . . , 34} ∪ {36, 37, 38}

∪ {40, . . . , 45} ∪ {50, . . . , 252} ∪ {254, . . . , 261} ∪ {265}
|�0| = 243; no other non-trivial orbits
w1 = 6, w2 = 8, w3 = 6, w4 = 4
S̄i = 16213284725154628124

W = [S̄2
1 , S̄

4
2 ] = 15113715133141.
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n = 257. Representation F(2)E(1)G(1)G(1)E(2)I (2)F .
Y257 = Y

[1,30]
F Y

[31,58]
E Y

[59,100]
G Y

[101,142]
G Y

[143,170]
E Y

[171,227]
I Y

[228,257]
F

X257 = X
[1,30]
F (1, 40)(4, 43)X[31,58]

E (56, 59)(57, 60)X[59,100]
G (83, 101)(84, 102)

X
[101,142]
G (125, 168)(126, 169)X[143,170]

E (152, 174)(155, 177)X[171,227]
I

(206, 228)(209, 231)X[228,257]
F

a1 = 71, a2 = 72, c1 = 113, c2 = 114, a3 = 73, a4 = 74, c3 = 115, c5 = 117
[ψ(X),ψ(Y )] = (64, 68, 81, 71, 75, 95, 65, 70, 99, 74, 73, 78, 67)

(106, 110, 123, 113, 117, 137, 107, 112, 141, 116, 115, 120, 109)
171152132124118522218

s = 13, r = 13, k = 6, d = 13
�0 = {116} ∪ {118, . . . , 130} ∪ {132, . . . , 135} ∪ {137, 139, 140} ∪ {142, . . . , 257}
|�0| = 137; lengths of other non-trivial orbits: 80
w1 = 254, w2 = 236, w3 = 157, w4 = 155
S̄i = 1711521165222110

W = [S̄1, S̄
2
2 ] = 7311511029152110.

n = 250. Representation G(1)J (1)M(2)E.
Y250 = Y

[1,42]
G Y

[43,114]
J Y

[115,222]
M Y

[223,250]
E

X250 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 115)(105, 116)X[115,222]
M (196, 232)

(199, 235)X[223,250]
E

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)
282142132122112918272625217

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 150} ∪ {152, 153}

∪ {157, . . . , 168} ∪ {170, 171} ∪ {175, . . . , 218} ∪ {223, . . . , 250}
|�0| = 218; no other non-trivial orbits
w1 = 211, w2 = 215, w3 = 211, w4 = 212
S̄i = 2821421221129182726252127

W = [S̄2
1 , S̄

4
2 ] = 167127132118.

n = 244. Representation J (1)G(1)E(2)L.
Y244 = Y

[1,72]
J Y

[73,114]
G Y

[115,142]
E Y

[143,244]
L

X244 = X
[1,72]
J (62, 73)(63, 74)X[73,114]

G (97, 140)(98, 141)X[115,142]
E (124, 143)(127, 146)

X
[143,244]
L

a1 = 1, a2 = 2, c1 = 85, c2 = 86, a3 = 3, a4 = 4, c3 = 87, c5 = 89
[ψ(X),ψ(Y )] = (1, 5, 28, 31, 15, 4, 3, 9, 17, 26, 12)

(78, 82, 95, 85, 89, 109, 79, 84, 113, 88, 87, 92, 81)
292162152122114825216

s = 11, r = 13, d = 143
�0 = {115, . . . , 129} ∪ {131, . . . , 138} ∪ {142, . . . , 244}
|�0| = 126; lengths of other non-trivial orbits: 76
w1 = 127, w2 = 146, w3 = 127, w4 = 128
S̄i = 29216215216

W = [S̄2
1 , S̄

3
2 ] = 7913712216.
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n = 243. Representation B(3)N(1)G(1)G(1)C(3)B.
Y243 = Y

[1,15]
B Y

[16,123]
N Y

[124,165]
G Y

[166,207]
G Y

[208,228]
C Y

[229,243]
B

X243 = X
[1,15]
B (4, 48)(8, 50)X[16,123]

N (16, 124)(17, 125)X[124,165]
G (148, 166)(149, 167)

X
[166,207]
G (190, 208)(191, 209)X[208,228]

C (215, 232)(221, 236)X[229,243]
B

a1 = 136, a2 = 137, c1 = 178, c2 = 179, a3 = 138, a4 = 139, c3 = 180, c5 = 182
[ψ(X),ψ(Y )] = (129, 133, 146, 136, 140, 160, 130, 135, 164, 139, 138, 143, 132)

(171, 175, 188, 178, 182, 202, 172, 177, 206, 181, 180, 185, 174)
2321721321221111029262524218

s = 13, r = 13, k = 6, d = 13
�0 = {1, . . . , 129} ∪ {131, 132, 134, 135, 151, } ∪ {153, . . . , 159} ∪ {161, . . . , 164}
|�0| = 145; lengths of other non-trivial orbits: 58
w1 = 158, w2 = 156, w3 = 157, w4 = 158
S̄i = 232172102926251110

W = [S̄1, S̄
3
2 ] = 13116212.

n = 236. Representation A(1)G(1)G(1)M(2)F .
Y236 = Y

[1,14]
A Y

[15,56]
G Y

[57,98]
G Y

[99,206]
M Y

[207,236]
F

X236 = X
[1,14]
A (1, 15)(2, 16)X[15,56]

G (39, 57)(40, 58)X[57,98]
G (81, 99)(82, 100)X[99,206]

M

(180, 207)(183, 210)X[207,236]
F

a1 = 27, a2 = 28, c1 = 69, c2 = 70, a3 = 29, a4 = 30, c3 = 71, c5 = 73
[ψ(X),ψ(Y )] = (20, 24, 37, 27, 31, 51, 21, 26, 55, 30, 29, 34, 23)

(62, 66, 79, 69, 73, 93, 63, 68, 97, 72, 71, 76, 65)322172136726218

s = 13, r = 13, k = 6, d = 13
�0 = {72} ∪ {74, . . . , 86} ∪ {88, . . . , 91} ∪ {93, 95, 96} ∪ {98, . . . , 134} ∪ {126, 137}

∪ {141, . . . , 152} ∪ {154, 155} ∪ {159, . . . , 202} ∪ {207, . . . , 236}
|�0| = 148; no other non-trivial orbits
w1 = 160, w2 = 165, w3 = 159, w4 = 160
S̄i = 3221727262124

W = [S̄1, S̄
6
2 ] = 83141132118.

n = 235. Representation C(1)G(1)G(1)E(2)L.
Y235 = Y

[1,21]
C Y

[22,63]
G Y

[64,105]
G Y

[106,133]
E Y

[134,235]
L

X235 = X
[1,21]
C (1, 22)(2, 23)X[22,63]

G (46, 64)(47, 65)X[64,105]
G (88, 131)(89, 132)X[106,133]

E

(115, 134)(118, 137)X[134,235]
L

a1 = 34, a2 = 35, c1 = 76, c2 = 77, a3 = 36, a4 = 37, c3 = 78, c5 = 80
[ψ(X),ψ(Y )] = (27, 31, 44, 34, 38, 58, 28, 33, 62, 37, 36, 41, 30)

(69, 73, 86, 76, 80, 100, 70, 75, 104, 79, 78, 83, 72)
292211162152132112422218

s = 13, r = 13, k = 6, d = 13
�0 = {79} ∪ {81, . . . , 93} ∪ {95, . . . , 98} ∪ {100, 102, 103} ∪ {105, . . . , 235}
|�0| = 152; lengths of other non-trivial orbits: 43
w1 = 157, w2 = 144, w3 = 157, w4 = 155
S̄i = 292162152112110

W = [S̄1, S̄
2
2 ] = 1311111110.
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n = 221. Representation O(1)G(1)G(1)E(2)L.
Y221 = Y

[1,7]
O Y

[8,49]
G Y

[50,91]
G Y

[92,119]
E Y

[120,221]
L

X221 = X
[1,7]
O (5, 8)(6, 9)X[8,49]

G (32, 50)(33, 51)X[50,91]
G (74, 117)(75, 118)X[92,119]

E

(101, 120)(104, 123)X[120,221]
L

a1 = 20, a2 = 21, c1 = 62, c2 = 63, a3 = 22, a4 = 23, c3 = 64, c5 = 66
[ψ(X),ψ(Y )] = (13, 17, 30, 20, 24, 44, 14, 19, 48, 23, 22, 27, 16)

(55, 59, 72, 62, 66, 86, 56, 61, 90, 65, 64, 69, 58)
29219116215213211218

s = 13, r = 13, k = 6, d = 13
�0 = {65} ∪ {67, . . . , 79} ∪ {81, . . . , 84} ∪ {86, 88, 89} ∪ {91, . . . , 221}
|�0| = 152; lengths of other non-trivial orbits: 29
w1 = 157, w2 = 155, w3 = 157, w4 = 158
S̄i = 292162152112110

W = [S̄1, S̄
2
2 ] = 1311111110.

n = 216. Representation J (1)M(2)S.
Y216 = Y

[1,72]
J Y

[73,180]
M Y

[181,216]
S

X216 = X
[1,72]
J (62, 73)(63, 74)X[73,180]

M (154, 194)(157, 197)X[181,216]
S

a1 = 1, a2 = 2, c1 = 181, c2 = 182, a3 = 3, a4 = 4, c3 = 183, c5 = 185
[ψ(X),ψ(Y )] = (1, 5, 28, 31, 15, 4, 3, 9, 17, 26, 12)

(. . . , 190, 184, 183, 188, . . . , 215, 181, 185, 213, . . .)
1321128272625214 (the cycle containing 183 and 185 has length 101)

s = 11, r = 101, d = 1111
�0 = {76} ∪ {78, . . . , 81} ∪ {83, . . . , 87} ∪ {89, . . . , 92} ∪ {94, 96, 97, 99, 101, 102, 103}

∪{105}∪{107, . . . , 114}∪{116, . . . , 120}∪{125, . . . , 134}∪{136, 137, 138, 142}
∪ {144, 146, 147, 148, 150, 152, 153, 160, 161} ∪ {163, . . . , 180}

|�0| = 76; lengths of other non-trivial orbits: 9, 9, 14, and 14
w1 = 127, w2 = 133, w3 = 136, w4 = 137
S̄i = 1327262124

W = [S̄1, S̄2] = 4315134116.

n = 214. Representation G(1)G(1)E(2)L.
Y214 = Y

[1,42]
G Y

[43,84]
G Y

[85,112]
E Y

[113,214]
L

X214 = X
[1,42]
G (25, 43)(26, 44)X[43,84]

G (67, 110)(68, 111)X[85,112]
E (94, 113)(97, 116)

X
[113,214]
L

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)29216215213311217

s = 13, r = 13, k = 6, d = 13
�0 = {58} ∪ {60, . . . , 72} ∪ {74, . . . , 77} ∪ {79, 81, 82} ∪ {84, . . . , 214}
|�0| = 152; no other non-trivial orbits
w1 = 157, w2 = 156, w3 = 157, w4 = 155
S̄i = 292162152112110

W = [S̄1, S̄
2
2 ] = 1311111110.
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n = 212. Representation G(1)E(2)I (2)I (2)E.
Y212 = Y

[1,42]
G Y

[43,70]
E Y

[71,127]
I Y

[128,184]
I Y

[185,212]
E

X212 = X
[1,42]
G (25, 68)(26, 69)X[43,70]

E (52, 74)(55, 77)X[71,127]
I (106, 131)(109, 134)

X
[128,184]
I (163, 194)(166, 197)X[185,212]

E

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)
2311711221141029182542415

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 212}
|�0| = 192; no other non-trivial orbits
w1 = 212, w2 = 185, w3 = 211, w4 = 209
S̄i = 23117112211410291825424111

W = [S̄2
1 , S̄

3
2 ] = 9715518271513216.

n = 208. Representation E(2)M(1)J .
Y208 = Y

[1,28]
E Y

[29,136]
M Y

[137,208]
J

X208 = X
[1,28]
E (10, 110)(13, 113)X[29,136]

M (29, 137)(30, 138)X[137,208]
J

a1 = 26, a2 = 27, c1 = 198, c2 = 199, a3 = 25, a4 = 18, c3 = 197, c5 = 203
[ψ(X),ψ(Y )] = (3, 20, 26, 16, 4, 8, 18, 25, 23)

(177, 195, 205, 197, 207, 190, 179, 201, 198, 203, 192)
2821421321128272625214

s = 9, r = 11, d = 99
�0 = {1, . . . , 15}∪{17, . . . , 24}∪{28, . . . , 155}∪{157}∪{161, . . . , 170}∪{172, . . . , 174}

∪ {176, . . . , 179} ∪ {181} ∪ {186, . . . , 189} ∪ {191, 192, 194, 196, 200, 201, 202}
∪ {204, . . . , 208}

|�0| = 186; no other non-trivial orbits
w1 = 1, w2 = 28, w3 = 1, w4 = 2
S̄i = 28214213282725226124

W = [S̄1, S̄
2
2 ] = 1131531120.

n = 206. Representation O(1)G(1)G(1)E(2)I (2)F .
Y206 = Y

[1,7]
O Y

[8,49]
G Y

[50,91]
G Y

[92,119]
E Y

[120,176]
I Y

[177,206]
F

X206 = X
[1,7]
O (5, 8)(6, 9)X[8,49]

G (32, 50)(33, 51)X[50,91]
G (74, 117)(75, 118)X[92,119]

E

(101, 123)(104, 126)X[120,176]
I (155, 177)(158, 180)X[177,206]

F

a1 = 20, a2 = 21, c1 = 62, c2 = 63, a3 = 22, a4 = 23, c3 = 64, c5 = 66
[ψ(X),ψ(Y )] = (13, 17, 30, 20, 24, 44, 14, 19, 48, 23, 22, 27, 16)

(55, 59, 72, 62, 66, 86, 56, 61, 90, 65, 64, 69, 58)
191171152132116522218

s = 13, r = 13, k = 6, d = 13
�0 = {65} ∪ {67, . . . , 79} ∪ {81, . . . , 84} ∪ {86, 88, 89} ∪ {91, . . . , 206}
|�0| = 137; lengths of other non-trivial orbits: 29
w1 = 127, w2 = 130, w3 = 157, w4 = 158
S̄i = 1711521165222110

W = [S̄1, S̄
2
2 ] = 731151102915211.
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Hurwitz groups of intermediate rank

n = 205. Representation F(2)E(1)G(1)G(1)H(3)C.
Y205 = Y

[1,30]
F Y

[31,58]
E Y

[59,100]
G Y

[101,142]
G Y

[143,184]
H Y

[185,205]
C

X205 = X
[1,30]
F (1, 40)(4, 43)X[31,58]

E (56, 59)(57, 60)X[59,100]
G (83, 101)(84, 102)

X
[101,142]
G (125, 143)(126, 144)X[143,184]

H (166, 192)(169, 198)X[185,205]
C

a1 = 71, a2 = 72, c1 = 113, c2 = 114, a3 = 73, a4 = 74, c3 = 115, c5 = 117
[ψ(X),ψ(Y )] = (64, 68, 81, 71, 75, 95, 65, 70, 99, 74, 73, 78, 67)

(106, 110, 123, 113, 117, 137, 107, 112, 141, 116, 115, 120, 109)
231211191132124112423119

s = 13, r = 13, k = 6, d = 13
�0 = {116} ∪ {118, . . . , 130} ∪ {132, . . . , 135} ∪ {137, 139, 140} ∪ {142, . . . , 205}
|�0| = 85; lengths of other non-trivial orbits: 80
w1 = 179, w2 = 177, w3 = 178, w4 = 176
S̄i = 2312111914231111

W = [S̄1, S̄
4
2 ] = 47182513318.

n = 201. Representation C(3)N(1)J .
Y201 = Y

[1,21]
C Y

[22,129]
N Y

[130,201]
J

X201 = X
[1,21]
C (8, 54)(14, 56)X[22,129]

N (22, 130)(23, 131)X[130,201]
J

a1 = 1, a2 = 2, c1 = 191, c2 = 192, a3 = 3, a4 = 4, c3 = 190, c5 = 196
[ψ(X),ψ(Y )] = (1, 5, 8, 59, 120, 115, 83, 15, 4, 3, 21, 57, 87, 122, 61, 54, 16)

(170, 188, 198, 190, 200, 183, 172, 194, 191, 196, 185)
4311621121029282524214

s = 17, r = 11, d = 187
�0 = {4} ∪ {6, . . . , 148} ∪ {150} ∪ {154, . . . , 163} ∪ {165, 166, 167} ∪ {169, . . . , 172}

∪ {174} ∪ {179, . . . , 182} ∪ {184, 185, 187, 189, 193, 194, 195} ∪ {197, . . . , 201}
|�0| = 179; no other non-trivial orbits
w1 = 6, w2 = 20, w3 = 6, w4 = 4
S̄i = 43116210292825242132

W = [S̄1, S̄
2
2 ] = 131113242114.

n = 200. Representation G(1)J (1)J (1)A.
Y200 = Y

[1,42]
G Y

[43,114]
J Y

[115,186]
J Y

[187,200]
A

X200 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 115)(105, 116)X[115,186]
J (176, 187)

(177, 188)X[187,200]
A

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)124116845418

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 200}
|�0| = 180; no other non-trivial orbits
w1 = 18, w2 = 19, w3 = 18, w4 = 16
S̄i = 1241168454114

W = [S̄1, S̄
6
2 ] = 1031122111933316.
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Hurwitz groups of intermediate rank

n = 198. Representation G(1)G(1)E(2)E(1)E(2)F .
Y198 = Y

[1,42]
G Y

[43,84]
G Y

[85,112]
E Y

[113,140]
E Y

[141,168]
E Y

[169,198]
F

X198 = X
[1,42]
G (25, 43)(26, 44)X[43,84]

G (67, 110)(68, 111)X[85,112]
E (94, 122)(97, 125)

X
[113,140]
E (138, 166)(139, 167)X[141,168]

E (150, 169)(153, 172)X[169,198]
F

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)1331241129619

s = 13, r = 13, k = 6, d = 13
�0 = {58} ∪ {60, . . . , 72} ∪ {74, . . . , 77} ∪ {79, 81, 82} ∪ {84, . . . , 198}
|�0| = 136; no other non-trivial orbits
w1 = 127, w2 = 123, w3 = 157, w4 = 158
S̄i = 12411296112

W = [S̄8, S̄
10
2 ] = 891735232110.

n = 193. Representation G(1)J (1)J (1)O.
Y193 = Y

[1,42]
G Y

[43,114]
J Y

[115,186]
J Y

[187,193]
O

X193 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 115)(105, 116)X[115,186]
J

(176, 191)(177, 192)X[187,193]
O

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)171122116845418

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 193}
|�0| = 173; no other non-trivial orbits
w1 = 18, w2 = 19, w3 = 18, w4 = 16
S̄i = 1711221168454114

W = [S̄1, S̄
2
2 ] = 1091211927132112.

n = 192. Representation G(1)G(1)M .
Y192 = Y

[1,42]
G Y

[43,84]
G Y

[85,192]
M

X192 = X
[1,42]
G (25, 43)(26, 44)X[43,84]

G (67, 85)(68, 86)X[85,192]
M

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)491191135726217

s = 13, r = 13, k = 6, d = 13
�0 = {58} ∪ {60, . . . , 72} ∪ {74, . . . , 77} ∪ {79, 81, 82} ∪ {84, . . . , 120} ∪ {122, 123}

∪ {127, . . . , 138} ∪ {140, 141} ∪ {145, . . . , 188}
|�0| = 118; no other non-trivial orbits
w1 = 127, w2 = 122, w3 = 127, w4 = 128
S̄i = 4911917262124

W = [S̄5, S̄
9
2 ] = 7911713222112.
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Hurwitz groups of intermediate rank

n = 191. Representation A(1)G(1)G(1)J (1)C.
Y191 = Y

[1,14]
A Y

[15,56]
G Y

[57,98]
G Y

[99,170]
J Y

[171,191]
C

X191 = X
[1,14]
A (1, 15)(2, 16)X[15,56]

G (39, 57)(40, 58)X[57,98]
G (81, 99)(82, 100)X[99,170]

J

(160, 171)(161, 172)X[171,191]
C

a1 = 27, a2 = 28, c1 = 69, c2 = 70, a3 = 29, a4 = 30, c3 = 71, c5 = 73
[ψ(X),ψ(Y )] = (20, 24, 37, 27, 31, 51, 21, 26, 55, 30, 29, 34, 23)

(62, 66, 79, 69, 73, 93, 63, 68, 97, 72, 71, 76, 65)
19113412211282524222110

s = 13, r = 13, k = 6, d = 13
�0 = {72} ∪ {74, . . . , 86} ∪ {88, . . . , 91} ∪ {93, 95, 96} ∪ {98, . . . , 191}
|�0| = 115; no other non-trivial orbits
w1 = 127, w2 = 137, w3 = 127, w4 = 128
S̄i = 19112211282524222112

W = [S̄1, S̄
8
2 ] = 5912915131119.

n = 185. Representation J (1)E(2)I (2)E.
Y185 = Y

[1,72]
J Y

[73,100]
E Y

[101,157]
I Y

[158,185]
E

X185 = X
[1,72]
J (62, 98)(63, 99)X[73,100]

E (82, 104)(85, 107)X[101,157]
I

(136, 167)(139, 170)X[158,185]
E

a1 = 1, a2 = 2, c1 = 183, c2 = 184, a3 = 3, a4 = 4, c3 = 182, c5 = 173
[ψ(X),ψ(Y )] = (1, 5, 28, 31, 15, 4, 3, 9, 17, 26, 12)

(160, 177, 183, 173, 161, 165, 175, 182, 180)17112211410284542214

s = 11, r = 9, d = 99
�0 = {4} ∪ {6, . . . , 14} ∪ {16, 18, 19, 21, 25, 26, 28} ∪ {30, . . . , 34} ∪ {36, 37, 38}

∪ {40, . . . , 45} ∪ {50, . . . , 90} ∪ {92, 93} ∪ {95, . . . , 153} ∪ {156, . . . , 172}
∪ {174, . . . , 181} ∪ {185}

|�0| = 159; no other non-trivial orbits
w1 = 157, w2 = 153, w3 = 158, w4 = 159
S̄i = 17110284544622142

W = [S̄2
1 , [S̄3

1 , S̄
3
2 ]] = 9719171513122134.

n = 180. Representation G(1)M(2)F .
Y180 = Y

[1,42]
G Y

[43,150]
M Y

[151,180]
F

X180 = X
[1,42]
G (25, 43)(26, 44)X[43,150]

M (124, 151)(127, 154)X[151,180]
F

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)322172132726214

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 78}

∪ {80, 81} ∪ {85, . . . , 96} ∪ {98, 99} ∪ {103, . . . , 146} ∪ {151, . . . , 180}
|�0| = 148; no other non-trivial orbits
w1 = 157, w2 = 155, w3 = 157, w4 = 158
S̄i = 3221727262124

W = [S̄1, S̄
6
2 ] = 83141132118.
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Hurwitz groups of intermediate rank

n = 172. Representation G(1)E(2)L.
Y172 = Y

[1,42]
G Y

[43,70]
E Y

[71,172]
L

X172 = X
[1,42]
G (25, 68)(26, 69)X[43,70]

E (52, 71)(55, 74)X[71,172]
L

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)29216215211214

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 172}
|�0| = 152; no other non-trivial orbits
w1 = 157, w2 = 158, w3 = 157, w4 = 155
S̄i = 292162152112110

W = [S̄1, S̄
2
2 ] = 1311111110.

n = 171. Representation G(1)J (1)H(3)B.
Y171 = Y

[1,42]
G Y

[43,114]
J Y

[115,156]
H Y

[157,171]
B

X171 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 115)(105, 116)X[115,156]
H

(138, 160)(141, 164)X[157,171]
B

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)2111241128272533116

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 171}
|�0| = 151; no other non-trivial orbits
w1 = 158, w2 = 162, w3 = 157, w4 = 158
S̄i = 21112411282725331112

W = [S̄1, S̄
2
2 ] = 101129132115.

n = 170. Representation G(1)J (1)E(2)E.
Y170 = Y

[1,42]
G Y

[43,114]
J Y

[115,142]
E Y

[143,170]
E

X170 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 140)(105, 141)X[115,142]
E

(124, 152)(127, 155)X[143,170]
E

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)12211210295825217

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 170}
|�0| = 150; no other non-trivial orbits
w1 = 157, w2 = 153, w3 = 157, w4 = 155
S̄i = 122112102958252113

W = [S̄1, S̄
3
2 ] = 89121110291111.
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Hurwitz groups of intermediate rank

n = 165. Representation G(1)N(3)B.
Y165 = Y

[1,42]
G Y

[43,150]
N Y

[151,165]
B

X165 = X
[1,42]
G (25, 43)(26, 44)X[43,150]

N (75, 154)(77, 158)X[151,165]
B

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)23217210292625114

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 165}
|�0| = 145; no other non-trivial orbits
w1 = 157, w2 = 162, w3 = 157, w4 = 158
S̄i = 232172102926251110

W = [S̄1, S̄
2
2 ] = 13116212.

n = 164. Representation G(1)J (1)E(2)D.
Y164 = Y

[1,42]
G Y

[43,114]
J Y

[115,142]
E Y

[143,164]
D

X164 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 140)(105, 141)X[115,142]
E

(124, 143)(127, 146)X[143,164]
D

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)1221121048272523216

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 164}
|�0| = 144; no other non-trivial orbits
w1 = 157, w2 = 158, w3 = 157, w4 = 155
S̄i = 12211210482725232112

W = [S̄1, S̄
3
2 ] = 89121110231111.

n = 163. Representation C(1)G(1)G(1)E(2)F .
Y163 = Y

[1,21]
C Y

[22,63]
G Y

[64,105]
G Y

[106,133]
E Y

[134,163]
F

X163 = X
[1,21]
C (1, 22)(2, 23)X[22,63]

G (46, 64)(47, 65)X[64,105]
G (88, 131)(89, 132)

X
[106,133]
E (115, 134)(118, 137)X[134,163]

F

a1 = 34, a2 = 35, c1 = 76, c2 = 77, a3 = 36, a4 = 37, c3 = 78, c5 = 80
[ψ(X),ψ(Y )] = (27, 31, 44, 34, 38, 58, 28, 33, 62, 37, 36, 41, 30)

(69, 73, 86, 76, 80, 100, 70, 75, 104, 79, 78, 83, 72)
211132124112422218

s = 13, r = 13, k = 6, d = 13
�0 = {79} ∪ {81, . . . , 93} ∪ {95, . . . , 98} ∪ {100, 102, 103} ∪ {105, . . . , 163}
|�0| = 80; lengths of other non-trivial orbits: 43
w1 = 134, w2 = 115, w3 = 89, w4 = 90
S̄i = 124112110

W = [S̄4
1 , S̄

6
2 ] = 5319142110.
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Hurwitz groups of intermediate rank

n = 156. Representation A(1)G(1)G(1)E(2)F .
Y156 = Y

[1,14]
A Y

[15,56]
G Y

[57,98]
G Y

[99,126]
E Y

[127,156]
F

X156 = X
[1,14]
A (1, 15)(2, 16)X[15,56]

G (39, 57)(40, 58)X[57,98]
G (81, 124)(82, 125)X[99,126]

E

(108, 127)(111, 130)X[127,156]
F

a1 = 27, a2 = 28, c1 = 69, c2 = 70, a3 = 29, a4 = 30, c3 = 71, c5 = 73
[ψ(X),ψ(Y )] = (20, 24, 37, 27, 31, 51, 21, 26, 55, 30, 29, 34, 23)

(62, 66, 79, 69, 73, 93, 63, 68, 97, 72, 71, 76, 65)
13412411218

s = 13, r = 13, k = 6, d = 13
�0 = {72} ∪ {74, . . . , 86} ∪ {88, . . . , 91} ∪ {93, 95, 96} ∪ {98, . . . , 156}
|�0| = 80; no other non-trivial orbits
w1 = 89, w2 = 91, w3 = 90, w4 = 91
S̄i = 124112110

W = [S̄4
1 , S̄

6
2 ] = 5319142110.

n = 150. Representation G(1)J (1)C(3)B.
Y150 = Y

[1,42]
G Y

[43,114]
J Y

[115,135]
C Y

[136,150]
B

X150 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 115)(105, 116)X[115,135]
C

(122, 139)(128, 143)X[136,150]
B

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)12211582534216

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 150}
|�0| = 130; no other non-trivial orbits
w1 = 127, w2 = 125, w3 = 127, w4 = 128
S̄i = 122115825342112

W = [S̄1, S̄
6
2 ] = 711122111913316.

n = 149. Representation O(1)G(1)G(1)E(2)F .
Y149 = Y

[1,7]
O Y

[8,49]
G Y

[59,91]
G Y

[92,119]
E Y

[120,149]
F

X149 = X
[1,7]
O (5, 8)(6, 9)X[8,49]

G (32, 50)(33, 51)X[59,91]
G (74, 117)(75, 118)X[92,119]

E

(101, 120)(104, 123)X[120,149]
F

a1 = 20, a2 = 21, c1 = 62, c2 = 63, a3 = 22, a4 = 23, c3 = 64, c5 = 66
[ψ(X),ψ(Y )] = (13, 17, 30, 20, 24, 44, 14, 19, 48, 23, 22, 27, 16)

(55, 59, 72, 62, 66, 86, 56, 61, 90, 65, 64, 69, 58)
19113212411218

s = 13, r = 13, k = 6, d = 13
�0 = {65} ∪ {67, . . . , 79} ∪ {81, . . . , 84} ∪ {86, 88, 89} ∪ {91, . . . , 149}
|�0| = 80; lengths of other non-trivial orbits: 29
w1 = 91, w2 = 81, w3 = 91, w4 = 89
S̄i = 124112110

W = [S̄4
1 , S̄

6
2 ] = 5319142110.
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Hurwitz groups of intermediate rank

n = 147. Representation G(1)G(1)G(1)C.
Y147 = Y

[1,42]
G Y

[43,84]
G Y

[85,126]
G Y

[127,147]
C

X147 = X
[1,42]
G (25, 43)(26, 44)X[43,84]

G (67, 85)(68, 86)X[85,126]
G (109, 127)(110, 128)

X
[127,147]
C

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)2111364222110

s = 13, r = 13, k = 6, d = 13
�0 = {100} ∪ {102, . . . , 114} ∪ {116, . . . , 119} ∪ {121, 123, 124} ∪ {126, . . . , 147}
|�0| = 43; no other non-trivial orbits
w1 = 129, w2 = 130, w3 = 127, w4 = 128
S̄i = 2114222110

W = [S̄3, S̄
7
2 ] = 2915119.

n = 142. Representation G(1)G(1)E(2)F .
Y142 = Y

[1,42]
G Y

[43,84]
G Y

[85,112]
E Y

[113,142]
F

X142 = X
[1,42]
G (25, 43)(26, 44)X[43,84]

G (67, 110)(68, 111)X[85,112]
E (94, 113)(97, 116)

X
[113,142]
F

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)13312411217

s = 13, r = 13, k = 6, d = 13
�0 = {58} ∪ {60, . . . , 72} ∪ {74, . . . , 77} ∪ {79, 81, 82} ∪ {84, . . . , 142}
|�0| = 80; no other non-trivial orbits
w1 = 89, w2 = 96, w3 = 89, w4 = 90
S̄i = 124112110

W = [S̄4, S̄
6
2 ] = 5319142110.

n = 136. Representation G(1)J (1)R.
Y136 = Y

[1,42]
G Y

[43,114]
J Y

[115,136]
R

X136 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 115)(105, 116)X[115,136]
R

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)162122112825216

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 136}
|�0| = 116; no other non-trivial orbits
w1 = 127, w2 = 132, w3 = 127, w4 = 128
S̄i = 1621221128252112

W = [S̄1, S̄
2
2 ] = 791251112.
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Hurwitz groups of intermediate rank

n = 135. Representation G(1)J (1)Q.
Y135 = Y

[1,42]
G Y

[43,114]
J Y

[115,135]
Q

X135 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 115)(105, 116)X[115,135]
Q

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)21112211283522116

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 135}
|�0| = 115; no other non-trivial orbits
w1 = 127, w2 = 131, w3 = 127, w4 = 128
S̄i = 211122112835221112

W = [S̄2
1 , S̄2] = 591311131112.

n = 133. Representation G(1)G(1)G(1)O.
Y133 = Y

[1,42]
G Y

[43,84]
G Y

[85,126]
G Y

[127,133]
O

X133 = X
[1,42]
G (25, 43)(26, 44)X[43,84]

G (67, 85)(68, 86)X[85,126]
G (109, 131)(110, 132)

X
[127,133]
O

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)191136110

s = 13, r = 13, k = 6, d = 13
�0 = {100} ∪ {102, . . . , 114} ∪ {116, . . . , 119} ∪ {121, 123, 124} ∪ {126, . . . , 133}
|�0| = 29; no other non-trivial orbits
w1 = 116, w2 = 126, w3 = 116, w4 = 117
S̄i = 191110

W = S̄1 = 191110.

n = 129. Representation G(1)J (1)P .
Y129 = Y

[1,42]
G Y

[43,114]
J Y

[115,129]
P

X129 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 115)(105, 116)X[115,129]
P

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)251122112825216

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 129}
|�0| = 109; no other non-trivial orbits
w1 = 127, w2 = 126, w3 = 127, w4 = 128
S̄i = 2511221128252112

W = [S̄1, S̄
7
2 ] = 891422218.
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Hurwitz groups of intermediate rank

n = 128. Representation G(1)J (1)A.
Y128 = Y

[1,42]
G Y

[43,114]
J Y

[115,128]
A

X128 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 115)(105, 116)X[115,128]
A

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)124112825216

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 128}
|�0| = 108; no other non-trivial orbits
w1 = 127, w2 = 125, w3 = 18, w4 = 16
S̄i = 1241128252112

W = [S̄2
1 , S̄

5
2 ] = 731171322218.

n = 127. Representation O(1)G(1)G(1)C(3)B.
Y127 = Y

[1,7]
O Y

[8,49]
G Y

[50,91]
G Y

[92,112]
C Y

[113,127]
B

X127 = X
[1,7]
O (5, 8)(6, 9)X[8,49]

G (32, 50)(33, 51)X[50,91]
G (74, 92)(75, 93)X[92,112]

C

(99, 116)(105, 120)X[113,127]
B

a1 = 20, a2 = 21, c1 = 62, c2 = 63, a3 = 22, a4 = 23, c3 = 64, c5 = 66
[ψ(X),ψ(Y )] = (13, 17, 30, 20, 24, 44, 14, 19, 48, 23, 22, 27, 16)

(55, 59, 72, 62, 66, 86, 56, 61, 90, 65, 64, 69, 58)
191132122111514218

s = 13, r = 13, k = 6, d = 13
�0 = {65} ∪ {67, . . . , 79} ∪ {81, . . . , 84} ∪ {86, 88, 89} ∪ {91, . . . , 127}
|�0| = 58; lengths of other non-trivial orbits: 29
w1 = 106, w2 = 112, w3 = 106, w4 = 104
S̄i = 1221115142110

W = [S̄1, S̄
6
2 ] = 4313316.

n = 121. Representation G(1)J (1)O.
Y121 = Y

[1,42]
G Y

[43,114]
J Y

[115,121]
O

X121 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J (104, 119)(105, 120)X[115,121]
O

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)171132122112825216

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 121}
|�0| = 101; no other non-trivial orbits
w1 = 18, w2 = 19, w3 = 18, w4 = 16
S̄i = 1711221128252112

W = [S̄1, S̄
6
2 ] = 8913216.
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Hurwitz groups of intermediate rank

n = 114. Representation G(1)J .
Y114 = Y

[1,42]
G Y

[43,114]
J

X114 = X
[1,42]
G (25, 43)(26, 44)X[43,114]

J

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)122113825215

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 114}
|�0| = 94; no other non-trivial orbits
w1 = 89, w2 = 90, w3 = 89, w4 = 90
S̄i = 1221138252111

W = [S̄2
1 , S̄

9
2 ] = 53115182110.

n = 113. Representation R(1)G(1)G(1)O
Y113 = Y

[1,22]
R Y

[23,64]
G Y

[65,106]
G Y

[107,113]
O

X113 = X
[1,22]
R (1, 23)(2, 24)X[23,64]

G (47, 65)(48, 66)X[65,106]
G

(89, 111)(90, 112)X[107,113]
O

a1 = 35, a2 = 36, c1 = 77, c2 = 78, a3 = 37, a4 = 38, c3 = 79, c5 = 81
[ψ(X),ψ(Y )] = (28, 32, 45, 35, 39, 59, 29, 34, 63, 38, 37, 42, 31)

(70, 74, 87, 77, 81, 101, 71, 76, 105, 80, 79, 84, 73)
19117213218

s = 13, r = 13, k = 6, d = 13
�0 = {1, . . . , 28} ∪ {30, 31, 33, 34, 50} ∪ {52, . . . , 58} ∪ {60, . . . , 63}
|�0| = 44; lengths of other non-trivial orbits: 29
w1 = 1, w2 = 23, w3 = 1, w4 = 2
S̄i = 172110

W = [S̄1, S̄
7
2 ] = 231823112.

n = 112. Representation G(1)H(3)C(1)O.
Y112 = Y

[1,42]
G Y

[43,84]
H Y

[85,105]
C Y

[106,112]
O

X112 = X
[1,42]
G (25, 43)(26, 44)X[43,84]

H (66, 92)(69, 98)X[85,105]
C

(85, 110)(86, 111)X[106,112]
O

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)251231211423116

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 112}
|�0| = 92; no other non-trivial orbits
w1 = 89, w2 = 100, w3 = 89, w4 = 90
S̄i = 2512312114231112

W = [S̄3
1 , S̄

6
2 ] = 73151114.
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Hurwitz groups of intermediate rank

n = 108. Representation G(1)T .
Y108 = Y

[1,42]
G Y

[43,108]
T

X108 = X
[1,42]
G (25, 43)(26, 44)X[43,108]

T

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)39214

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 108}
|�0| = 88; no other non-trivial orbits
w1 = 89, w2 = 91, w3 = 89, w4 = 90
S̄i = 326110

W = (S̄1S̄2)
2[S̄1, S̄2] = 7111213121.

n = 106. Representation G(1)G(1)R.
Y106 = Y

[1,42]
G Y

[43,84]
G Y

[85,106]
R

X106 = X
[1,42]
G (25, 43)(26, 44)X[43,84]

G (67, 85)(68, 86)X[85,106]
R

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)17213317

s = 13, r = 13, k = 6, d = 13
�0 = {58} ∪ {60, . . . , 72} ∪ {74, . . . , 77} ∪ {79, 81, 82} ∪ {84, . . . , 106}
|�0| = 44; no other non-trivial orbits
w1 = 67, w2 = 85, w3 = 86, w4 = 87
S̄i = 172110

W = [S̄1, S̄
7
2 ] = 231823112.

n = 105. Representation G(1)H(3)C.
Y105 = Y

[1,42]
G Y

[43,84]
H Y

[85,105]
C

X105 = X
[1,42]
G (25, 43)(26, 44)X[43,84]

H (66, 92)(69, 98)X[85,105]
C

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)231211191423115

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 105}
|�0| = 85; no other non-trivial orbits
w1 = 89, w2 = 100, w3 = 89, w4 = 90
S̄i = 2312111914231111

W = [S̄1, S̄
4
2 ] = 47182513318.

331https://doi.org/10.1112/S1461157000001145 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001145


Hurwitz groups of intermediate rank

n = 100. Representation G(1)E(2)F .
Y100 = Y

[1,42]
G Y

[43,70]
E Y

[71,100]
F

X100 = X
[1,42]
G (25, 68)(26, 69)X[43,70]

E (52, 71)(55, 74)X[71,100]
F

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)12411214

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 100}
|�0| = 80; no other non-trivial orbits
w1 = 89, w2 = 92, w3 = 89, w4 = 90
S̄i = 124112110

W = [S̄4
1 , S̄

6
2 ] = 5319142110.

n = 98. Representation G(1)E(2)E.
Y98 = Y

[1,42]
G Y

[43,70]
E Y

[71,98]
E

X98 = X
[1,42]
G (25, 68)(26, 69)X[43,70]

E (52, 80)(55, 83)X[71,98]
E

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)1129515

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 98}
|�0| = 78; no other non-trivial orbits
w1 = 67, w2 = 60, w3 = 89, w4 = 90
S̄i = 11295111

W = [S̄2
1 , S̄

8
2 ] = 411102513216.

n = 93. Representation G(1)Q(2)F .
Y93 = Y

[1,42]
G Y

[43,63]
Q Y

[64,93]
F

X93 = X
[1,42]
G (25, 43)(26, 44)X[43,63]

Q (57, 64)(60, 67)X[64,93]
F

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)63114

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 93}
|�0| = 73; no other non-trivial orbits
w1 = 67, w2 = 60, w3 = 89, w4 = 90
S̄i = 631110

W = [S̄1, S̄
2
2 ] = 6712212.
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Hurwitz groups of intermediate rank

n = 92. Representation G(1)E(2)D.
Y92 = Y

[1,42]
G Y

[43,70]
E Y

[71,92]
D

X92 = X
[1,42]
G (25, 68)(26, 69)X[43,70]

E (52, 71)(55, 74)X[71,92]
D

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)112102723214

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 92}
|�0| = 72; no other non-trivial orbits
w1 = 67, w2 = 60, w3 = 67, w4 = 68
S̄i = 1121027232110

W = [S̄3
1 , S̄

4
2 ] = 41171625117.

n = 91. Representation G(1)G(1)O.
Y91 = Y

[1,42]
G Y

[43,84]
G Y

[85,91]
O

X91 = X
[1,42]
G (25, 43)(26, 44)X[43,84]

G (67, 89)(68, 90)X[85,91]
O

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)19113317

s = 13, r = 13, k = 6, d = 13
�0 = {58} ∪ {60, . . . , 72} ∪ {77, . . . , 77} ∪ {79, 81, 82} ∪ {84, . . . , 91}
|�0| = 29; no other non-trivial orbits
w1 = 87, w2 = 91, w3 = 87, w4 = 85
S̄i = 191110

W = S̄1 = 191110.

n = 85. Representation G(1)E(2)B.
Y85 = Y

[1,42]
G Y

[43,70]
E Y

[71,85]
B

X85 = X
[1,42]
G (25, 68)(26, 69)X[43,70]

E (52, 71)(55, 74)X[71,85]
B

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)33111214

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 85}
|�0| = 65; no other non-trivial orbits
w1 = 67, w2 = 60, w3 = 67, w4 = 68
S̄i = 331112110

W = [S̄2
1 , S̄

9
2 ] = 4113616.
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n = 77. Representation G(1)E(2)O.
Y77 = Y

[1,42]
G Y

[43,70]
E Y

[71,77]
O

X77 = X
[1,42]
G (25, 68)(26, 69)X[43,70]

E (52, 71)(55, 75)X[71,77]
O

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)25111214

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 77}
|�0| = 57; no other non-trivial orbits
w1 = 53, w2 = 57, w3 = 53, w4 = 54
S̄i = 251112110

W = [S̄1, S̄
2
2 ] = 4315119.

n = 70. Representation G(1)E.
Y70 = Y

[1,42]
G Y

[43,70]
E

X70 = X
[1,42]
G (25, 68)(26, 69)X[43,70]

E

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)1129214

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 70}
|�0| = 50; no other non-trivial orbits
w1 = 43, w2 = 70, w3 = 53, w4 = 54
S̄i = 11292110

W = [S̄1, S̄
8
2 ] = 31111118.

n = 64. Representation G(1)R.
Y64 = Y

[1,42]
G Y

[43,64]
R

X64 = X
[1,42]
G (25, 43)(26, 44)X[43,64]

R

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)17214

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 64}
|�0| = 44; no other non-trivial orbits
w1 = 18, w2 = 19, w3 = 43, w4 = 44
S̄i = 172110

W = [S̄1, S̄
7
2 ] = 231823112.

334https://doi.org/10.1112/S1461157000001145 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001145


Hurwitz groups of intermediate rank

n = 63. Representation G(1)C.
Y63 = Y

[1,42]
G Y

[43,63]
C

X63 = X
[1,42]
G (25, 43)(26, 44)X[43,63]

C

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)211422214

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 63}
|�0| = 43; no other non-trivial orbits
w1 = 39, w2 = 22, w3 = 43, w4 = 44
S̄i = 2114222110

W = [S̄3
1 , S̄

7
2 ] = 2915119.

n = 57. Representation G(1)P .
Y57 = Y

[1,42]
G Y

[43,57]
P

X57 = X
[1,42]
G (25, 43)(26, 44)X[43,57]

P

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)27114

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 57}
|�0| = 37; no other non-trivial orbits
w1 = 43, w2 = 25, w3 = 39, w4 = 37
S̄i = 271110

W = [S̄1, S̄
2
2 ] = 191513217.

n = 49. Representation G(1)O.
Y49 = Y

[1,42]
G Y

[43,49]
O

X49 = X
[1,42]
G (25, 47)(26, 48)X[43,49]

O

a1 = 1, a2 = 2, c1 = 13, c2 = 14, a3 = 3, a4 = 4, c3 = 15, c5 = 17
[ψ(X),ψ(Y )] = (1, 5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10, 23, 13, 17, 37, 7, 12, 41, 16, 15, 20, 9)19114

s = 13, r = 13, k = 6, d = 13
�0 = {16} ∪ {18, . . . , 30} ∪ {32, . . . , 35} ∪ {37, 39, 40} ∪ {42, . . . , 49}
|�0| = 29; no other non-trivial orbits
w1 = 29, w2 = 34, w3 = 29, w4 = 30
S̄i = 191110

W = S̄1 = 191110.
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Appendix C.

This appendix contains the collection of Magma libraries that were used to obtain the
information provided in Appendix B. These, as well as a "README" file, can be found at

http://www.lms.ac.uk/jcm/7/lms2004-042/appendix-c.
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